博碩士論文 103323099 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:13.59.218.147
姓名 陳威翰(Wei-Han Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 高效能光化學法於修復石墨烯之研究與應用
(Highly efficient restoration of graphene by photochemical method and applications)
相關論文
★ 利用化學氣相沉積法於規模化合成大面積石墨烯之研究★ 電化學輔助剝離於乾轉印大面積與超潔凈石墨烯之研究
★ 利用網印方法製備全固態石墨烯複合電極於高能量密度之微型電容的研究★ 有效披覆黑磷烯的穩定性之研究
★ Phosphorus and Nitrogen Dual-doped Graphene Oxide as Metal-free Catalyst for Hydrogen Evolution Reaction★ 利用氟化自組裝膜增強石墨烯與二硫化鉬的電傳輸特性之研究
★ 批量繞捲方法於化學氣相沉積法合成大面積單層與多層石墨烯之研究★ 石墨烯之複合電極於全固態纖維式微型超電容的研究
★ 利用改良液相剝離法提高銻烯合成產率與均質性之研究★ 石墨烯的霍爾效應感測器應用於快速且無標記DNA之研究
★ 利用低損傷電漿改質於提升二硫化鉬電晶體之電傳輸特性★ 石墨烯場效應電晶體應用於鼻咽癌循環腫瘤細胞生醫感測晶片之研究
★ 化學氣相沉積法合成二硫化鉬於矽基材料之可控性及變異性研究★ 使用低損傷電漿改質於提升二維通道電晶體電傳輸特性
★ 利用電化學剝離石墨烯之三維多孔隙電極於製作可撓式超級電容★ 懸空石墨烯之特性研究與應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究探討光化學反應於修復石墨烯缺陷結構的機制與其應用。利用Hummers’法製作氧化石墨烯,接著利用刮刀成膜的方法獲得均勻性的石墨烯薄片,並以氫碘酸做初步的化學還原,最後以聚光型氙燈做光還原,藉由改變反應溫度與照射累積能量來得到光還原的最佳參數。光還原的最佳條件為25 ℃照射3次升溫至50 ℃照射3次,可修復原結構變為高碳氧比(C/O)達36.20、高結晶性(Raman D/G =0.24; Raman 2D/G =0.43)的石墨烯。經過光化學還原的石墨烯,由於高效率的脫氧還原反應,將使結構呈現多孔隙的型貌,其孔隙約300 nm。研究發現,藉由氙燈照射能促進氫碘酸產生光解反應,碘分子幫助打斷C-O鍵結,提高C/O比,而還原過程的放熱反應會藉由連鎖反應向整個材料內部傳遞,此熱能可以進一步的修復缺陷態結構。為了驗證此方法所獲得石墨烯的特性,將應用於超級電容之電極材料上,以6 M KOH作為電解液,經由光還原後的電極材料可得到28 F/g之比電容值,相較於氫碘酸還原後的電極材料只有12 F/g,電容提升率為233%,原因在於所形成的多孔隙結構,使電解液有更多離子傳輸通道,提升其動力學反應。另外本研究也將石墨烯應用於導熱片上,氫碘酸還原後的薄片則表現優良的導熱特性,熱擴散係數439 mm2/s、熱傳導係數1056 W/m.K,原因在於其緊密的堆疊結構、低孔隙率、減少缺陷,有利於導熱片利用之需求。本研究為一種快速且高效率還原與修復氧化石墨烯的方法,未來將能對高品質石墨烯生產與應用有所助益。
摘要(英) In this study, we investigate the mechanism and applications of the restoration on reduced graphene oxide(rGO). Here, graphene oxide(GO) paper is prepared by a Hummers’ method and doctor blade coating, followed by chemical reduction by using Hydroiodic acid(HI) for preliminary reduction. Finally, the photoreduction was carried out to further restore graphene by using light-focusing Xenon flash lamp. The optimized condition of photo reduction was obtained by controlling temperature and flash shot. The optimized parameters to restore graphene are subjected to 3 flash shots at 25 ℃, followed byand ramping to the 50 ℃ for additional 3 shots. The resultant rGO shows high C/O ratio(36.2) and high crystalline(Raman D/G ratio=0.24; 2D/G ratio=0.43). Due to the high efficient deoxygenation by photoreduction, the as-prepared rGO paper exhibits porous structure, where the pore size was about 300 nm in average. The study suggest that the comprising of HI chemical treatment and Xenon flash facilitate the photolysis reaction of iodic molecular, leading to high efficient break of epoxy bond (higher C/O ratio). Meanwhile, the exothermic heat during GO reduction process a chain reaction, where heat was found to propagate over whole material, thus further restore graphene defects.
