博碩士論文 103323071 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:18.118.145.114
姓名 周侑賢(You-Sian Jhou)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 MOCVD垂直進氣模式之創新進氣模擬設計與熱流場分析研究
相關論文
★ 筆記型電腦改良型自然對流散熱設計★ 移動式顆粒床過濾器濾餅流場與過濾性能之研究
★ IP67防水平板電腦設計研究★ 汽車多媒體導航裝置散熱最佳化研究
★ 流動式顆粒床過濾器三維流場觀察及能性能測試★ 流動式顆粒床過濾器冷性能測試
★ 流動式顆粒床過濾器過濾機制研究★ 二維流動式顆粒床過濾器內部配置設計研究
★ 循環式顆粒床過濾器過濾性能研究★ 流動式顆粒床過濾器之流場型態設計與研究
★ 流動式顆粒床過濾器之流動校正單元設計與分析研究★ 流動式顆粒床過濾器之雙葉片型流動校正單元設計與冷性能過濾機制研究
★ 稻稈固態衍生燃料成型性分析之研究★ 流動式顆粒床過濾器之不對稱葉片設計與冷性能過濾機制研究
★ 流動式顆粒床過濾器之滾筒式粉塵分離系統與冷性能過濾及破碎效應研究★ 稻稈固態衍生燃料加入添加物成型性分析之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 有機金屬化學氣相沉積法為目前製作LED最重要的技術之一,根據不同種類的薄膜材料,如單晶、非晶等磊晶材料進行沉積製程。本研究使用商用軟體COMSOL分析Veeco D-180 GaN腔體建立三維數值模擬模型,採用入口狹縫方式探討不同進氣流量、腔體壓力以及載台轉速之操作製程參數對腔體內部熱流場與薄膜成長率和均勻性的影響,接著對腔體幾何入口的數量與腔體高度做改善,結果顯示入口數量為15條,腔體高度為110 mm時,能夠達到較好的薄膜生長速率與均勻性。最後,藉由優化入口設計以得到更佳的氣體利用率與薄膜成長的均勻性結果,結果顯示同心軸垂直雙狹縫與入口間檔板設計能有效的提高反應物種濃度混合從而達到更好的均勻性。
本論文亦以實驗觀測與分析方式,對可視化反應腔體中基板在高溫變化下,藉由改變不同的單孔進氣流量、腔體壓力,探討反應腔內的熱流場分佈情形。其中,透過可視化實驗量測取得一系列的流場動態圖,再利用Particle Image Velocimetry(PIV)影像分析軟體與Matlab進行後處理速度場分析,結果顯示,在單孔進氣下,高溫反應腔體產生的熱浮力效應明顯影響載台上流動邊界層的變化,以及製程參數改變也會對流場渦流的情形,兩者流場變化皆嚴重影響磊晶沉積速率與均勻度。最後利用數值模擬方法與實驗結果相互比較,並得到初步吻合的結果。
摘要(英) Metal-Organic Chemical Vapor Deposition, MOCVD, is one of the most important technologies to manufacture the LED. Depending on the type of film material, such as a single crystal, amorphous materials and other epitaxial deposition process. In this study, the computer simulation (COMSOL) method to develop the three-dimensional numerical simulation model. The numerical parameter will involve the inlet flow rate, the chamber pressure, the susceptor rotation rate, use the thermal-flow field and the species concentration to realize the mechanism between the growth rate and the uniformity of film, also compare with paper to define the ture model. After that, design of the basic geometry and then the study of number of the inlets and the chamber height was done. The result presents the that when the inlets is 15, height is 110mm, the film growth rate and uniformity is better. Finally, the study of optimization of the slit inlets was done. The results shows the gas inlet design with the double concentric vertical and the barrier of inlet will improve uniformity of the concentration of reactive species and uniform region on the susceptor to improve the problem of the low gas-usage.
