博碩士論文 103323113 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:3.145.48.159
姓名 潘詳親(PAN,XIANG-QIN)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 金屬輔助化學蝕刻製備多孔矽結構與其熱傳性質分析
(Manufacturing and Thermal Property Analysis of Porous Silicon Structure by Metal Assisted Chemical Etching)
相關論文
★ 以流體式數值模擬直流磁控電漿濺鍍系統之磁場影響★ 利用鉻薄膜為濕蝕刻遮罩製備石英奈米針狀結構之研究
★ 石英蝕刻微結構之非等向性研究★ 具有微結構之石英表面聲波感測器之共振頻率數值模擬與分析
★ 以數值模擬方法探討電感耦合式電漿輔助製程之氣體溫度與腔體熱分析★ 石英柱狀微結構濕蝕刻製程之研究
★ 利用暫態熱微影技術製備高分子微結構★ 石英柱狀微結構之表面聲波感測器之研製與特性分析
★ 利用電子束微影製作高密度石英柱狀結構★ 利用暫態熱線法之微型熱傳導係數量測元件之設計與製備
★ 石英微結構對表面接觸角與潤濕性影響之研究★ 石英奈米針狀結構表面之潤濕性及遲滯性研究
★ 利用示差掃描熱量分析與雷射閃光熱擴散法 研究牛血清蛋白之熱變性★ MOCVD噴淋式腔體沉積模擬與進氣系統分析
★ The Deposition and Microstructure of Tungsten Oxide Films by Physical Vapor Deposition★ 利用聲子波茲曼方程式分析非對稱多孔矽之熱傳性質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 奈米多孔材料應用相當廣泛,其高面積體積比之結構特性可以增加表面接觸面積,可應用於氣體感測器、質譜儀、質量傳輸膜及太陽能面板抗反射層等,另外因孔隙率增加及奈米結構尺寸效應導致有效熱傳導係數大幅下降,使之成為良好的絕熱材料。常見的多孔矽製程包括電化學蝕刻、乾蝕刻、金屬輔助化學蝕刻等。本研究利用金屬輔助化學蝕刻法具有製程相對簡單、製程設備成本低之優點,研究探討蝕刻參數與孔隙之關係以製備高深宽比之奈米多孔矽結構,並分析其熱傳導性質。
  實驗利用硝酸銀溶液混和氫氟酸在矽表面形成奈米銀粒子作為蝕刻之催化劑,接著在添加過氧化氫之蝕刻液中進行非等向性蝕刻,形成奈米多孔結構,透過控制過氧化氫濃度達到均勻奈米多孔結構。結果顯示在長時間蝕刻下,蝕刻深度會趨緩;而因結構頂部蝕刻影響,多孔層的成長率最後會逐漸下降。所製備之結構利用不同的熱傳模型計算熱傳導係數分析,結果顯示未考慮孔徑的簡化模型在分析極小孔徑結構時有較大的差異;在考量製程上孔隙率與孔徑的相依性下,在低孔隙率時反而會因其小孔徑影響,使得有效熱傳係數比預期還低。
摘要(英) Nanoporous material has been widely used in various applications. It has high area-to-volume ratio that increases surface area and can be used in gas sensors, mass spectrometers, mass-transferring films, and anti-reflection coating on solar panels. Due to the increasing porosity and the size effects of nano-structures, it leads to an effective decreasing in the heat conduction coefficient and makes it a good thermal insulating material. Typical porous silicon fabrication processes include electrochemical etching, dry etching, and metal-assisted chemical etching. Among them, metal-assisted chemical etching has the advantages of simple process and low equipment cost. In this study, we use metal-assisted chemical etching to prepare high aspect ratio nanoporous silicon, explore the relation between etching parameters and porosities, and analyze its heat conduction properties.
The silver nitrate solution and hydrofluoric acid were used to form the Ag nanoparticles on silicon surface as the catalyst for etching. The anisotropic etching was performed in the etching solution with hydrogen peroxide to form nanoporous structures. A well-distributed nanoporous structure was achieved through controlling the concentration of hydrogen peroxide. The results showed that for a long etching time, the etching rate became slower and the porous layer growth rate gradually decreased due to the etching on top structure. Different heat transfer models were used to analyze the thermal transfer coefficient. The results showed for the simplified models that do not consider the pore size exhibited a significant difference in thermal conductivity for small pore size samples. Considering of dependence of porosity and pore size in the process perspective, the effective thermal conductivity was lower than expected due to the impact of the small pore size structure.
關鍵字(中) ★ 多孔矽
★ 熱傳導率
★ 金屬輔助化學蝕刻
★ 螢光發光
★ 孔隙率
關鍵字(英) ★ porous silicon
★ thermal conductivity
★ Metal-Assisted Chemical Etching
★ photoluminescence
★ porosity
論文目次 目錄

中文摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 vii
表目錄 xiii
符號說明 xv
一、 緒論 1
1.1 研究背景 1
1.2 文獻回顧 2
1.3 研究動機與目的 7
1.4 論文架構 8
二、 理論基礎 9
2.1 高深寬比奈米結構製備 9
2.1.1 奈米結構製備類型 9
2.1.2 金屬輔助化學蝕刻 14
2.2 熱傳理論與預測模型 18
2.2.1 多孔材料之熱特性 18
2.2.2 多孔材料之光學性質 21
2.2.3 多孔熱傳數學模型 22
三、 研究方法 27
3.1 研究架構 27
3.2 雷射閃光測定法 28
3.3 試片製備 30
3.3.1 實驗藥品與實驗步驟 30
1. 銀粒子沉積 33
2. 金屬輔助蝕刻 34
3.4 量測方法 35
3.4.1 表面形貌量測方法 35
3.4.2 螢光光譜量測方法 36
3.4.3 雷射閃光測定量測方法 36
四、 結果與討論 38
4.1 銀粒子沉積結果 38
4.2 奈米多孔結構蝕刻結果 49
4.2.1 蝕刻形貌 49
4.2.2 雙層結構形貌 68
4.2.3 單層與雙層之孔隙率 81
4.3 PL光致發光光譜結果 82
4.4 蝕刻液中過氧化氫濃度對結構之影響 86
4.5 LFA量測奈米多孔結構之熱擴散係數與模型分析比較 87
五、 結論與未來工作 98
參考文獻 100
參考文獻 參考文獻
[1] Baoying Fang, Yi Li,Guoxiang Tong, Xiaohua Wang, Meng Yan, Qian Liang, Feng Wang, Yuan Qin, Jie Ding, Shaojuan Chen, Jiankun Chen, Hongzhu Zheng, Wenrui Yuan, “Optical properties of vanadium dioxide thin film in nanoparticle structure”, Optical Materials, Vol. 47, pp.225-230, 2015.
