博碩士論文 103323067 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:18.188.49.114
姓名 陳千蕙(Chien-Hui Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 移動刀具之遮罩式微電化學加工模擬與分析
(Modeling and Analysis of Through-mask Electrochemical Micro-machining with a Moving Tool)
相關論文
★ 迴轉式壓縮機泵浦吐出口閥片厚度對性能影響之研究★ 鬆弛時間與動態接觸角對旋塗不穩定的影響
★ 電化學製作針錐微電極之製程研究與分析★ 蚶線形滑轉板轉子引擎設計與實作
★ 利用視流法分析金屬射出成形脫脂製程中滲透度與毛細壓力之關係★ 應用離心法實驗探求多孔介質飽和度與毛細力之關係
★ 利用網絡模型數值模擬粉末射出成形製程毛細吸附脫脂機制★ 轉注成形充填過程之巨微觀流數值模擬
★ 二維熱流效應對電化學加工反求工具形狀之分析★ 金屬粉末射出成形製程中胚體毛細吸附脫脂之數值模擬與實驗分析
★ 飽和度對金屬射出成形製程中毛細吸附脫脂之影響★ 轉注成型充填過程巨微觀流交界面之數值模擬
★ 轉注成型充填過程中邊界效應之數值模擬★ 鈦合金整流板電化學加工技術研發
★ 射出/壓縮轉注成型充填階段中流場特性之分析★ 脈衝電化學加工過程中氣泡觀測與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 目前遮罩式微電化學加工的發展都僅於靜態加工,刀具的大小通常須與工件之加工區大小相同,然而,在電化學加工中,需選擇一導電性良好之金屬作為刀具電極,這樣的金屬通常要價不斐。基於成本考量,本文試著縮小刀具尺寸,給定刀具一移動速度,利用有限元素法創建移動刀具之遮罩式微電化學加工的電場模型,探討動態加工時的施加電壓、遮罩厚度、刀具移動速度等參數對加工形狀的影響。
  由模擬結果顯示,在電壓越大時,加工深度越深,加工孔徑越大,且深寬比越佳;在遮罩厚度較薄時,電場分佈不均,側向腐蝕較為嚴重,工件中心會有島狀現象產生,這和遮罩的遮蔽性有關;在移動速度較慢時,相對加工時間較長,工件表面累積之電流密度越多,材料移除率越大;而隨著加工時間的增加,側向腐蝕速率會趨緩,使得深寬比漸佳。
摘要(英) The development of through-mask electrochemical micro-machining is restricted in the static processing. The size of the tool needs to be the same as the processing zone. However, the electrode of the tool is required to be a good conductivity metal, which is expensive. Based on the cost, in this study, we try to reduce the size of the tool along with a moving speed. The electric field of through-mask electrochemical micro-machining with a moving tool is simulated by using finite element method. Effects of parameters, such as: applied voltage, mask thickness and moving speed etc…, on the resulted holes are investigated.
  The simulation show that, as the voltage is increased, the machining depth is deeper, the hole diameter is bigger and the aspect ratio is higher. When the thickness of the mask is thinner, the electric field distribution is un-uniform and the lateral etching is higher. The island phenomenon will occur at the center of the workpiece. This is due to the shadow effect of the mask. When the moving speed is slow, the longer processing time causes more current density accumulated on the surface of the workpiece, such that the material removal rate is higher. As the processing time is increased, the lateral etching rate will become slow and the aspect ratio thus become better.
