博碩士論文 103323100 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:54.208.73.179
姓名 蔡秉勲(Ping-Xun Tsai)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 氟摻雜氧化錫奈米週期結構電極應用於鈣/鈦複合物作為鈣鈦礦太陽能電池介孔層之研究
(The Study of Perovskite Solar Cells by Using Ca/Ti Compounds as Mesoporous Layer Based on Nanopatterned Fluorine Doped Tin Oxide Substrates)
相關論文
★ 奈微米球粗化基板技術 暨提升OLED元件出光效率研究★ 銀-聚苯乙烯殼核球於高分子分散液晶薄膜元件之應用
★ ITO 奈微米週期結構電極提升OLED 元件發光效率之研究★ 以CaTiO3應用於鈣鈦礦太陽能電池電子傳輸層之研究
★ 奈微米結構於鈣鈦礦太陽能電池光捕捉應用之研究★ 超薄類鑽碳膜之研究
★ 利用鈣/鈦複合物作為 鈣鈦礦太陽能電池介孔層之研究★ 在低溫製程下製作鈣/鈦複合物作為鈣鈦礦太陽能電池介孔層之研究
★ 具奈米結構之氟摻雜氧化錫玻璃基板應用於鈣鈦礦太陽能電池之研究★ 快速熱退火之石墨烯特性分析
★ 利用光發射光譜儀監控高功率脈衝磁控濺鍍光學薄膜之研究★ 利用馬倫哥尼效應製備高品質高效率鈣鈦礦太陽能電池
★ 利用溶劑萃取法結合綠色溶劑製備鈣鈦礦太陽能電池★ 奈米圖案化基板於白光有機發光二極體暨有機鈣鈦礦太陽能電池效率增益之研究
★ 單源熱蒸鍍無機鈣鈦礦薄膜暨特性分析★ ITO奈米週期結構提升鈣鈦礦發光二極體光萃取率之模擬研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究中我們以實驗室之技術穩定製作出結構:FTO電極/二氧化鈦緻密層/二氧化鈦介孔層/CH3NH3PbI3主動層/Spiro-OMeTAD電洞傳輸層/銀電極 之鈣鈦礦太陽能電池作為對照組,在AM1.5G的太陽光模擬器量測下此對照組電池有著Jsc=20.78mA/cm2,Voc=1.02V,FF=70.66%,PCE=14.92%之光電轉換特性。以此為基礎將實驗分為三個部分進行討論。
實驗第一部分以雞蛋殼作為合成Ca/Ti複合物的原料之一,並且將所合成之Ca/Ti複合物作為鈣鈦礦太陽能電池之介孔層材料。比較傳統介孔材料P90 TiO2與合成之Ca/Ti複合物,由實驗結果得知利用Ca/Ti複合物作為介孔層之鈣鈦礦太陽能電池相較於使用P90 TiO2作為介孔層的鈣鈦礦太陽能電池電流密度有明顯的提升,達到Jsc=23.41mA/cm2,Voc=1.01V,FF=76.32%,PCE=18.02%之光電轉換特性。
實驗第二部分利用單層鋪排奈米二氧化矽球體於光阻表面,藉由奈米二氧化矽球體聚光的特性而作為曝光之光罩,並且於顯影後形成具有奈米週期結構光阻,進而利用此光阻結構作為蝕刻平面FTO電極的遮罩,經過ICP乾蝕刻後形成具有奈米週期結構FTO電極,將此具奈米結構電極應用於鈣鈦礦太陽能電池與無結構之FTO電極做比較。由實驗結果得知以奈米週期結構FTO電極作為基板相較於以無結構FTO電極作為基板所製成之鈣鈦礦太陽能電池電流密度明顯的提升,達到Jsc=23.27mA/cm2,Voc=1.00V,FF=72.51%,PCE=16.93%之光電轉換特性。
實驗第三部分為綜合前兩部分的結果,期望藉由介孔層材料以及FTO電極結構的改良更進一步提升鈣鈦礦太陽能電池之效能。此部分為了尋找介孔層合適厚度,探討沉積一至三次Ca/Ti複合物溶液於奈米週期結構FTO電極上形成三種不同厚度的Ca/Ti複合物介孔層所製成之鈣鈦礦太陽能電池進行比較。實驗結果發現以沉積兩次Ca/Ti複合物溶液形成介孔層厚度250-300nm所製成之鈣鈦礦太陽能電池有著最佳的效率,達到Jsc=24.40mA/cm2,Voc=1.05V,FF=75.53%,PCE=18.79%之光電轉換特性。並且由EQE圖形中得知相較於對照組在入射光波長300-800nm有顯著的外部量子效率提升。
摘要(英)
We fabricated standard Perovskite Solar Cells as structure
FTO/TiO2 compact layer/TiO2 mesoporous layer/CH3NH3PbI3 active layer/Spiro-OMeTAD hole transfer layer/Silver in both anode and cathode. This cell has Jsc=20.78mA/cm2, Voc=1.02V, FF=70.66%, PCE=14.92%. Based on this standard perovskite solar cells, the experiment of this thesis are divided into three sections.