This study also applied experimental method to the flow field of the visualization of the reaction chamber was experimentally measured. There are several experimental parameters which affect the chamber thermal flow and stability, such as susceptor temperature, inlet flow rate, and chamber pressure. In order to observe the thermal flow and velocity distribution in the chamber, Time-Resolved Digital Particle Image Velocimetry Tool for MATLAB, PIVlab was used as the flow visualization technique. The result shows that in the single jet chamber, use the dimensionless number (Re, Gr) to realize the mechanism between the force convection and the natural convection, then both the flow field are seriously affecting the film deposition rate, uniformity. Finally, using numerical simulation and experimental results do compare, resulting consistent need to make improvements and modifications.
關鍵字(中) ★ 化學氣相沉積
★ 數值模擬
★ 流場可視化
★ 熱浮力效應
關鍵字(英) ★ Metal-Organic Chemical Vapor Deposition
★ simulation
★ flow visualization
★ buoyancy force
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VII
表目錄 XII
符號說明 XIII
一、緒論 1
1.1 前言 1
1.2 MOCVD反應腔體種類介紹 2
1.3 文獻回顧 5
1.4 研究動機與內容 9
二、基礎理論與數值模擬 11
2.1 腔體熱流場分析 11
2.1.1 熱質傳耦合效應 11
2.1.2 熱流場穩定性理論 12
2.2 薄膜沉積理論 13
2.2.1 反應氣體傳輸機制 13
2.2.2 薄膜反應機制 14
2.3 數值模擬方法 16
2.3.1 數值模擬軟體介紹 16
2.3.2 有限元素法(finite element method) 17
2.3.3 基本假設 17
2.3.4 統御方程式 18
2.3.5 邊界條件 19
2.4 混合氣體的物理性質 22
2.5 數值模擬流程 24
2.6 薄膜成長速率計算 25
2.7 網格獨立分析 29
三、 實驗原理與方法 32
3.1 實驗設備介紹 32
3.1.1 可視化垂直式腔體 32
3.1.2 系統整合 33
3.1.3 觀測及量測儀器 39
3.2 實驗原理及方法 42
3.2.1 粒子流體影響 42
3.2.2 影像處理分析方法 43
3.2.3 PIV技術原理 44
3.2.4 PIVlab軟體介紹 44
3.3 實驗流程及步驟 45
3.3.1 實驗配置 45
3.3.2 實驗步驟 46
3.4 實驗誤差 47
四、 模擬結果與討論 49
4.1 製程參數模擬探討 50
4.1.1 進氣流率對於腔體之影響 52
4.1.2 腔體壓力對於腔體之影響 56
4.1.3 載台轉速對於腔體之影響 64
4.2 腔體幾何參數之探討 68
4.2.1 狹縫入口的擺設 68
4.2.2 調整進氣口與載台間高度之影響 72
4.3 同心軸垂直狹縫入口幾何參數設計與探討 76
4.4 檔板設計於垂直進氣式腔體之影響 80
4.4.1 改變檔板長度設計之影響 84
4.5 外環進氣設計之影響 89
五、實驗結果與討論 94
5.1 靜止基板上製程參數之流場關係影響 94
5.1.1 不同石墨載台加熱溫度的影響 95
5.1.2 高溫時進氣流量變化的影響 104
5.1.3 高溫時腔體壓力變化的影響 107
5.2 速度場分佈探討 110
5.3 腔體流場型態分類與關係 116
5.3.1 衝擊噴流效應流場(Impinging-induced flow)116
5.3.2 熱浮力效應流場(Buoyancy-induced flow) 116
5.3.3 靜止基板流場型態關係 116
六、 結論 119
6.1 模擬部分 119
6.2 實驗部分 121
參考文獻 122
參考文獻 [1] C.J. Pinzone, Crystalgrower at en. wikipedia, 2006.
[2] H. Liu, “Slab cross flow CVD reactor”, US Patent No. 8,216,375 B2, Jul. 10, 2012.