關鍵字(中) ★ 遮罩式微電化學加工
★ 有限元素法
★ 移動刀具
★ 模擬
關鍵字(英) ★ through-mask electrochemical micro-machining (TMEMM)
★ finite element method
★ moving tool
★ simulation
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 ix
符號說明 x
第一章 緒論 1
1-1 研究背景與動機 1
1-1-1 微電化學加工 3
1-1-2 遮罩式微電化學加工 4
1-2 文獻回顧 5
1-3 研究目的 10
第二章 理論分析 12
2-1 基本理論 12
2-1-1 電流密度 13
2-1-2 電流分佈 14
2-2 極化 15
2-2-1 液相質傳動力學 15
2-2-2 極化現象 16
2-3 電解液導電度 18
2-4 電極直徑與加工時間之關係 19
2-5 底切與蝕刻因子 20
2-6 電化學加工之建模需求 21
第三章 數值方法 23
3-1 有限元素法之電場分析 23
3-2 模型定義與假設 24
3-3 電化學反應式 25
3-4 模型建立 26
3-4-1 靜態遮罩式微電化學加工模型建立 27
3-4-2 動態遮罩式微電化學加工模型建立 27
3-5 二維電場模型 28
3-5-1 電場之統御方程式 28
3-5-2 靜態模型之電場設置 29
3-5-3 動態模型之電場設置 31
3-6 變形幾何模型 32
3-7 計算流程 33
第四章 結果與討論 35
4-1 靜態模型結果分析 36
4-1-1 有無預設陽極之比較分析 36
4-1-2 預設陽極尺寸對加工的影響 37
4-2 動態模型驗證 39
4-2-1 網格密度測試 39
4-2-2 時間間距測試 40
4-3 電壓對加工形狀的影響 40
4-4 遮罩厚度對加工形狀的影響 43
4-5 刀具移動速度對加工形狀的影響 44
第五章 結論 46
5-1 結論 46
5-2 未來展望 47
參考文獻 48
參考文獻 [1]楊龍杰著,認識微機電,滄海書局,台中市,2001年。
[2]徐泰然著,微機電系統與微系統-設計與製造,朱銘祥譯,美商麥格羅‧希爾國際股份有限公司 台灣分公司,台北市,2003年。
[3]B. Bhattacharyya, J. Munda and M. Malapati, “Advancement in electrochemical micro-machining,” International Journal of Machine Tools and Manufacture, Vol. 44, No. 15, pp. 1577-1589, 2004.
[4]黃暐倫,“利用遮罩式電化學加工製作穿孔之最佳化參數分析”,國立中央大學機械所,碩士論文,2016年。
[5]X. L. Chen, N. S. Qu, H. S. Li and D. Zhu, “The fabrication and application of a PDMS micro through-holes mask in electrochemical micromanufacturing,” Advances in Mechanical Engineering, Vol. 6, Article ID 943092, 2014.
[6]M. Datta and D. Landolt, “Fundamental aspects and applications of electrochemical microfabrication,” Electrochimica Acta, Vol. 45, No. 15-16, pp. 2535-2558, 2000.
[7]C. Vuik, and C. Cuvelier, “Numerical solution of an etching problem,” Journal of Computational Physics, Vol. 59, No. 2, pp. 247-263, 1985.
[8]R. V. Shenoy and M. Datta, “Effect of mask wall angle on shape evolution during through‐mask electrochemical micromachining,” Journal of the Electrochemical Society, Vol. 143, No. 2, pp. 544-549, 1996.
[9]R. V. Shenoy, M. Datta and L. T. Romankiw, “Investigation of island formation during through‐mask electrochemical micromachining,” Journal of the Electrochemical Society, Vol. 143, No. 7, pp. 2305-2309, 1996.
[10]J. Liu, D. Zhu, N. S. Qu and H. S. Li, “Micro multiple holes produced by through-mask electrochemical machining in metal sheets,” Electromachining & Mould, Vol. 3, pp. 37-39, 2008.
[11]D. Zhu, N. S. Qu, H. S. Li, Y. B. Zeng, D. L. Li and S. Q. Qian, “Electrochemical micromachining of microstructures of micro hole and dimple array,” CIRP Annals-Manufacturing Technology, Vol. 58, No. 1, pp. 177-180, 2009.
[12]S. Q. Qian, D. Zhu, N. S. Qu, H. S. Li and D. S. Yan, “Generating micro-dimples array on the hard chrome-coated surface by modified through mask electrochemical micromachining,” The International Journal of Advanced Manufacturing Technology, Vol. 47, No. 9, pp. 1121-1127, 2010.
[13]L. Wang, Q. D. Wang, X. Q. Hao, Y. C. Ding and B. H. Lu, “Finite element simulation and experimental study on the through-mask electrochemical micromachining (EMM) process,” The International Journal of Advanced Manufacturing Technology, Vol. 51, No. 1, pp. 155-162, 2010.
[14]D. L. Li, D. Zhu and H. S. Li, “Electrochemical machining with mask by auxiliary anode,” Journal of Nanjing University of Aeronautics & Astronautics, Vol. 42, No. 4, pp. 401-406, 2010.
[15]D. L. Li, D. Zhu and H. S. Li, “Microstructure of electrochemical micromachining using inert metal mask,” The International Journal of Advanced Manufacturing Technology, Vol. 55, No. 1, pp. 189-194, 2011.
[16]A. Ivanov, “Simulation of electrochemical etching of silicon with COMSOL,” Proceedings of COMSOL Conference, Stuttgart Germany, 2011.