The first section of the experiments. We used eggshells to react with titanium dioxide and synthesized mesoporous Ca/Ti compounds. In comparison with the control group, the cells used Ca/Ti compounds as mesoporous layer can improve the Jsc from 20.78 to 23.41 mA/cm2 and enhance the PCE from 14.92% to 18.02% (enhaced 20.78%).

The second section of the experiments. We spinned coating photoresist on FTO surface and then arrayed single-layered SiO2 nanoparticles on top. After that, patterned periodic arrays nanoholes were created on FTO using photolithography technology and inductively coupled plasma dry etching. In comparison with the control group, the nanopatterned cells can improve the Jsc from 20.78 to 23.27 mA/cm2 and enhance the PCE from 14.92% to 16.93% (enhaced 13.47%).

The final section of the experiments. We further optimize the thickness of the Ca/Ti compounds mesoporous layer on the patterned FTO substrates. As the result, the cells (PFS-mesoCa/Ti x2) shows the highest Jsc of 24.40 mA/cm2 and the PCE of 18.79% (enhanced 25.94%)
關鍵字(中) ★ 鈣鈦礦太陽能電池 關鍵字(英) ★ perovskite solar cells
論文目次
摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 緒論 1
1-1 前言 1
1-2 太陽能電池種類 2
1-2-1 矽基太陽能電池 2
1-2-2 化合物半導體太陽能電池 3
1-2-3 有機太陽能電池 3
1-3 鈣鈦礦太陽能電池(Perovskite solar cells) 4
1-3-1 鈣鈦礦太陽能電池的結構 5
1-3-2 鈣鈦礦太陽能電池的基礎原理 5
1-3-3 鈣鈦礦太陽能電池文獻回顧 7
1-4 研究動機 20
第二章 實驗方法 21
2-1 實驗藥品與使用儀器 21
2-1-1實驗使用之藥品 21
2-1-2 實驗使用之儀器 22
2-2 奈米結構FTO基板製備 23
2-2-1奈米結構光阻製備 23
2-2-2 奈米結構FTO電極製備 23
2-3 鈣鈦礦太陽能電池之材料製備 24
2-3-1 緻密二氧化鈦層 24
2-3-2 二氧化鈦多孔隙層配製 24
2-3-3 Ca/Ti複合物多孔隙層合成 24
2-3-4 甲基碘胺(CH3NH3I,MAI)合成/純化 24
2-3-5 甲基胺鉛碘(CH3NH3PbI3)溶液配製 25
2-3-6 Spiro-OMeTAD溶液配製 25
2-4 鈣鈦礦太陽能電池元件製作 26
2-4-1 FTO玻璃基板清洗 26
2-4-2 FTO玻璃基板表面處理 26
2-4-3 二氧化鈦緻密層(TiO2)塗布 26
2-4-4 二氧化鈦(P90 TiO2)多孔隙層塗布 26
2-4-5 Ca/Ti複合物多孔隙層塗布 26
2-4-6 甲基胺鉛碘(CH3NH3PbI3)塗佈 27
2-4-7 Spiro-OMeTAD塗佈 27
2-4-8蒸鍍銀電極 27
第三章 結果與討論 28
3-1 具奈米結構FTO電極基板製作過程形貌觀測 28
3-1-1 光阻塗布結果 28
3-1-2 奈米SiO2球體單層鋪排結果 28
3-1-3光阻曝光顯影結果 28
3-1-4 FTO電極面ICP蝕刻結果 28
3-2 鈣鈦礦太陽能電池製作 31
3-2-1成分分析 31
3-2-2實驗參數設定與形貌觀測 32
3-2-3電池效率量測結果 35
3-3 量測結果分析 39
第四章 結論 53
參考文獻 55
參考文獻

[1] 李偉,太陽能電池材料及其應用,電子科技大學出版社,中華民國103年
[2] M. A. Green, A. Ho-Baillie and H. J. Snaith, “The emergence of perovskite solar cells”, NATURE PHOTONICS, Vol8, 506-512 (2014)
[3] R. F. Service, “Perovskite Solar Cells Keep On Surging”, SCIENCE, VOL344, p458 (2014)
[4] Zuo C., Bolink H. J., Han H., Huang J., Cahen D., Ding L. “ Advances in Perovskite Solar Cells” Adv. Sci., 3: 1500324. (2016)
[5] J. M. Ball, S. D. Stranks, M. T. Horantner, S. Huttner, W. Zhang, E. J. W. Crossland, I. Ramirez, M. Riede, M. B. Johnston, R. H. Friend, H. J. Snaith, “Optical properties and limiting photocurrent of thin-film perovskite solar cells”, Energy Environ. Sci.,Vol8, 602 (2015)
