博碩士論文 103323068 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:58 、訪客IP:3.14.141.128
姓名 黃瑋智(Wei-Jhih Huang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 雙壁轉鼓在不同轉速與壁面摩擦對於顆粒尺寸分離之研究
相關論文
★ 筆記型電腦改良型自然對流散熱設計★ 移動式顆粒床過濾器濾餅流場與過濾性能之研究
★ IP67防水平板電腦設計研究★ 汽車多媒體導航裝置散熱最佳化研究
★ 流動式顆粒床過濾器三維流場觀察及能性能測試★ 流動式顆粒床過濾器冷性能測試
★ 流動式顆粒床過濾器過濾機制研究★ 二維流動式顆粒床過濾器內部配置設計研究
★ 循環式顆粒床過濾器過濾性能研究★ 流動式顆粒床過濾器之流場型態設計與研究
★ 流動式顆粒床過濾器之流動校正單元設計與分析研究★ 流動式顆粒床過濾器之雙葉片型流動校正單元設計與冷性能過濾機制研究
★ 稻稈固態衍生燃料成型性分析之研究★ 流動式顆粒床過濾器之不對稱葉片設計與冷性能過濾機制研究
★ 流動式顆粒床過濾器之滾筒式粉塵分離系統與冷性能過濾及破碎效應研究★ 稻稈固態衍生燃料加入添加物成型性分析之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究主要探討雙壁轉鼓系統內填裝不同粒徑之顆粒時,在不同轉速之情形下產生之之顆粒尺寸分離現象。在實驗過程中,本研究利用DV 錄影機拍攝顆粒遷移變化與濃度變化之影像,再利用高速攝影機拍攝其運動過程,進而分析計算出在不同轉速與壁面摩擦效應下,粒子溫度隨著角度與徑向方向之變化。
實驗結果顯示,當壁面為光滑的狀態時,在不同轉速之情況下,慣性力與重力為主導顆粒遷移之驅使力,從徑向方向之濃度變化中發現,當慣性力與重力效應同時影響分離過程時,將此時的顆粒特殊分布狀態稱為過渡區。本研究進一步於轉鼓壁面上黏貼砂紙,探討不同程度之壁面摩擦對於顆粒遷移的影響,當壁面黏貼砂紙時,除了受到驅使力的影響外,受到粗糙壁面的影響,壁面摩擦力隨之增加,大顆粒群將逐漸遠離作用壁面,造成過渡區發生的範圍變廣。
當分離機制為慣性力所主導時,我們可由粒子溫度的分析中發現轉鼓中靠近內壁面之區域發生顆粒群的交互作用;隨著轉速的降低,顆粒發生交互作用之區域逐漸遷移至外壁面;以重力主導分離過程時,顆粒群之交互作用區域遷移至靠近外壁面處。若壁面黏貼砂紙時,壁面摩擦效應給顆粒更大的能量,整體粒子溫度皆高於壁面為壓克力材質之粒子溫度,且作用區域將更遠離作用壁面。
摘要(英) The purpose of this research is the size segregation in the double-walled drum in different rotational speeds and wall roughness conditions. A digital video recorder was used to photograph the variation of particle migrating and concentration, and a high speed camera was used to photograph the movement process of the particles. The granular temperature of experimental results was calculated based on the pictures from the high speed camera, and the results showed the variation trend along the radial directions and angles.
The experimental results showed that the centrifugal force and gravity are the main drive forces influencing the size segregation. A special distribution state named Transition zone has been observed from the concentration changes along radial direction. Furthermore, a sandpaper was pasted on the walls of the drum, and therefore we analyzed the diversification of the particles segregation with angle and radial direction in different rough wall conditions.
The interaction of coarse particles and fine particles were observed from the results of granular temperature. The interaction zone was closed to inner wall when the centrifugal force leading the segregation mechanism. On the contrary, the interaction zone was closed to outer wall when gravity leading the segregation mechanism.
From the results of granular temperature, we have observed that the particles in the drum are given more energy with higher roughness wall, and vice versa. Hence, the transition zones of particles are moved away from the affecting wall.
關鍵字(中) ★ 顆粒流
★ 雙壁轉鼓
★ 尺寸分離
★ 過渡區
關鍵字(英) ★ Granular flow
★ Double-walled drum
★ Size segregation
★ transition zone
論文目次 摘要 I
Abstract II
目錄 III
附圖目錄 V
附表目錄 VII
第一章 緒論 1
1.1 前言 1
1.2 顆粒體在旋轉鼓中現象 2
1.3 旋轉鼓中的運動型態 4
1.4 壁面摩擦效應 6
1.5 旋轉鼓內添加置入物與研究動機 7
1.6 研究方向 8
第二章 實驗方法與原理 10
2.1 實驗設備 10
2.2 原理與方法 14
2.3 旋轉鼓尺寸分離效應之實驗流程及配置 20
2.4 誤差分析 22
第三章 結果與討論 33
3.1 無因次偏移量在不同轉速與粗糙壁面之影響 33
3.2 徑向濃度變化在不同轉速與粗糙壁面之影響 36
3.3 轉速與粗糙壁面對於粒子溫度之影響 40
第四章 結論 70
參考文獻 72
參考文獻 1. Jain, Nitin, J. M. Ottino, and R. M. Lueptow. "Effect of interstitial fluid on a granular flowing layer." Journal of fluid mechanics 508 (2004): 23-44.
2. Herrmann, H. J. "Statistical models for granular materials." Physica A: Statistical Mechanics and its Applications 263.1 (1999): 51-62.