[17]A. Ivanov and U. Mescheder, “Dynamic simulation of electrochemical etching of silicon,” Proceedings of COMSOL Conference, Milan Italy, 2012.
[18]A. Ivanov and U. Mescheder, “Primary current distribution model for electrochemical etching of silicon through a circular opening,” Proceedings of COMSOL Conference, Grenoble France, 2015.
[19]C. Winkelmann and W. Lang, “Influence of the electrode distance and metal ion concentration on the resulting structure in electrochemical micromachining with structured counter electrodes,” International Journal of Machine Tools and Manufacture, Vol. 72, pp. 25-31, 2013.
[20]A. D. Davydov, T. B. Kabanovaa and V. M. Volgina, “Modeling of Through-Mask Electrochemical Micromachining,” Chemical Engineering, Vol. 41, pp. 85-90, 2014.
[21]N. Qu, X. Chen, H. Li and Y. Zeng, “Electrochemical micromachining of micro-dimple arrays on cylindrical inner surfaces using a dry-film photoresist,” Chinese Journal of Aeronautics, Vol. 27, No. 4, pp. 1030-1036, 2014.
[22]S. Qian, F. Ji, N. Qu and H. Li, “Improving the localization of surface texture by electrochemical machining with auxiliary anode,” Materials and Manufacturing Processes, Vol. 29, No. 11-12, pp. 1488-1493, 2014.
[23]X. L. Chen, N. S. Qu, H. S. Li and Z. N. Guoc, “Removal of islands from micro-dimple arrays prepared by through-mask electrochemical micromachining,” Precision Engineering, Vol. 39, pp. 204-211, 2015.
[24]S. Qian, and F. Ji, “Investigation on the aluminum-alloy surface with micro-pits array generating by through double mask electrochemical machining,” AASRI International Conference on Industrial Electronics and Applications, pp. 59-62, London UK, 2015.
[25]V. K. Jain and D. Gehlot, “Anode shape prediction in through-mask-ecmm using FEM,” Machining Science and Technology, Vol. 19, No. 2, pp. 286-312, 2015.
[26]X. Zhang, N. Qu, H. Li and Z. Xu, “Investigation of machining accuracy of micro-dimples fabricated by modified microscale pattern transfer without photolithography of substrates,” The International Journal of Advanced Manufacturing Technology, Vol. 81, No. 9, pp. 1475-1485, 2015.
[27]田福助著,電化學-理論與應用,高立圖書有限公司,台北市,1996年。
[28]吳浩青、李永航著,電化學動力學,科技圖書,台北市,45-46頁,2001年。
[29]胡啟章著,電化學原理與方法,五南圖書,台北市,38-40頁,2002年。
[30]S. Hinduja and M. Kunieda. “Modelling of ECM and EDM processes,” CIRP Annals-Manufacturing Technology, Vol. 62, No. 2, pp. 775-797, 2013.
[31]J. F. Thorpe and R. D. Zerkle, “Analytic determination of the equilibrium electrode gap in electrochemical machining,” International Journal of Machine Tool Design and Research, Vol. 9, No. 2, pp. 131-144, 1969.
[32]中仿科技公司:COMSOL Multiphysics V4.x 几何建模用戶指南,2010年,取自:www.CnTech.com.cn。
[33]J. F. Thorpe and R. D. Zerkle, “Theoretical analysis of the equilibrium sinking of shallow, axially symmetric, cavities by electrochemical machining,” Fundamentals of Electrochemical Machining, Electrochemical Society, Princeton, pp. 1-39, 1971.
[34]M. A. Bejar, and F. Gutierrez, “On the determination of current efficiency in electrochemical machining with a variable gap,” Journal of Materials Processing Technology, Vol. 37, No.1, pp.691-699, 1993.
[35]S. J. Lee, “COMSOL in electrochemical applications,” Proceedings of COMSOL Conference, Taipei Taiwan, 2013.
[36]許世壁、邱創雄著,工程數學,高立圖書有限公司,新北市,8.17-8.34頁,2011年。
[37]T. Isono, “Density, viscosity, and electrolytic conductivity of concentrated aqueous electrolyte solutions at several temperatures. Alkaline-earth chlorides, lanthanum chloride, sodium chloride, sodium nitrate, sodium bromide, potassium nitrate, potassium bromide, and cadmium nitrate,” Journal of Chemical and Engineering Data, Vol. 29, No. 1, pp. 45-52, 1984.
指導教授 洪勵吾 審核日期 2016-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明