[6] G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, T. C. Sum, “Long-Range Balanced Electronand Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3”, Science, Vol342, 344-347 (2013)
[7] S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, “Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber”, Science,Vol342,341-344 (2013)
[8] H. S. Jung, N. G. Park, “Perovskite Solar Cells: From Materials to Devices”, Small, Vol11,10-17 (2015)
[9] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, “Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells” J. Am. Chem. Soc., Vol 131 (17), 6050–6053 (2009)
[10] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, “Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites”, Science,Vol338, 643-647 (2012)
[11] J. M. Ball, M. M. Lee, A. Hey, H. J. Snaith, “Low-temperature processed meso-superstructured to thin-film perovskite solar cells”, Energy Environ.Sci.,Vol6, 1739-1743 (2013)
[12] J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells”, Nature, Vol499,316-320 (2013)
[13] J. Chang, H. Zhu, B. Li, F. H. Isikgor, Y. Hao, Q. Xu, J. Ouyang, “Boosting the performance of planar heterojunction perovskite solar cell by controlling the precursor purity of perovskite materials”, J. Mater.Chem.A, Vol 4, 887-893 (2015)
[14] Z. Ren1, A. Ng, Q. Shen, H. C. Gokkaya, J. Wang, L. Yang, W. K. Yiu, G. Bai, A. B. Djurisic, W. W. Leung, J. Hao, W. K. Chan, C. Surya, “Thermal Assisted Oxygen Annealing for High Efficiency Planar CH3NH3PbI3 Perovskite Solar Cells”, Scientific Reports 4, Article number: 6752 (2014)
[15] D. Bi, W. Tress, M. I. Dar, P. Gao, J. Luo, C. Renevier, K. Schenk, A. Abate, F. Giordano, J. C. Baena, J. Decoppet, S. M. Zakeeruddin, M. K. Nazeeruddin, M. Grätzel, A. Hagfeldt, “Efficient luminescent solar cells based on tailored mixed-cation perovskites, Efficient luminescent solar cells based on tailored mixed-cation perovskites” , Science Advances , Vol. 2, no. 1 (2016)
[16] O. Malinkiewicz, A. Yella, Y. H. Lee, G.M.Espallargas, M. Grätzel, M. K .Nazeeruddin, H. J. Bolink, “Perovskite solar cells employing organic charge-transport layers”, NATURE PHOTONICS, Vol8, 128-132 (2013)
[17] X. Wang, Y. Fang, L. He, Q. Wang, T. Wu, “Influence of compact TiO2 layer on the photovoltaic characteristics of the organometal halide perovskite-based solar cells”, Materials Science in Semiconductor Processing 27,569-576 (2014)
[18] Y. OKAMOTO, Y. SUZUKI, “Perovskite-type SrTiO3, CaTiO3 and BaTiO3 porous film electrodes for dye-sensitized solar cells”, Journal of the Ceramic Society of Japan, Vol122, 728-731 (2014)
[19] D. YSon, J. H. Im, H. S. Kim, N. G. Park, “11% Efficient Perovskite Solar Cell Based on ZnO Nanorods: An Effective Charge Collection System”, J. Phys. Chem. C, Vol118, 16567−16573 (2014)