[3] B. Mitrovic, A. Gurary, L. Kadinski, “On the flow stability in vertical rotating disc MOCVD reactors under a wide range of process parameters”, Journal of Crystal Growth, Vol. 287, pp. 656-663, 2006.
[4] M. Dauelsberg, E.J. Thrush, B. Schineller and J. Kaeppeler, “Technology of MOVPE production tools”, Elsevier Ltd, 2004.
[5] G. Evans, and R. Greif, “Effect of boundary conditions on the flow and heat transfer in a rotating disk chemical vapor deposition reactor, "Numerical Heat Transfer , Vol. 12, pp. 243-252, 1987.
[6] D.I. Fotiadis, and S. Kieda, “Transport phenomena in vertical reactors for metalorganic vapor phase epitaxy:I. Effects of heat transfer characteristics, reactor geometry, and operating conditions,” Journal of Crystal Growth, Vol. 102, pp. 441-470, 1990.
[7] S. Joh, and G.H. Evans, “Heat transfer and flow stability in a rotating disk / stagnation flow chemical vapor deposition reactor", Numerical Heat Transfer, Part A: Applications, Vol. 31, Issue 8, pp. 867-879, April 1997.
[8] D.W. Weyburne, B.S. Ahem, “Design and operating considerations for a water-cooled close-spaced reactant injector in a production scale MOCVD reactor”, Journal of Crystal Growth, Vol. 170, pp. 77-82, 1997.
[9] C. Park, J.Y. Hwang, M. Huang, and T.J. Anderson, “Investigation of an up flow cold-wall CVD reactor by gas phase Raman spectroscopy,” Thin Solid Films, Vol. 409, pp. 88-97, 2002.
[10] G.W. Young, S.I. Hariharan, and R. Carnahan, “Flow effects in a vertical CVD reactor”, SIAM J. Appl. Math., Vol. 52, No. 6, pp. 1509–1532, December 1992.
[11] A.G. Mathews, and J.E. Peterson, “Flow visualizations and transient temperature measurements in an axisymmetric impinging jet rapid thermal chemical vapor deposition reactor”, Journal of Heat Transfer, Vol. 124, Issue 3, pp. 564-570, June 2002.
[12] G. Luo, S.P. Vanka, and N. Glumac, “Fluid flow and transport processes in a large area atmospheric pressure stagnation flow CVD reactor for deposition of thin films”, International Journal of Heat and Mass Transfer, Vol. 47, Issue 23, pp.4979-4994, November 2004.
[13] S.P. Vanka, G. Luo, and N.G. Glumac, “Numerical study of mixed convection flow in an impinging jet CVD reactor for atmospheric pressure deposition of thin films,” Journal of Heat Transfer, Vol. 126, No. 5, pp. 764-775, October 2004.
[14] B. Mitrovic, A. Gurary, W. Quinn, “Process conditions optimization for maximum deposition rate and uniformity in vertical rotating disc MOCVD reactors based on CFD modeling,” Journal of Crystal Growth, Vol. 303, pp. 323-329, 2007.
[15] L. Kadinskia, V. Merai, A. Parekh, J. Ramer, E.A. Armour, R. Stall, A. Gurary, A. Galyukov, and Y. Makarov, “Computational analysis of GaN/InGaN deposition in MOCVD vertical rotating disk reactors,” Journal of Crystal Growth, Vol. 261, pp. 175–181, 2004.
[16] C. Theodoropoulos, T.J. Mountziaris, H.K. Moffat, J. Han. “Design of gas inlets for the growth of gallium nitride by metalorganic vapor phase epitaxy,” Journal of Crystal Growth, Vol. 217, pp. 65-81, 2000.
[17] C.Y. Shin, B.J. Baek, C.R. Lee, B. Pak, J.M. Yoon, K.S. Park, “Numerical analysis for the growth of GaN layer in MOCVD reactor,” Journal of Crystal Growth, Vol. 247, pp. 301-312, 2003.
