博碩士論文 103323066 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:44.210.85.190
姓名 劉正皓(Cheng-Hao Liu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 噴流式MOCVD腔體之熱流及質傳研究分析
(Analysis of thermal flow and mass transport in MOCVD round jet chamber)
相關論文
★ 鋰鋁矽酸鹽之負熱膨脹陶瓷製程★ 鋰鋁矽酸鹽摻鈦陶瓷之性質研究
★ 高功率LED之熱場模擬與結構分析★ 干涉微影之曝光與顯影參數對週期性結構外型之影響
★ 週期性極化反轉鈮酸鋰之結構製作與研究★ 圖案化藍寶石基板之濕式蝕刻
★ 高功率發光二極體於自然對流環境下之熱流場分析★ 液珠撞擊熱板之飛濺行為現象分析
★ 柴式法生長氧化鋁單晶過程最佳化熱流場之分析★ 柴式法生長氧化鋁單晶過程晶體內部輻射對於固液界面及熱應力之分析
★ 交流電發光二極體之接面溫度量測★ 柴氏法生長單晶矽過程之氧雜質傳輸控制數值分析
★ 泡生法生長大尺寸氧化鋁單晶降溫過程中晶體熱場及熱應力分析★ KY法生長大尺寸氧化鋁單晶之數值模擬分析
★ 外加水平式磁場柴氏法生長單晶矽之熱流場及氧雜質傳輸數值分析★ 大尺寸LED晶片Efficiency Droop之光電熱效應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 金屬有機化學氣相沉積法(MOCVD)技術由於具有外延層(epitaxial layer)均勻性較好、材料純度高等優點,為現今LED磊晶產業用於生長氮化鎵的重要製程技術。
本研究利用有限元素分析法(FEM)與實驗比較,為使生長速率計算更接近實際製程,同時考慮物種由於質傳與表面反應造成的反應消耗。利用數值模擬,藉由Langmuir熱力學定理計算氣相反應後各物種在晶圓表面上的吸附速率,並以MMG作為主要的吸附物種,主要的反應式共有1條。
先解決round jet 入口過於單純,並將slot jet入口運用在導流板設計,為改善入口流速為目標,對於整體腔體內部流場做分析,並從實驗與模擬作比對,確認模擬真實性,並朝著適合薄膜生長的製程參數情形下,做模擬分析。
模擬結果顯示,增加進氣流量使得氣體濃度容易朝slot jet中心集中,造成因慣性力而產生的渦旋變強。而最好入口流速的雷諾數為2~3之間;增加載盤溫度會使入口與載盤間的溫度梯度升高,Rij超過5000時,在載盤附近會開始有熱浮力產生的渦旋來影響流場;增加載盤旋轉可明顯抑制熱浮力的效應,而抑制熱浮力所導致的渦旋。Riw約為0.05時,能有效的抑制熱渦旋。增加壓力有利於增加成長速率,但相對的流場變為難以控制,流場不穩定容易造成均勻性不佳。
接下來修改出口設計,對基本幾何參數與出口幾何參數進行設計,結果顯示將出口加寬為27.5mm時,並修正單孔狀出口,變為環狀出口時,能夠達到較好的入口均勻性,整體流場也變為plug flow。
摘要(英) Metalorganic chemical vapour deposition (MOCVD), with it advantages as better epitaxial layer and high material purity, is a vital process technique for GaN growth in the LED Epitaxy industry.The finite element analysis (FEM) was employed in the current study for experimental comparison, aiming to make the growth rate more close to actual processes and take into account the reaction depletion resulting from the reaction of mass transfer on the surface.The Langmuir equation was adopted to calculate the absorption rate on wafer surfaces among species after the vapor reaction. In addition, MMG was used as the major absorbed species,with one major reaction equation.Over simplicity of round jet was solved first and the slot jet was then applied to the design of deflectors.To improve the inlet flow rate, the flow field analysis on overall chambers was carried out and compared against the simulation to make sure the authenticity of the simulation,with relevant simulation analysis implemented in conditions appropriate for the growth of the thin film.The results of the simulation revealed that the increase in the intake flow rate enabled the gas concentration to move towards the center of the slot jet,making the vortex as the result of inertia even stronger. The optimal Reynolds number of the inlet flow rate should be between 2 and 3. Increase in the carrier plate temperature made the temperature gradient between the inlet and the carrier plate higher.When Rij reached over 5000, vortexes resulting from thermal buoyancy appeared around the carrier plate and affected the flow field.The increase in carrier plate spin significantly inhibited the effect of thermal buoyancy and thus the resulting vortexes.When Rjw was 0.05, thermal vortexes could be effectively inhibited.The increase in pressure was beneficial to growth rate, yet the flow field became much uncontrollable.Unstable flow field easily led to poor evenness.The next step was modifying the outlet based on basic geometrical parameter and outlet geometric parameter.The results indicated that when the outlet was widened to 27.5mm and changed to round style rather than its original single-hole style, better inlet evenness could be obtained and the overall flow field became plug flow.
