博碩士論文 103323080 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:54.224.230.51
姓名 石珮君(Pei-Jyun Shih)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 多重光電倍增管校正模組設計製作及其於擴散光學斷層造影系統之應用
(Design and Fabrication of Multiple-PMT Calibration Module and Its Application in Diffuse Optical Imaging Systems)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    至系統瀏覽論文 (2022-3-21以後開放)
摘要(中) 近年來,乳癌為台灣女性癌症發生率之首,故早期發現及治療為重要議題。在醫療檢測技術上,近紅外光擴散光學斷層造影技術 (Near-infrared Diffuse optical tomography imaging system, NIR DOT)為功能性的醫學檢測裝置,因為乳房組織的散射係數相對於近紅外光波段較大,故光源穿透組織後所得到微弱的光訊號,則須採用高靈敏度的光偵測器接收,在藉由擴散方程式進行影像重建,以判別組織的變異狀況。
然而,光學檢測設備中會因光偵測器長時間作業造成特性變異,使量測結果產生偏差,故需對光偵測器進行特性量測。 本研究主要對光偵測器特性進行校正模組化,設計簡易可拆式近紅外光源模組,並採用高靈敏度的光電倍增管 (Photomultiplier tube, PMT)進行量測,以暗箱機構及馬達電控方式來設計校正裝置,不僅可抑制環境光對PMT之干擾,亦可快速且精準地進行特性量測。 根據PMT經由模組量測獲得的特性曲線,為了善用PMT不同控制電壓的有效量測範圍,將各個控制電壓可容許輸入的光功率範圍歸納成一套PMT光功率適用範圍指標。 另外,於頻域式量測系統下,獲得PMT各個於不同控制電壓下的相位差關係,將其應用於頻域式光學量測技術之相位補償校正。
本研究所設計之實驗中,藉由直徑60mm仿乳房光學係數仿體,以環形擴散光學斷層造影量測機制,其採用3個PMT同時進行量測,將量測的電訊號分別代入是否經由模組之光電校正式,以進行仿體光學特徵驗證。
基於本研究設計的光電校正模組,建立光偵測器訊號擷取平台及校正程序,可精確且快速的取得光電倍增管之特性曲線,進而應用於臥床式擴散光學斷層造影系統,提高系統量測結果之準確性。
摘要(英) In recent years, breast cancer has the highest incidence rate happens in Taiwanese female, so early detection and treatment become an important issue. In medical screening technology, NIR DOT is a functional medical detection device, which is mainly based on the near infrared light source to penetrate the breast physiological tissue. Because the scattering coefficient of breast tissue is large regarding the near-infrared light band, the weak optical signal is received using high sensitivity detector after the light passes through the tissue and the variation of the tissue can be reconstructed using the diffusion equation. However, due to the long time work, the optical detection equipment will cause the characteristics of variation and the biases of the measurement results. Thus, it is necessary to measure the characteristics of the photo-detectors. The main propose of this study is to calibrate the characteristics of the photo-detector, design the simple and detachable near-infrared light source modules and use the high sensitivity photomultiplier tube (PMT) to measure. Using the dark space mechanism and automatic control with motor to design the correction device not only can inhibit the ambient light interference to the PMT but also can measure the characterization fast and accurately. According to the characteristic curve obtained by the PMT measurement, to make the use of the effective measurement range in different PMT control voltage, the optical power range of each control voltage are induced to a set of PMT optical power index bar. Besides, under the frequency domain measurement system, the phase difference relationship of PMT under different control voltage can be obtained, which is applied to the phase compensation correction of frequency domain optical measurement technology.
In this study, the phantom with 60 mm diameter which is trying to imitate the optical coefficient from human breast will be measured by three PMTs at the same time in the ring-diffused shaped optical tomography system, then the measured electrical signal will be taken into photoelectric conversion equation for the verification of characterization. Based on the photoelectric correction module designed in this study, the signal acquisition platform and calibration program of the photo-detector are established, which can obtain the characteristic curve of the photomultiplier tube accurately and quickly. Furthermore, the method is applied to the bed-type diffuse optical tomography system to improve the accuracy of the system measurement results.