[20] F. Giordano, A. Abate, J. P. C. Baena, M. Saliba, T. Matsui, S. H. Im, S. M. Zakeeruddin, M. K. Nazeeruddin, A .Hagfeldt, M. Grätzel, “Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells”, NATURE COMMUNICATIONS, Vol7,10379 (2015)
[21] B. X. Chen, H. S. Rao, W. G. Li, Y. F. Xu, H. Y. Chen, D.B. Kuang, C.Y. Su, “Achieving high-performance planar perovskite solar cell with Nb-doped TiO2 compact layer by enhanced electron injection and efficient charge extraction”, J. Mater. Chem. A, Vol 4, 5647 (2016)
[22] H. Nourolahi, A. Behjat, S. M. M. Hosseini Zarch, M. A. Bolorizadeh, “Silver nanoparticle plasmonic effects on hole-transport material-free mesoporous heterojunction perovskite solar cells”, Solar Energy, Vol139, 475–483 (2016)
[23] H. C. Kwon , A. Kim , H. Lee , D. Lee , S. Jeong , J. Moon ,“Parallelized Nanopillar Perovskites for Semitransparent Solar Cells Using an Anodized Aluminum Oxide Scaffold”, Adv. Energy Mater. , Vol 6, 1601055 (2016)
[24] H. Yoon, S. M. Kang, J. K. Lee, M. Choi, “Hysteresis-free low-temperature-processed planar perovskite solar cells with 19.1% efficiency”, Energy Environ. Sci., Vol 9, 2262-2266 (2016)
[25] R. S. Sanchez, E. Mas-Marza, “Light-induced effects on Spiro-OMeTAD films and hybrid lead halide perovskite solar cells”, Solar Energy Materials & Solar Cells, Vol158, 189–194 (2016)
[26] N. Aeineh, E. M. Barea, A. Behjat, N. Sharifi, I. Mora-Sero, “Inorganic Surface Engineering to Enhance Perovskite Solar Cell Efficiency”, ACS Appl. Mater. Interfaces, Vol 9, 13181–13187 (2017)
[27]F. Wang, N. K. Subbaiyan, Q. Wang, C. Rochford, G. Xu, R. Lu, A. Elliot, F. D’Souza, R. Hui, J. Wu, “Development of Nanopatterned Fluorine-Doped Tin Oxide Electrodes for Dye-Sensitized Solar Cells with Improved Light Trapping”, ACS Appl. Mater. Interfaces, Vol4, 1565-1572 (2012)
[28] D. L. Wang, H. J. Cui, G. J. Hou, Z. G. Zhu, Q. B. Yan, G. Su, “Highly efficient light management for perovskite solar cells”, Scientific Reports, Vol6,18922 (2016)
[29] S. Carretero-Palacios, M. E. Calvo, H. Míguez, “Absorption Enhancement in Organic−Inorganic Halide Perovskite Films with Embedded Plasmonic Gold Nanoparticles”, J. Phys. Chem. C, Vol119, 18635−18640 (2015)
[30] C. H. Lee, S. W. Rhee and H. W. Choi,” Preparation of TiO2 nanotube/nanoparticle composite particles and their applications in dye-sensitized solar cells” Nanoscale Research Letters , Vol 7:48 (2012)
[31] N. J. Jeon, J. H. Noh, Y. C. Kim,W. S. Yang, S. C. Ryu and Sang Il Seok,” Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells” NATURE MATERIALS ,VOL 13, 897-903 (2014)
[32] 徐敏翔,「利用氧化銦錫奈米柱提升有機太陽能電池轉換效率」,國立交通大學 光電工程研究所,中華民國100年
[33] 邱子軒,「奈微米結構於鈣鈦礦太陽能電池光捕捉應用之研究」,國立中央大學 機械工程學系,中華民國 105 年
[34] 林育葳,「以CaTiO3應用於鈣鈦礦太陽能電池電子傳輸層之研究」,國立中央大學 機械工程學系,中華民國 105 年
指導教授 詹佳樺(Chia-Hua Chan) 審核日期 2017-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明