博碩士論文 103323102 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:35.172.195.49
姓名 陳宥滕(You-Teng Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 兆聲波輔助化學溶液清潔晶圓表面汙染顆粒研究
(Particulate Contamination Removal from the Wafer Surface Using Chemical Solution with Megasonic Waves)
相關論文
★ 使用實驗計劃法求得印刷電路板微鑽針最佳鑽孔參數★ 滾針軸承保持架用材料之電鍍氫脆研究
★ 強制氧化及熱機處理對鎂合金AZ91D固相回收製程之研究★ 滾針軸承保持架圓角修正之有限元素分析
★ 透過乾式蝕刻製作新型鍺全包覆式閘極電晶體元件★ 窗型球柵陣列構裝翹曲及熱應力分析
★ 冷軋延對ZK60擠製材的拉伸與疲勞性質之影響★ 熱引伸輔助超塑成形製作機翼整流罩之設計及分析
★ 超塑性鋁合金5083用於機翼前緣整流罩之研究★ 輕合金輪圈疲勞測試與分析
★ 滾針軸承保持架之有限元分析★ 鎂合金之晶粒細化與超塑性研究
★ 平板式固態氧化物燃料電池穩態熱應力分析★ 固態氧化物燃料電池連接板電漿鍍膜特性研究
★ 7XXX系鋁合金添加Sc之顯微組織與機械性質研究★ 高延性鎂合金之特性及成形性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 晶圓表面上的微顆粒汙染是造成半導體元件製造良率下降的重要因素之一。清洗方法很多,一般利用超聲波震動(≦100kHz)所產生的空蝕作用(Cavitation)清洗所達到的效果較佳且破壞性較少,但當半導體元件精細度更高時使用超聲波清洗就容易有下列情況:(1)分布在表面上的線路遭空蝕氣泡破壞、(2)更小的隙縫、夾角處不易被清洗以及(3)不易清除更小的微顆粒,因此提出利用超高頻聲波/兆聲波(430kHz~980kHz)與改良自RCA SC1的低表面張力溶液作為清洗方法,其道理是利用提高頻率與調整溶液成分以獲得較小的空蝕氣泡、較強的聲場流(Acoustic Streaming)與降低黏滯邊界層(Viscous Boundary Layer)厚度。實驗利用田口法求得溫度、時間、輸入功率與頻率等參數對移除顆粒數量多寡與粒徑大小的影響,並進一步更改溶液配方來求得其他溶液與原配方溶液的差別。
摘要(英) Particulate surface contamination is one of the major causes of low yields in the semiconductor. It is effective at removing surface contaminants without inflicting damage in cavitation implosion of ultrasonic cleaning (≦100kHz). But there are some situations for the more exact semiconductor device is cleaning by ultrasonic waves to cause: (1) the patterns of circulation are destroyed by cavitation implosion; (2) the smaller aperture and angle will be cleaned difficultly and; (3) it’s hard to remove the particles on the wafer surface. Thus, it will be presented that this clean method uses high frequency/megasonic waves aids the chemical solution of low surface tension from improving RCA SC1. It will obtain smaller cavitation bubbles, stronger acoustic streaming and to decrease viscous boundary layer by increasing frequency and decreasing surface tension of chemical solution. The different parameters will be confirmed to the effect of particle removal efficiency and particle size by Taguchi method in the experimental process. And compare the different solution with common solution.
關鍵字(中) ★ 兆聲波/超聲波
★ 田口法
★ 微顆粒移除
★ 聲場流
★ 空蝕作用
關鍵字(英) ★ Megasonic/ultrasonic
★ Taguchi method
★ Particle removal
★ Acoustic streaming
★ Acoustic cavitation
論文目次 摘要 I
Abstract II
目錄 III
圖目錄 V
表目錄 VII
第1章 緒論 1
1.1 兆聲波晶圓清洗簡介 1
1.2 文獻回顧 3
1.3 研究方法與目標 6
第2章 理論基礎 8
2.1溶液工作原理 8
2.1.1 RCA SC-1溶液的作用 8
2.1.2 有機溶劑的作用 8
2.2 水中兆聲波之物理及基本量 9
2.2.1 聲壓與聲場流 9
2.2.2 聲功率與聲強度 12
2.2.3 空蝕作用(Cavitation) 14
2.2.4 邊界層 16
2.3 微粒的黏附與剝除機制 18
2.3.1 黏附作用 18
2.3.2 剝除作用 19
2.4 實驗方法與因子設定 21
2.4.1 田口方法 22
2.4.2 配比設計原理 26
2.4.3 影響因子設定 27
第3章 實驗 29
3.1 設備與材料 29
3.2 實驗流程 33
第4章 結果分析 36
4.1 田口法實驗分析 36
4.2 實驗因子對微粒移除的作用關係 54
4.3 SC-1混合其他溶液後的清洗結果 57
第5章 結論 60
參考文獻 61
附錄 64
參考文獻 1. 鄭振東, 超音波工程. Vol. 初版. 1999: 全華科技圖書. pp.1-2~pp.1.17, pp.7-16~pp.7-17.