To evaluate the performance and particle application, the as-prepared rGO paper with various reduction conditions were employed as electrodes in a symmetric type supercapacitors by selecting 6 M KOH as electrolyte. The rGO treated by comprising of HI and Xenon flash (rGO-HI-Xe) shows higher specific capacitance of 28 F/g, which was 233% increased when compare to that (12 F/g) of rGO treated by HI(rGO-HI). This was attributed to high specific surface area and diffusion path created from porosity and fluffy structured rGO-HI-Xe samples, thus promoting ion transport capability. In addition, the rGO paper can be utilized as thermal pad. The rGO-HI samples show a thermal diffusivity and thermal conductivity of 439.18 mm2/s and 1056 W/m.K, respectively. The requirements for high performance thermal pad including high density of stacking structure, low porosity and defect density. This work provides a facile and high efficiency method for graphene restoration, which was potential for high quality graphene production and its related applications.
關鍵字(中) ★ 石墨烯
★ 光化學
關鍵字(英)
論文目次 摘要 i
Abstract ii
誌謝 iv
總目錄 v
圖目錄 viii
表目錄 xiii
第一章 緒論 1
第二章 研究背景與文獻回顧 5
2-1 氧化石墨烯合成方法與機制 5
2-2 還原氧化石墨烯(Reduced Graphene Oxide, rGO) 8
2-2-1 化學還原法(Chemical Reduction) 8
2-2-2 氫碘酸還原氧化石墨烯之機制 12
2-2-3 熱還原法(Thermal Reduction) 13
2-3 光還原法(Photo Reduction) 16
2-3-1 光致熱還原法(Photothermal Reduction) 16
2-3-2 光化學法(Photochemical Reduction) 17
2-3-3 雷射還原(Laser Reduction) 24
2-4 還原氧化石墨烯之連鎖放熱反應 26
2-5 石墨烯之超級電容器(Graphene-based supercapacitor) 28
2-5-1 超級電容器概述 28
2-5-2超級電容器之電解液 31
2-5-3 石墨烯在超級電容器之應用 31
2-6 石墨烯導熱片 36
2-6-1 導熱特性量測方法 37
2-7 多孔性石墨烯絕熱材料 41
2-8 研究動機 43
第三章 實驗方法與步驟 44
3-1 實驗架構 44
3-2 氧化石墨烯與電化學剝離石墨烯製備 46
3-3 氧化石墨烯薄片製作 48
3-4 還原氧化石墨烯 48
3-4-1 化學還原 48
3-4-2 熱還原 48
3-4-3 酒精蒸氣還原 49
3-4-4 光還原 49
3-4-5 樣品編號定義 50
3-4-6 超級電容製作 51
3-5 材料特性檢測 51
3-5-1 表面形貌分析 51
3-5-2 縱深分析 52
3-5-3 結晶結構分析 52
3-5-4 表面元素成分分析 53
3-5-5 四點探針量測法 54
3-5-6 材料厚度量測 54
3-6 電化學測試實驗流程 54
3-6-1 循環伏安法(Cyclic Voltammetry,CV) 54
3-6-2 計時電位法(Chronopotentiometry,CP) 54
3-6-3 交流阻抗分析(Electrochemical Impedance Spectroscopy,EIS) 55
3-7 熱擴散與熱傳導係數量測 57
第四章 結果與討論 59
4-1 材料特性分析 59
4-1-1 表面形貌分析 59
4-1-2 光還原後之縱深成分分析 65
4-1-3 不同還原條件之表面元素成分分析與缺陷成分分析 68
4-1-4 還原氧化石墨烯之連鎖反應 83
4-1-5 不同還原條件對石墨烯材料性質的影響 86
4-1-6 碘分子殘留分析 93
4-2 電化學特性量測分析 94
4-2-1 前測試 94
4-2-2 不同還原條件對石墨烯之電化學特性的影響 95
4-2-3 電化學特性綜合比較 100
4-3 熱擴散與熱傳導係數量測分析 104
第五章 結論 106
第六章 未來工作 107
參考文獻 108
參考文獻 [1] Geim, A.K. and P. Kim, Carbon wonderland. Scientific American, 2008. 298(4): p. 90-97.
