博碩士論文 103323064 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:95 、訪客IP:18.222.179.186
姓名 黃暐倫(Wei-Lun Huang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 利用遮罩式電化學加工製作穿孔之最佳化參數分析
(The Optimal Parametric Analysis in Fabrication of through hole by Through Mask Electrochemical Machining)
相關論文
★ 迴轉式壓縮機泵浦吐出口閥片厚度對性能影響之研究★ 鬆弛時間與動態接觸角對旋塗不穩定的影響
★ 電化學製作針錐微電極之製程研究與分析★ 蚶線形滑轉板轉子引擎設計與實作
★ 利用視流法分析金屬射出成形脫脂製程中滲透度與毛細壓力之關係★ 應用離心法實驗探求多孔介質飽和度與毛細力之關係
★ 利用網絡模型數值模擬粉末射出成形製程毛細吸附脫脂機制★ 轉注成形充填過程之巨微觀流數值模擬
★ 二維熱流效應對電化學加工反求工具形狀之分析★ 金屬粉末射出成形製程中胚體毛細吸附脫脂之數值模擬與實驗分析
★ 飽和度對金屬射出成形製程中毛細吸附脫脂之影響★ 轉注成型充填過程巨微觀流交界面之數值模擬
★ 轉注成型充填過程中邊界效應之數值模擬★ 鈦合金整流板電化學加工技術研發
★ 射出/壓縮轉注成型充填階段中流場特性之分析★ 脈衝電化學加工過程中氣泡觀測與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 電化學微加工(Electrochemical Micro-Machining,EMM),屬於非傳統加工方法的一種,以電解現象達成加工成形之目的,其優點為加工速度快、加工不受材料硬度限制、工件無表面應力殘留及表面粗糙度佳的優勢,具有相當的發展潛力與高附加價值。然而,一般電化學微加工會因成品要求而負擔較昂貴的刀具設計費用,但遮罩式電化學加工(Through-Mask Electrochemical Machining,TMEMM)所用之刀具則不受成品形狀之影響,可在相同刀具下,透過絕緣遮罩,並依成品之形狀改變其遮罩形狀,即可完成加工,因此可省下刀具設計費用。
本研究採用紅銅作為刀具,以不鏽鋼304薄板(0.1 mm)作為工件,使用網版印刷製程製作遮罩。本研究之目的為觀察電解液流向對加工外觀的影響,並以田口統計法作為分析工具,探討遮罩式電化學加工參數(電解液濃度、操作電壓、遮罩孔洞直徑、遮罩厚度)對單孔底切與陣列孔均勻度的影響趨勢,最後再從中評估出最佳參數組合。
實驗結果可以發現,加工外觀在使用正向流模式時加工形狀較圓,而使用側向流模式時加工形狀會因電解液流向呈現橢圓形,因此本文選定正向流模式進行後續實驗。
另外,由變異數分析可以發現,影響單孔底切與陣列孔均勻度最高的實驗參數均為遮罩孔洞直徑與遮罩厚度,同時從研究中順利取得一組最佳參數,單孔底切實驗之最佳參數組合為A2B1C1D1,底切量為72 μm,陣列孔均勻度實驗之最佳參數組合為A2B3C1D3,平均偏差量為7 μm。
摘要(英) Electrochemical micro-machining (EMM) is one of the non-traditional manufacturing processes, shaping workpieces by electrolysis. The advantages include high processing speed, independent of metal properties, no surface residual stress, and smooth workpiece surface with enormous potentialities and highly added values. However, normal electrochemical micro-machining will afford higher expense because of the demand of the end product. The design expense of the electrode tool can be saved if using through-mask electrochemical machining (TMEMM). The purpose of using TMEMM is that the electrode tool won’t be affected by the end product shape. Without changing the electrode tool, TMEMM can fulfill end product, with any shape by only changing the shape of the electric insulated mask.
In this study, copper is selected as the electrode tool, and a SUS 304 thin plate (0.1 mm) is taken as workpiece. Masks are made by using the screen printing process. The object of this research was to observe the effects of the electrolyte flow direction on through holes shape, and Taguchi Statistical Method is used to analyze the influences of parameters (e.g.: electrolyte concentration, applied voltage, diameter of the mask hole, and the thickness of the mask) on the undercut of single hole and uniformity of array holes, and estimate the best combination of parameters.
According to the results of the experiments, end product (drilled holes) is closer to a circle by using the forward flow mode. On the other hand, if we using the lateral flow mode, the shape of the end product will be more close to an oval profile. Therefore the forward flow mode is selected as the basis for the flowing experiments.