關鍵字(中) ★ PMT控制電壓校正
★ 頻域式量測系統
★ 仿乳假體驗證
★ 擴散光學斷層造影
關鍵字(英) ★ PMT control voltage calibration
★ frequency domain measurement system
★ breast-mimicking phantom
★ diffuse optical tomography imaging
論文目次 摘要........................ VI
Abstract.................... VII
致謝........................ VIII
目錄........................ IX
圖目錄...................... XI
表目錄...................... XIV
第一章 緒論................ 1
1-1 研究動機與目的....... 1
1-2 文獻探討............ 4
1-3 論文範疇............ 6
第二章 理論基礎............ 7
2-1 光電整合概論........ 7
2-2 雷射二極體原理...... 9
2-2-1 雷射二極體工作原理.. 10
2-2-2 雷射靜態響應....... 11
2-3 光纖耦合校準....... 12
2-4 光偵測器原理....... 14
2-4-1 光電倍增管工作原理.. 16
第三章 光電模組設計製作.... 19
3-1 光源模組設計....... 19
3-1-1 硬體設計概念....... 20
3-1-2 限流保護電路設計... 23
3-2 光偵測模組設計.... 24
3-2-1 硬體設計概念...... 24
3-3 人機介面暨量測程序.. 28
第四章 結果驗證........... 31
4-1 雷射光源模組........ 31
4-2 光電模組量測........ 36
4-2-1 元件特性量測........ 37
4-2-2 光電倍增管直流/頻率之特性量測 37
第五章 光電模組應用驗證.... 46
第六章 結論與未來展望..... 55
6-1 結論.............. 55
6-2 未來展望.......... 56
參考文獻.................. 57
參考文獻 [1] 衛生福利部國民健康署,“乳房 (ICD-O-3 C50)”,民國102年癌症登記年報,中華民國衛生福利部,2003-2013。
[2] 衛生福利部國民健康署,“女性乳癌發生率”, 民國102年醫療統計年報,中華民國衛生福利部, 2003-2013.
[3] Etta D. Pisano, M.D., Constantine Gatsonis, Ph.D., Edward Hendrick, Ph.D., Martin Yaffe, Ph.D., Janet K. Baum, M.D., Suddhasatta Acharyya, Ph.D., Emily F. Conant, M.D., Laurie L. Fajardo, M.D., Lawrence Bassett, M.D., Carl D’Orsi, M.D., Roberta Jong, M.D., and Murray Rebner, M.D., “Diagnostic Performance of Digital versus Film Mammography for Breast-Cancer Screening,” New England Journal of Medicine, 355(17), pp.1840-1840, 2006.
[4] 黃獻樑、程紹儀,“乳癌的篩檢”,台灣家庭醫學醫學會
https://www.tafm.org.tw/ehc-tafm/s/w/ebook/people_other/journalContent/358
[5] 偉成醫師,乳癌檢查與知識網
http://www.mdesign.tw/display/breast/examination.php
[6] Brooksby, B., Jiang, S., Dehghani, H., Pogue, B., Paulsen, K., Weaver, J., Kogel, C. and Poplack, S., “Combining near-infrared tomography and magnetic resonance imaging to study in vivo breast tissue: implementation of a Laplacian-type regularization to incorporate magnetic resonance structure,” Journal of Biomedical Optics, 10(5), p.051504., 2005.
[7] Herranz, M. and Ruibal, A., “Optical Imaging in Breast Cancer Diagnosis: The Next Evolution,” Journal of Oncology, pp.1-10., 2012.
[8] Brukilacchio, T. J., “Review of Diffuse Optical Tomography: Theory and Tissue Optics,” Chapter 2 in A diffuse optical tomography system combined with X-ray mammography for improved breast cancer detection, pp.26-28, Tufts University, 2003.
[9] 林沂凌, “平板式擴散光學斷層造影系統之乳房腫瘤檢測研究”, 國立中央大學機械所, pp10-13, 2015.
[10] Hielschera, A.H., Bluestoneab, A.Y., Abdoulaeva, G.S., Klosea, A.D., Laskera, J., Stewartb, M., Netzc, U., and Beuthanc, J., “Near-infrared diffuse optical tomography,” Disease Markers, 18, 2002
[11] Madsen, S. J., Yuan, Z., and Jiang, H., “Optical Methods and Instrumentation in Brain Imaging and Therapy,” Springer Science+Business Media New York, 2013.
[12] Gratton, E., and Limkeman, M., “A continuously variable frequency cross-correlation phase fluorometer with picosecond resolution,” Biophysical Society, Vol. 44, 1983.

[13] Mastanduno, M.A., Jiang, S., DiFlorio-Alexander, R., Pogue, B.W. and Paulsen, K.D., “Automatic and robust calibration of optical detector arrays for biomedical diffuse optical spectroscopy”, Biomedical Optics Express, 2352, 2012.