關鍵字(中) ★ 有機金屬化學氣相沉積法
★ 氮化鎵
★ 流場分析
★ 導流板設計
關鍵字(英) ★ MOCVD
★ GaN
★ Flow field analysis
★ Deflector design
論文目次 目錄
摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 IIX
表目錄 XIII
符號說明 XV
第一章 緒論 1
1-1 研究背景 1
1-2 薄膜沉積原理 2
1-3 化學反應過程 3
1-3-1 氣相反應過程 3
1-3-2 吸附過程 3
1-4 MOCVD反應腔體與進氣系統分類 4
1-5 文獻回顧 5
1-6 研究動機與目的 9
第二章 研究方法 17
2-1 數學模型 17
2-1-1 物理系統 17
2-1-2 基本假設 17
2-1-3 統御方程式 18
2-1-4 邊界條件 19
2-2混合氣體物理參數 22
2-3化學反應方程式與速率 22
2-3-1 化學反應速率 22
2-3-2 化學反應路徑 23
2-4 混合氣體物理特性 24
2-4-1 吸附速率(The rate of adsotption) 24
2-5 薄膜長速與沉積速率 25
2-6 無因次參數 26
2-7 噴流式MOCVD腔體 27
2-7-1噴射流MOCVD腔體研究動機 27
2-7-2 導流板(slot jet)設計圖 27
2-8 COMSOL Multiphysics 27
2-9 Matlab 27
第三章 實驗原理與方法 35
3-1 實驗設備介紹 35
3-1-1 腔體設計 36
3-1-2 觀測及測量儀器 41
3-2 實驗方法 43
3-2-1 影像處理分析方法 43
3-2-2 PIV技術原理 43
3-2-3 PIVlab優點 44
3-3 實驗流程及步驟 44
3-3-1 實驗配置 44
3-3-2 實驗步驟 45
3-4 實驗與模擬誤差 48
第四章 結果與討論 49
4-1流場型態類型介紹 49
4-1-1 腔體種類介紹 49
4-1-2 plug flow(柱塞流) 49
4-1-3 buoyancy-incducd-flow(浮力誘導流) 50
4-1-4 mix plug flow and buoyancy-incducd-flow (柱塞流) 50
4-2 未加入導流板之流場分析 54
4-2-1 round jet下低壓製程(10torr-2slm-常溫-0rpm) 54
4-2-2 round jet下低壓製程(10torr-2slm-773K-0rpm) 54
4-2-3 round jet下高壓製程(100torr-2slm-773K-0rpm) 55
4-3 加入導流板之10torr流場分析 56
4-3-1 導流板設計概念 56
4-3-2 10torr加入導流板-改變流率 56
4-3-3 10torr加入導流板-改變溫度 57
4-3-4 10torr加入導流板-載盤旋轉 57
4-4加入導流板之50torr流場分析 58
4-4-1 50torr加入導流板-改變流率 58
4-4-2 50torr加入導流板-改變溫度 59
4-4-3 50torr加入導流板-載盤旋轉 59
4-5加入導流板之100torr流場分析 59
4-5-1 100torr加入導流板-改變流率 59
4-5-2 100torr加入導流板-改變溫度 60
4-5-3 100torr加入導流板-載盤旋轉 60
4-6物種長速與均勻性探討 61
4-6-1 round jet入口與加入導流板之長速與均勻性比較………....61
4-7出口幾何探討 …..61
4-7-1 改變出口設計……………………………………..………....61
4-8腔體高度探討 62
4-8-1 降低高度設計……………………………………..………....62
第五章 結論與未來研究方向 90
5-1 結論 90
5-2 未來研究方向 93
參考文獻 95
參考文獻 參考文獻
[1]莊達人, "VLSI 製造技術," 高立圖書有限公司, 1996.
[2]E. M. McCash, "Surface chemistry," 2001.