Furthermore, by the analysis of variance (ANOVA), it is found that the highest impact factors on the undercut of single hole and uniformity of array holes are the diameter of the mask hole and the thickness of the mask. And the best parameter combination is simultaneously acquired from the research. The best parameter combination for a small the undercut of single hole is A2B1C1D1, and the corresponding of undercut is 72 μm. The best parameter combination for the most uniformity of array holes is A2B3C1D3, and the corresponding averaged deviation is 7 μm.
關鍵字(中) ★ 電化學微加工
★ 遮罩式電化學加工
★ 田口法
關鍵字(英) ★ Electrochemical Micro-machining
★ Through-mask Electrochemical Machining
★ Taguchi Statistical Method
論文目次 目錄
摘要
Abstract III
致謝 V
目錄 VI
表目錄 X
圖目錄 XI
符號說明 XIII
第一章 緒論 1
1-1 前言 1
1-2 電化學加工(Electrochemical Machining, ECM) 3
1-3 遮罩式電化學加工 4
1-4 文獻回顧 5
1-5 研究目的 9
第二章 理論基礎 11
2-1 電化學加工之基本理論 11
2-1-1 電流效率(Current Efficiency) 12
2-1-2 極化與過電壓 13
2-1-3 歐姆定律(Ohm′s Law) 14
2-2 導電度、導電度與濃度之關係、電流密度 15
2-2-1 導電度(Conductivity) 15
2-2-2 導電度與濃度之關係 16
2-2-3 電流密度(Current Density) 17
2-3 液相質傳動力學 17
2-4 電化學反應式 18
2-5 底切、均勻度 19
2-5-1 底切 19
2-5-2 均勻度 20
2-6 田口實驗計劃法 21
2-6-1 信號雜音比 21
2-6-2 變異數分析 23
第三章 實驗設備與步驟 27
3-1 實驗設備 27
3-1-1 機台結構設計 27
3-1-2 刀具進給控制系統 29
3-1-3 直流電源供應器 29
3-1-4 電解液循環系統 29
3-1-5 磁石攪拌器 30
3-1-6 金相顯微鏡 30
3-2 實驗材料 31
3-2-1 電極材料 31
3-2-2 電解液 32
3-3 絕緣遮罩 32
3-4 建構直交表 33
3-5 實驗步驟及注意事項 33
3-5-1 電解液流向之探討 34
3-5-2 單孔底切之參數分析 35
3-5-3 陣列均勻度之參數分析 36
3-5-4 實驗注意事項 37
第四章 結果與討論 39
4-1 電解液流向之探討 41
4-2 單孔底切之參數分析 42
4-2-1 單孔底切之ANOVA參數分析 42
4-2-2 單孔底切之最佳參數水準組合 45
4-3 陣列均勻度之參數分析 46
4-3-1 陣列均勻度之ANOVA參數分析 46
4-3-2 陣列均勻度之最佳參數水準組合 48
第五章 結論 50
5-1 結論 50
5-2 未來展望 51
參考文獻 53
參考文獻 參考文獻
[1] 楊龍杰編著,認識微機電,蒼海書局,台中市,2001年。
[2] 徐泰然著,微機電系統與微系統:設計與製造,朱銘祥譯,美商麥格羅‧希爾國際股份有限公司,台北市,2003年。
[3] S.H. Ahn, S.H. Ryu, D.K. Choi and C.N. Chu, “Electro-chemical micro drilling using ultra short pulses,” Precision Engineering, Vol. 28, No. 2, pp. 129-134, 2004.
[4] 木本康雄著,精密加工之電學應用,賴耿陽譯著,復漢出版社,1982年。
[5] 佐藤敏一著,金屬腐蝕加工技術,賴耿陽譯著,復漢出版社,台南,1986年。
[6] R.V. Shenoy and M. Datta, “Effect of mask wall angle on shape evolution during through-mask electrochemical micromachining,” Journal of the Electrochemical Society, Vol. 143, No. 2, pp. 544-549, 1996.
[7] D. Zhu, N.S. Qu, H.S. Li, Y.B. Zeng, D.L. Li and S.Q. Qian, “Electrochemical micromachining of microstructures of micro hole and dimple array,” CIRP Annals-Manufacturing Technology, Vol. 58, No. 1, pp. 177-180, 2009.
[8] S.Q. Qian, D. Zhu, N.S. Qu, H.S. Li and D.S. Yan, “Generating micro-dimples array on the hard chrome-coated surface by modified through mask electrochemical micromachining,” The International Journal of Advanced Manufacturing Technology, Vol. 47, No. 9-12, pp. 1121-1127, 2010.