[14] 游釗銘, “頻域式擴散光學造影之乳房掃描暨量測系統研究,” 國立中央大學光機所, pp24-36, 2015.
[15] McBride, T.O., Pogue, B.W., Jiang, S., O?sterberg, U.L. and Paulsen, K.D., “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo”, Review of Scientific Instruments,72, 1817, 2001
[16] Bednarski, T., Czerwi?ski, E., Moskal, P., Bia?as, P., Giergiel, K., “Calibration of photomultipliers gain used in the J-PET detector”, Bio-Algorithms and Med-Systems, 2014
[17] Fishkin, J. and Gratton, E., “Propagation of photon-density waves in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge.”, Journal of the Optical Society of America A, 10(1), p.127., 1993.
[18] Durduran, T., Choe, R., Baker, W.B. and Yodh, A.G., “Diffuse optics for tissue monitoring and tomography”, Reports on Progress in Physics, 73(7), p076701, 2010.
[19] B W. Pogue, “Focus Issue: Biomedical Diffuse Optical Tomography”, OSA Publishing, pp230, 1999.
[20] Siegel, A., Marota, J.J. and Boas, D., “Design and evaluation of a continuous-wave diffuse optical tomography system”, Optics Express, 4(8), p.287, 1999.
[21] Jia Wang, “Broadband near-infrared tomography for breast cancer imaging”, Dartmouth college, p3356285, 2009.
[22] Dr. Rudiger Paschotta, “RP PHOTONICS ENCYCLOPEDIA- Laser Diodes”,
https://www.rp-photonics.com/laser_diodes.html
[23] 張守進,“半導體雷射”,科學期刊,2002.
[24] 劉博文,“光電元件導論2版,”,第五章,高利圖書,2014.
[25] Coldren, L. A., Mashanovitch, M. L., and Corzine, S. W., “Diode Lasers and Photonic Integrated Circuits,” WILEY, 1995.
[26] Yu-Lun Wu, “Design and Fabrication of High-Speed 25Gb/s Directly Modulated DFB Semiconductor Laser Diode,” NSYSU, 2012.
[27] Dr. Drink Grosenick, “Time-resolved near-infrared spectroscopy and imaging of the adult brain”, Springer SciencepBusiness Media, 2010.
[28] Palais, J.C., “Fiber optic communications. 4th”, United States: Pearson Education (US), 1998
[29] Chapter, S.P., Europe, S., Warsaw, Rayss, J., Culshaw, B. and Mignani, A.G., “Optical fibers: Technology.”, Society of Photo Optical., 2005
[30] 陳應誠,中央研究院原子與分子科學研究所
https://playsci.iams.sinica.edu.tw/downloadfile.php?did=68
[31] Souders, J., “Principles of Fiber Optic Communication”, CORD Communications, 2008.
[32] 沈育霖, “光纖感測器簡介”, 勞工安全檢測研究所, 2004.
[33] Philip Felber., “Charge-Coupled Devices”, Illinois Institute of Technology, 2002.
[34] 林清富, 張炳章, “光電子學 2版 (Kasap:Optoelectronics and Photonics -Principles and Practices 2/E)”, 高立圖書, 2015
[35] 張淑貞, “累崩光二極體 (Avalanche Photodiodes, APDs)”, 科技Online期刊 2009.
[36] Hamamatsu, “Photomultiplier Tubes - Construction and Operating Characteristics Connections to External Circuits,” Hamamatsu, Japan.
[37] Hamamatsu, “PHOTOMULTIPLIER TUBES AND ASSEMBLIES for scintillation counting and high energy physics,” Hamamatsu, Japan.
[38] Hamamatsu, “Photomultiplier tubes basics and applications THIRD EDITION,” Hamamatsu, Japan.
[39] Hamamatsu, “PHOTOMULTIPLIER TUBES principles and applications,” Hamamatsu, Japan.
[40] Sulkosky, V., Allison, L., Barber, C., Cao, T., Ilieva, Y., Jin, K., Kalicy, G., Park, K., Ton, N. and Zheng, X., “Studies of relative gain and timing response of fine-mesh photomultiplier tubes in high magnetic fields”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, 827, pp.137-144, 2016.
[41] Hamamatsu, “PHOTOSENSOR MODULES H11461 SERIES”, Hamamatsu, 2016.
指導教授 潘敏俊(Min-Chun Pan) 審核日期 2017-3-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明