[3]M. Dauelsberg, E.J. Thrush, B. Schineller, J. Kaeppeler, "Technology of MOVPE Production Tools," Elsevier Ltd. (2004) 39-68
[4]B. Mitrovic, A. Gurary, L. Kadinski, "On the flow stability in vertical rotating disc MOCVD reactors under a wide range of process parameters," Journal of Crystal Growth, 287, (2006) ,656-663 .
[5]A. Lobanova, K. Mazaev, E. Yakovlev, R. Talalaev, A. Galyukov, Y. Makarov, et al., "Parametric studies of III-nitride MOVPE in commercial vertical high-speed rotating disk reactors," Journal of Crystal Growth, 266, (2004), 354-362,
[6] L. Kadinski, V. Merai, A. Parekh, J. Ramer, E.A. Armour, R. Stall, A. Gurary, A. Galyukov, Yu. Makarov, "Computational analysis of GaN/InGaN deposition in MOCVD vertical rotating disk reactors," Journal of Crystal Growth, 261, (2004) ,175-181.
[7] B. Mitrovic, A. Parekh, J. Ramer, V. Merai, E. A. Armour, L. Kadinski, et al., "Reactor design optimization based on 3D modeling of nitrides deposition in MOCVD vertical rotating disc reactors," Journal of Crystal Growth", 289, (2006), 708-714,.
[8] C. H. Lin, W.T.Cheng, J.H.Lee, " Effect of embedding a porous medium on the deposition rate in a vertical rotating MOCVD reactor based on CFD modeling, "International Communications in Heat and Mass Transfer", 36, (2009), 680–685.
[9] Y.-H. Liu, L.-W. Tseng, C.-Y. Huang, K.-L. Lin, and C.-C. Chen, "Particle image velocimetry measurement of jet impingement in a cylindrical chamber with a heated rotating disk," International Journal of Heat and Mass Transfer", 65, (2013), 339-347..
[10] M. G. Jacko, S.J.W. Price, "The pyrolysis of trimethyl gallium," Canadian Journal of chemistry, 41, (1963), 1560-1567.
[11]S. A. Safvi, J. M. Redwing, M. A. Tischler, and T. F. Kuech, "GaN Growth by Metallorganic Vapor Phase Epitaxy: A Comparison of Modeling and Experimental Measurements," Journal of The Electrochemical Society, 144, (1997), 1789-1796.
[12] D. Sengupta, "Does the ring compound [(CH3)2GaNH2]3 form during MOVPE of gallium nitride? Investigations via Density Functional and Reaction Rate Theories," J. Phys. Chem. 107, (2003), 291-297.
[13] D. Sengupta, S. Mazumder, W. Kuykendall, and S. A. Lowry, "Combined ab initio quantum chemistry and computational fluid dynamics calculations for prediction of gallium nitride growth," Journal of Crystal Growth, 279, (2005), 369-382.
[14] Triantafillos J. Mountziaris, "Gas-phase and surface reaction mechanisms in MOCVD of GaAs with trimethyI-gallium and arsine," Journal of The Electrochemical Society, 138, (1991), issue 8.
[15] Yu Jen Hsu, Lu Sheng Hong, Kau Fong Huang, Jing En Tsay, "Low temperature metalorganic chemical vapor deposition of gallium nitride using dimethyl-
hydrazine as nitrogen source, ", Thin Solid Films,Elsevier, (2002)
[16] R. P. Parikh, R. A. Adomaitis, M. E. Aumer, D. P. Partlow, D. B. Thomson, and G. W. Rubloff, "Validating gallium nitride growth kinetics using a precursor delivery showerhead as a novel chemical reactor," Journal of Crystal Growth, 296, 2006, 15-26.
[17] 吳家寧, "MOCVD垂直式腔體中氮化鎵薄膜生長之模擬分析," 國立中央大學, 2014.
[18] 林瑤, "考量氣體分子吸附性質之MOCVD垂直反應腔體模擬分析," 國立中央大學, 2015.
[19] T.C. Cheng, P.H. Chiou, T.F. Lin, "Visualization of mixed convective vortex rolls in an impinging jet flow of air through a cylindrical chamber, "International Journal of Heat and Mass Transfer, 45, (2002), 3357–3368.
[20] Tsung Chieh Cheng,Tsing Fa Lin, Jung Yen Yang,Sheng-Rui Jian,"Visualization of Vortex Flow Patterns with a Uniformly Perforated Showerhead in a Model Lamp Heat, Single-Wafer Thermal Processor, "chemical vapor despostion, 13, (2007), 427–432.
指導教授 陳志臣(Jyh-Chen Chen) 審核日期 2016-8-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明