[9] D.L. Li, D. Zhu and H.S. Li, “Microstructure of electrochemical micromachining using inert metal mask,” The International Journal of Advanced Manufacturing Technology, Vol. 55, No. 1-4, pp. 189-194, 2011.
[10] N.S. Qu , X.L. Chen , H.S. Li and Y.B. Zeng, “Electrochemical micromachining of micro-dimple arrays on cylindrical inner surfaces using a dry-film photoresist,” Chinese Journal of Aeronautics, Vol. 27, No. 4, pp. 1030-1036, 2014.
[11] S.Q. Qian, F. Ji, N.S. Qu and H.S. Li, “Improving the localization of surface texture by electrochemical machining with auxiliary anode,” Materials and Manufacturing Processes, Vol. 29, No. 11-12, pp. 1488-1493, 2014.
[12] N.S. Qu, X.L. Chen, H.S. Li and D. Zhu, “Fabrication of PDMS micro through-holes for electrochemical micromachining,” The International Journal of Advanced Manufacturing Technology, Vol. 72, No. 1-4, pp. 487-494, 2014.
[13] X.L. Chen, N.S. Qu and H.S. Li, “Improvement of dimensional uniformity on micro-dimple arrays generated by electrochemical micro-machining with an auxiliary electrode,” The International Journal of Advanced Manufacturing Technology, Vol. 80, No. 9-12, pp. 1577-1585, 2015.
[14] X.L. Chen, N.S. Qu, H.S. Li and Z.Y. Xu, “Pulsed electrochemical micromachining for generating micro-dimple arrays on a cylindrical surface with a flexible mask,” Applied Surface Science, Vol. 343, pp. 141-147, 2015.
[15] Q.L. Hao and P.M. Ming, “Fabrication of micro-dimple arrays using modified through-mask electrochemical micromachining,” Applied Mechanics and Materials, Vol. 703, pp. 146-149, 2014.
[16] X.L. Chen, N.S. Qu, H.S. Li and Z.N. Guo, “Removal of islands from micro-dimple arrays prepared by through-mask electrochemical micromachining,” Precision Engineering, Vol. 39, pp. 204-211, 2015.
[17] S.Q. Qian and F. Ji, “Investigation on the aluminum-alloy surface with micro-pits Array generating by through double mask electrochemical machining,” AASRI International Conference on Industrial Electronics and Applications, pp. 59-62, London UK, 2015.
[18] X.L. Chen, N.S. Qu, H.S. Li and Z.Y. Xu, “Electrochemical micromachining of micro-dimple arrays using a polydimethylsiloxane (PDMS) mask,” Journal of Materials Processing Technology, Vol. 229, pp. 102-110, 2016
[19] 田福助,電化學:原理與應用,高立圖書,新北市,2011年。
[20] 胡啟章,電化學原理與方法,五南圖書出版股份有限公司,台北市,2002年。
[21] Thorpe J.F., R.D. Zerkle, “Theoretical analysis of the equilibrium sinking of shallow, axially symmetric, cavities by electrochemical machining,” Fundamentals of Electrochemical Machining, Electrochemical Society, Princeton, pp. 1-39, 1971.
[22] 田福助,電化學基本原理與應用,五洲出版有限公司,2004年。
[23] 吳浩青、李永舫,電化學動力學,科技圖書,台北市,2001年。
[24] Madhav S. Phadke著,穩健設計之品質工程,黎正中編譯 ,台北圖書有限公司,台北,民國82年。
[25] 鍾清章等編著,品質工程(田口方法),中華民國品質管制學會,1994年。
[26] 鄭燕琴編著,田口品質工程技術理論與實務,中華民國品質管制學會,1995年。
[27] 蘇朝墩編著,產品穩健設計-田口品質工程方法的介紹和應用,中華民國品質管制學會,1997年。
[28] E.S. Lee, J.W. Park and Y.H. Moon, “A study on electrochemical micromachining for fabrication of microgrooves in an air-lubricated hydrodynamic bearing,” The International Journal of Advanced Manufacturing Technology, Vol. 20, No. 10, pp. 720-726, 2002.
[29] C. Rosenkranz, M.M. Lohrengel and J.W. Schultze, “The surface structure during pulsed ECM of iron in NaNO3,” Electrochimica Acta, Vol. 50, No. 10, pp. 2009-2016, 2016.
[30] 陳千蕙,“移動刀具之遮罩式微電化學加工模擬與分析”,國立中央大學機械工程研究所碩士論文,2016。
指導教授 洪勵吾 審核日期 2016-7-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明