[2] Bonaccorso, F., et al., Production and processing of graphene and 2d crystals. Materials Today, 2012. 15(12): p. 564-589.
[3] Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. science, 2004. 306(5696): p. 666-669.
[4] Li, X., et al., Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano letters, 2009. 9(12): p. 4268-4272.
[5] Xavier, P., et al., Reduced graphene oxide induced phase miscibility in polystyrene–poly (vinyl methyl ether) blends. RSC Advances, 2014. 4(24): p. 12376-12387.
[6] Hernandez, Y., et al., High-yield production of graphene by liquid-phase exfoliation of graphite. Nature nanotechnology, 2008. 3(9): p. 563-568.
[7] Su, C.-Y., et al., High-quality thin graphene films from fast electrochemical exfoliation. ACS nano, 2011. 5(3): p. 2332-2339.
[8] León, V., et al., Exfoliation of graphite with triazine derivatives under ball-milling conditions: preparation of few-layer graphene via selective noncovalent interactions. ACS nano, 2014. 8(1): p. 563-571.
[9] Raccichini, R., et al., The role of graphene for electrochemical energy storage. Nat Mater, 2015. 14(3): p. 271-9.
[10] Application charts for nanoclays, graphene and nanocoatings. Nov 18, 2011 [cited 2016 5/22]; Available from: http://www.nanowerk.com/news/newsid=23444.php.
[11] Hummers Jr, W.S. and R.E. Offeman, Preparation of graphitic oxide. Journal of the American Chemical Society, 1958. 80(6): p. 1339-1339.
[12] Dreyer, D.R., et al., The chemistry of graphene oxide. Chemical Society Reviews, 2010. 39(1): p. 228-240.
[13] Acik, M., et al., Unusual infrared-absorption mechanism in thermally reduced graphene oxide. Nature materials, 2010. 9(10): p. 840-845.
[14] Bagri, A., et al., Structural evolution during the reduction of chemically derived graphene oxide. Nature chemistry, 2010. 2(7): p. 581-587.
[15] Pei, S., et al., Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon, 2010. 48(15): p. 4466-4474.
[16] Jung, N., et al., Charge transfer chemical doping of few layer graphenes: charge distribution and band gap formation. Nano letters, 2009. 9(12): p. 4133-4137.
[17] Schniepp, H.C., et al., Functionalized single graphene sheets derived from splitting graphite oxide. The Journal of Physical Chemistry B, 2006. 110(17): p. 8535-8539.
[18] González, Z., et al., Thermally reduced graphite oxide as positive electrode in vanadium redox flow batteries. Carbon, 2012. 50(3): p. 828-834.
[19] Su, C.-Y., et al., Highly efficient restoration of graphitic structure in graphene oxide using alcohol vapors. ACS nano, 2010. 4(9): p. 5285-5292.
[20] Smirnov, V.A., et al., Photoreduction of graphite oxide. High Energy Chemistry, 2011. 45(1): p. 57-61.
[21] Cote, L.J., R. Cruz-Silva, and J. Huang, Flash reduction and patterning of graphite oxide and its polymer composite. Journal of the American Chemical Society, 2009. 131(31): p. 11027-11032.
[22] Zhang, Y.L., et al., Photoreduction of graphene oxides: methods, properties, and applications. Advanced Optical Materials, 2014. 2(1): p. 10-28.
[23] Mukherjee, R., et al., Photothermally reduced graphene as high-power anodes for lithium-ion batteries. Acs Nano, 2012. 6(9): p. 7867-7878.
[24] Eswaraiah, V., S.S.J. Aravind, and S. Ramaprabhu, Top down method for synthesis of highly conducting graphene by exfoliation of graphite oxide using focused solar radiation. Journal of Materials Chemistry, 2011. 21(19): p. 6800-6803.
[25] 宋心琦, 周福添, and 劉劍波, 光化學. 2004: 五南.
[26] Williams, G., B. Seger, and P.V. Kamat, TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS nano, 2008. 2(7): p. 1487-1491.