2. 弘塑科技股份有限公司. RCA Cleam製程. Available from: http://www.gptc.com.tw/tw/product/product_detail-16.
3. 國家奈米元件實驗室. 化學清洗蝕刻區標準操作程序. Available from: http://www.lcis.com.tw/paper_store/paper_store/semichem-20147134181602.pdf.
4. W. Cady and M. Varadarajan, RCA clean replacement. Journal of the Electrochemical Society, 1996. 143(6): p. 2064-2067.
5. I. Kashkoush, et al., PARTICLE REMOVAL USING ULTRASONIC.
6. E. Herbert, S. Balibar, and F. Caupin, Cavitation pressure in water. Physical Review E, 2006. 74(4): p. 041603.
7. E.B. Flint and K.S. Suslick, The_Temperature_of_Cavitation. Science, New Series, 1991. 253: p. 1397-1399.
8. A. Brotchie, F. Grieser, and M. Ashokkumar, Effect of Power and Frequency on Bubble-Size Distributions in Acoustic Cavitation. Physical Review Letters, 2009. 102(8): p. 084302.
9. Z. Han, M. Keswani, and S. Raghavan, Megasonic Cleaning of Blanket and Patterned Samples in Carbonated Ammonia Solutions for Enhanced Particle Removal and Reduced Feature Damage. IEEE Transactions on Semiconductor Manufacturing, 2013. 26(3): p. 400-405.
10. S. Kumari, et al., Control of sonoluminescence signal in deionized water using carbon dioxide. Microelectronic Engineering, 2011. 88(12): p. 3437-3441.
11. B.-K. Kang, et al., Acoustic Cavitation Behavior in Isopropyl Alcohol Added Cleaning Solution. 2013.
12. B.-K. Kang, M.-S. Kim, and J.-G. Park, Effect of dissolved gases in water on acoustic cavitation and bubble growth rate in 0.83 MHz megasonic of interest to wafer cleaning. Ultrasonics Sonochemistry, 2014. 21(4): p. 1496-1503.
13. C. Franklin. Megasonic agitation allows removal of chemically amplified photo-resists. 2009. SPIE.
14. S.H. Kim, et al., The effect of ultrasonic agitation on the stripping of photoresist using supercritical CO2 and co-solvent formulation. Microelectronic Engineering, 2009. 86(2): p. 171-175.
15. K. Qin and Y. Li, Mechanisms of particle removal from silicon wafer surface in wet chemical cleaning process. Journal of Colloid and Interface Science, 2003. 261(2): p. 569-574.
16. A.A. Busnaina, I.I. Kashkoush, and G.W. Gale, An experimental study of megasonic cleaning of silicon wafers. Journal of the Electrochemical Society, 1995. 142(8): p. 2812-2817.
17. A.A. Busnaina and G.W. Gale, Ultrasonic and megasonic particle removal. Proc. Precis. Clean, 1995. 15: p. 347-359.
18. K. Bakhtari, et al., Experimental and numerical investigation of nanoparticle removal using acoustic streaming and the effect of time. Journal of the electrochemical society, 2006. 153(9): p. G846-G850.
19. H. Lin, A.A. Busnaina, and N. Moumen, Surface Cleaning Mechanisms and Future Cleaning Requirements. IEEE/SEMI Advanced Semiconductor Manufacturing Conference, 2000.
20. K. Bakhtari, et al., Experimental and analytical study of submicrometer particle removal from deep trenches. Journal of the Electrochemical Society, 2006. 153(9): p. C603-C607.
21. H. Lin, A.A. Busnaina, and I.I. Suni. Cleaning of high aspect ratio submicron trenches. in IEEE International Symposium on Semiconductor Manufacturing Conference, Proceedings. 2002.
22. Q. Qi and J. Brereton, Mechanisms of Removal of Micron-Sized Particles by High-Frequency Ultrasonic Waves. IEEE Transactions on Ultrasonics, Ferroelectrics,and Frequency Control, 1995. 42.
23. 馮若, 超聲手冊. 2001: 南京大學出版社.
24. M. Kazemi, H. Treichel, and R. Ligutom. Substrate cleaning using ultrasonics/megasonics. in 2011 IEEE/SEMI Advanced Semiconductor Manufacturing Conference. 2011.
25. J.N. Israelachvili, Intermolecular and Surface Forces: Revised Third Edition. 2011: Elsevier Science. pp.266.
26. M. Olim, A theoretical evaluation of megasonic cleaning for submicron particles. Journal of The Electrochemical Society, 1997. 144(10): p. 3657-3659.
27. W. Kim, et al., Mechanism of particle removal by megasonic waves. Applied Physics Letters, 2009. 94(8): p. 081908.
28. 葉怡成, 高等實驗計畫. Vol. 初版. 2009, 台灣: 五南圖書出版股份有限公司. pp.22-31, pp.54-61.
指導教授 曹嘉文、李雄(Chia-Wen Tsao Shyong Lee) 審核日期 2016-12-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明