3. Williams, J. C. "The segregation of particle materials. A review." Powder Technology15.2 (1976): 245-251.
4. Jain, Nitin, Julio M. Ottino, and Richard M. Lueptow. "Regimes of segregation and mixing in combined size and density granular systems: an experimental study." Granular Matter 7.2-3 (2005): 69-81.
5. Donald, M. B., and B. Roseman. "Mixing and De-mixing of solid particles;{Part I, II, III}." Brit. Chem. Eng. 7.10 (1962).
6. Rosato, Anthony, et al. "Why the Brazil nuts are on top: Size segregation of particulate matter by shaking." Physical Review Letters 58.10 (1987): 1038.
7. Williams, J. C., and M. I. Khan. "Mixing and segregation of particulate solids of different particle-size." CHEMICAL ENGINEER-LONDON 269 (1973): 19-25.
8. Gray, J. M. N. T., and K. Hutter. "Pattern formation in granular avalanches."Continuum Mechanics and Thermodynamics 9.6 (1997): 341-345.
9. Dury, Christian M., and Gerald H. Ristow. "Competition of mixing and segregation in rotating cylinders." Physics of Fluids 11.6 (1999): 1387-1394.
10. Chakraborty, Saikat, Prabhu R. Nott, and J. Ravi Prakash. "Analysis of radial segregation of granular mixtures in a rotating drum." The European Physical Journal E 1.4 (2000): 265-273.
11. Ristow, Gerald H. "Particle mass segregation in a two-dimensional rotating drum." EPL (Europhysics Letters) 28.2 (1994): 97.
12. Khakhar, D. V., Ashish V. Orpe, and S. K. Hajra. "Segregation of granular materials in rotating cylinders." Physica A: Statistical Mechanics and its Applications 318.1 (2003): 129-136.
13. Sanfratello, Lori, and Eiichi Fukushima. "Experimental studies of density segregation in the 3D rotating cylinder and the absence of banding." Granular Matter 11.2 (2009): 73-78.
14. Henein, H., J. K. Brimacombe, and A. P. Watkinson. "Experimental study of transverse bed motion in rotary kilns." Metallurgical transactions B 14.2 (1983): 191-205
15. Rajchenbach, Jean. "Flow in powders: From discrete avalanches to continuous regime." Physical review letters 65.18 (1990): 2221.
16. Mellmann, J. "The transverse motion of solids in rotating cylinders—forms of motion and transition behavior." Powder Technology 118.3 (2001): 251-270.
17. Savage, S. B., and M. Sayed. "Stresses developed by dry cohesionless granular materials sheared in an annular shear cell." Journal of Fluid Mechanics142 (1984): 391-430.
18. Hanes, Daniel M., and Douglas L. Inman. "Observations of rapidly flowing granular-fluid materials." Journal of Fluid Mechanics 150 (1985): 357-380.
19. Elliott, Kenneth E., Goodarz Ahmadi, and William Kvasnak. "Couette flows of a granular monolayer—an experimental study." Journal of non-newtonian fluid mechanics 74.1 (1998): 89-111.
20. Lu, Li-Shin, and Shu-San Hsiau. "DEM simulation of particle mixing in a sheared granular flow." Particuology 6.6 (2008): 445-454.
21. Lim, E. W. C. "Granular Leidenfrost effect in vibrated beds with bumpy surfaces." The European Physical Journal E 32.4 (2010): 365-375.
22. Hsiau, Shu-San, and Wen-Lung Yang. "Stresses and transport phenomena in sheared granular flows with different wall conditions." Physics of Fluids (1994-present) 14.2 (2002): 612-621.
23. Jasti, Venkata, and C. Fred Higgs III. "Experimental study of granular flows in a rough annular shear cell." Physical Review E 78.4 (2008): 041306.
24. Lee, Ching-Fang, Hsien-Ter Chou, and Herve Capart. "Granular segregation in narrow rotational drums with different wall roughness: Symmetrical and asymmetrical patterns." Powder technology 233 (2013): 103-115.
25. Turner, Jamie L., and Masami Nakagawa. "Particle mixing in a nearly filled horizontal cylinder through phase inversion." Powder technology 113.1 (2000): 119-123.
26. Arntz, M. M. H. D., et al. "Granular mixing and segregation in a horizontal rotating drum: a simulation study on the impact of rotational speed and fill level." AIChE Journal 54.12 (2008): 3133-3146.
27. Danckwerts, P. V. "The definition and measurement of some characteristics of mixtures." Applied Scientific Research, Section A 3.4 (1952): 279-296.
28. Huang, Decai, et al. "Spin Brazil-nut effect and its reverse in a rotating double-walled drum." The European Physical Journal E 36.4 (2013): 1-6.
29. Ogawa, S. "Multi-temperature theory of granular materials." In proceedings of US-Japan Seminar on Continuum-Mechanical and Statistical Approaches in the Mechanics of Granular Materials (1978): 208-217.
30. Arntz, M. M. H. D., et al. "Segregation of granular particles by mass, radius, and density in a horizontal rotating drum." AIChE journal 60.1 (2014): 50-59.
31. Bhattacharya, Tathagata, Suman K. Hajra, and J. J. McCarthy. "A design heuristic for optimizing segregation avoidance practices in horizontal drum mixers." Powder Technology 253 (2014): 107-115.
32. Capart, H., D. L. Young, and Yves Zech. "Voronoi imaging methods for the measurement of granular flows." Experiments in Fluids 32.1 (2002): 121-135.
33. Richard, Patrick, et al. "Slow relaxation and compaction of granular systems."Nature materials 4.2 (2005): 121-128.
指導教授 蕭述三(Shu-san Hsiau) 審核日期 2017-1-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明