[27] Wu, T., et al., Surface plasmon resonance-induced visible light photocatalytic reduction of graphene oxide: using Ag nanoparticles as a plasmonic photocatalyst. Nanoscale, 2011. 3(5): p. 2142-2144.
[28] Matsumoto, Y., et al., Simple photoreduction of graphene oxide nanosheet under mild conditions. ACS applied materials & interfaces, 2010. 2(12): p. 3461-3466.
[29] Li, X.H., et al., A green chemistry of graphene: Photochemical reduction towards monolayer graphene sheets and the role of water adlayers. ChemSusChem, 2012. 5(4): p. 642-646.
[30] Guardia, L., et al., UV light exposure of aqueous graphene oxide suspensions to promote their direct reduction, formation of graphene–metal nanoparticle hybrids and dye degradation. Carbon, 2012. 50(3): p. 1014-1024.
[31] Wu, T., et al., Production of reduced graphene oxide by UV irradiation. Journal of nanoscience and nanotechnology, 2011. 11(11): p. 10078-10081.
[32] Ji, T., et al., The mechanism of the reaction of graphite oxide to reduced graphene oxide under ultraviolet irradiation. Carbon, 2013. 54: p. 412-418.
[33] El-Kady, M.F., et al., Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science, 2012. 335(6074): p. 1326-1330.
[34] Kim, F., et al., Self‐Propagating Domino‐like Reactions in Oxidized Graphite. Advanced Functional Materials, 2010. 20(17): p. 2867-2873.
[35] Simon, P. and Y. Gogotsi, Materials for electrochemical capacitors. Nature materials, 2008. 7(11): p. 845-854.
[36] Kötz, R. and M. Carlen, Principles and applications of electrochemical capacitors. Electrochimica Acta, 2000. 45(15): p. 2483-2498.
[37] Wang, H., et al., Graphene oxide doped polyaniline for supercapacitors. Electrochemistry Communications, 2009. 11(6): p. 1158-1161.
[38] Zhang, L.L., R. Zhou, and X. Zhao, Graphene-based materials as supercapacitor electrodes. Journal of Materials Chemistry, 2010. 20(29): p. 5983-5992.
[39] Fan, Z., et al., Easy synthesis of porous graphene nanosheets and their use in supercapacitors. Carbon, 2012. 50(4): p. 1699-1703.
[40] Koga, H., et al., Fast, scalable, and eco-friendly fabrication of an energy storage paper electrode. Green Chemistry, 2016.
[41] Xiang, J. and L.T. Drzal, Thermal conductivity of exfoliated graphite nanoplatelet paper. Carbon, 2011. 49(3): p. 773-778.
[42] Xin, G., et al., Large‐Area Freestanding Graphene Paper for Superior Thermal Management. Advanced Materials, 2014. 26(26): p. 4521-4526.
[43] Song, N.-J., et al., Thermally reduced graphene oxide films as flexible lateral heat spreaders. Journal of Materials Chemistry A, 2014. 2(39): p. 16563-16568.
[44] Liu, Z., et al., Wet-Spun Continuous Graphene Films. Chemistry of Materials, 2014. 26(23): p. 6786-6795.
[45] Xin, G., et al., Highly thermally conductive and mechanically strong graphene fibers. Science, 2015. 349(6252): p. 1083-1087.
[46] 劉偉仁, et al., 石墨烯技術. 2015/11, 五南圖書: Taiwan. p. p352-354.
[47] McNamara, A.J., Y. Joshi, and Z.M. Zhang, Characterization of nanostructured thermal interface materials–a review. International Journal of Thermal Sciences, 2012. 62: p. 2-11.
[48] Wicklein, B., et al., Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nature nanotechnology, 2015. 10(3): p. 277-283.
[49] Marcano, D.C., et al., Improved synthesis of graphene oxide. ACS nano, 2010. 4(8): p. 4806-4814.
[50] Bahl, A., B. Bahl, and G.D. Tuli, Essentials of physical chemistry. 2012: S. Chand.
[51] Kong, Q.-Q., et al., Hierarchical Graphene-Carbon Fiber Composite Paper as a Flexible Lateral Heat Spreader. Advanced Functional Materials, 2014. 24(27): p. 4222-4228
指導教授 蘇清源(Ching-Yuan Su) 審核日期 2016-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明