[18] R. Zuo, H. Zhang, X.l Liu, “Transport phenomena in radial flow MOCVD reactor with three concentric vertical inlets,” Journal of Crystal Growth, Vol. 293, pp. 498-508, 2006.
[19] R. Zuo, Q. Xu, H. Zhang, “An inverse-flow showerhead MOVPE reactor design,” Journal of Crystal Growth, Vol. .298, pp. 425-427, 2007.
[20] C.H. Lin, W.T. Cheng, J.H. Lee, “Effect of embedding a porous medium on the deposition rate in a vertical rotating MOCVD reactor based on CFD modeling,” International Communications in Heat and Mass Transfer, Vol. 36,pp. 680-685, 2009.
[21] C.S Kim, J. Hong, J. Shim, Y.S Won, and Yong-I1 Kwon, “Multiphysics modeling and design of ultralarge multiwafer MOVPE reactor for group III-Nitride light emitting diodes,” EuroSimE , 11th, 2010.
[22] Wonkyun Yang, and Junghoon Joo, “Numerical Modeling for GaN Deposition by MOCVD: Effects of the Gas Inlet,” Applied Science and Convergence Technology, Vol.23, No.3, pp.139~144, May 2014.
[23] T.C. Chang, P.H. Chiou, and T.F. Lin, “Visualization of mixed convective vortex rolls in an impinging jet flow of air through a cylindrical chamber”, International Journal of Heat and Mass Transfer, Vol. 45, Issue 16, pp. 3357-3368, July 2002.
[24] J.C. Hsieh, C.W. Cheng, and T.F. Lin, “Suppression of buoyancy-driven vortex flow resulting from a low speed jet impinging onto a heated disk in a vertical cylinder by cylinder top tilting”, International Journal of Heat and mass transfer, Vol. 47, Issue 14-16, pp. 3031-3045, July 2004.
[25] T.C. Cheng, T.F. Lin, J.Y. Yang, and S.R. Jian, “Visualization of vortex flow patterns with a uniformly perforated showerhead in a model lamp heat, single-wafer thermal processor”, Chemical Vapor Deposition, Vol. 13, Issue 8, pp. 427-432, August 2007.
[26] K.M. Chen, F.C. Hsieh, J.C. Hiseh, and T. F. Lin, “A further investigation of effects of jet-disk separation distance on steady mixed convective vortex flow resulting from a confined impinging air jet”, International Journal of Heat and mass transfer, Vol. 52, Issue 23-24, pp. 5348-5357, November 2009.
[27] Y.H. Liu, L.W. Tseng, C.Y. Huang, K.L. Lin, C.C. Chen, “Particle image velocimetry measurement of jet impingement in a cylindrical chamber with a heated rotating disk”, International Journal of Heat and Mass Transfer, Vol. 65, pp. 339-347, 2013.
[28] D. Sengupta, S. Mazumder, W. Kuykendall, S.A. Lowry, “On the flow stability in vertical rotating disc MOCVD reactos under a wide range of process parameters”, Journal of Crystal Growth, Vol. 279, pp. 369-382, 2005.
[29] W.K. Cho, D.H. Choi, M.U. Kim, “Optimization of the inlet velocity profile for uniform epitaxial growth in a vertical metalorganic chemical vapor deposition reactor”, International Journal of Heat and Mass Transfer, Vol. 42, pp. 4143-4152, 1999.
[30] 林雋幃,「創新進氣擴散系統設計發-檔板與垂直噴流設計於水平腔體」,國立中央大學,碩士論文,民國一O三年。
[31] 莊子慶,「MOCVD腔體熱流場與新式進氣檔板之設計模擬分析研究」,國立中央大學,碩士論文,民國一O二年。
[32] 林宜正,「化學氣相沉積之噴頭性能模擬分析」,國立中山大學,碩士論文,民國九十二年。
指導教授 蕭述三(Shu-San Hsiau) 審核日期 2016-8-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明