[2] XinweiZhangab, XiaohongJianga, Fang Xiong, Chunlei Wang, Shaoguang Yang, “Controlled synthesis and magnetic properties of Ni nanotubes and nanowires,” Materials Research Bulletin,Vol. 95, pp.248-252. 2017.
[3] AliMirzaeia,Sung YongKangb, Sun-Woo Choi, Yong Jung Kwon, Myung Sik Choi, Jae Hoon Bang, Sang Sub Kim, Hyoun Woo Kim, “Fabrication and gas sensing properties of vertically aligned Si nanowires,” Vol.427, pp.215-226. 2017.
[4] R.Nandi, S.S.Major, “The mechanism of growth of ZnO nanorods by reactive sputtering,” Applied Surface Science Vol.399, pp.305-312,2017.
[5] I.Suemune, N. Noguchi, M. Yamanishi, “Photoirradiation Effect on Photoluminescence from Anodized Porous Silicon and Luminescence Mechanism, ”Japan Journal Applied Physics., vol.31, pp.494, 1992.
[6] Zukang Mo, Ying Huang, Shanshan Lu, Xiaoming Shen, HuanHe, “Growth of ZnO nanowires and their applications for CdS quantum dots sensitized solar cells,”Optik - International Journal for Light and Electron Optics, Vol.149, pp63-68, 2017.
[7] D.J. Lockwoodm G.C. Aers, L.B. Allard, B. Bryskiewicz, S. Charbonneau, D.C. Houghton, J.P. McCaffrey, and A. Wang, Can. J. Phys. Vol.70, pp.1184,1992.
[8] N.P. Klochkoa, V.R. Kopacha, I.I.Tyukhov, G.S.Khrypunov, V.E.Korsun, V.O.Nikitin, V.M.Lyubov, M.V.Kirichenko, O.N.Otchenashko, D.O.Zhadan, M.O.Maslak, A.L.Khrypunova, “Wet chemical synthesis of nano-structured semiconductor layers for thin-film solar thermoelectric generator,” Solar Energy ,Vol.157, pp.657-666,2017.
[9] C. Calazaa, M. Sallerasa, D.Dávila, A.Tarancón, A.Morata, J.D.Santos, G.Gadea, L.Fonseca, “Bottom-Up Silicon Nanowire Arrays for Thermoelectric Harvesting,” Science Direct Materials Today : Proceedings ,Vol. 2 , pp.675-679,2015.
[10] Dimova-Malinovska, D, M. Sendova-Vassileva, N.Tzenov, M.Kamenova “Preparation of thin porous silicon layers by stain etching,”Thin Solid Films ,Vol.297, pp.9-12,1997.
[11] X.Li, P.W.Bohn , “Metal-assisted chemical etching in HF/H2O2 produces porous silicon,” Appl Phys Lett, Vol.77, pp2572-2574, 2000.
[12] Shaoyuan Li, Wenhui Ma, Yang Zhou, Xiuhua Chen, Yongyin Xiao, Mingyu Ma, Wenjie Zhu, Feng Wei, “Fabrication of porous silicon nanowires by MACE method in HF/H2O2/AgNO3 system at room temperature,” Nanoscale Res Lett, Vol.9, pp.196, 2014.
[13] Ji-Li Tian, Hua-Yu Zhang, “Controllable growth of silicon nanowire arrays fabricated by two-step silver catalyzed chemical etching,” Superlattices and Microstructures, Vol.88, pp.180-187, 2015.
[14] Shaoyuan Li , Wenhui Ma, Yang Zhou, Xiuhua Chen, Yongyin Xiao , Mingyu Ma, Feng Wei, Xi Yang “Fabrication of p-type porous silicon nanowire with oxidized silicon substrate through one-step MACE,” Journal of Solid State Chemistry, Vol.213, pp.242-249,2014.
[15] Ali Ghafarinazari, Masoud Mozafari, “A systematic study on metal-assisted chemical etching of high aspect ratio silicon nanostructures,”Journal of Alloys and Compounds, Vol.616, pp.442-448,2014.
[16]Theivasanthi, T. and M. Alagar, “Anti-bacterial Studies of Silver Nanoparticles,”Physics , 2011.
[17] L.D. Hicks and M. S. Dresselhaus, “Effect of quantum-well structures on the thermoelectric figure of merit,” Physical Review B, Vol.47, pp. 12727-12731, 1993.
[18] A.Wolf, R.Brendel, “Thermal conductivity of sintered porous silicon films,”
Thin Solid Films,Vol.513, Issues 1-2, pp.385-390,2006.
[19] Amer Melhem, Domingos De Sousa Meneses , Caroline Andreazza-Vignolle, Thomas Defforge, Gaël Gautier, Audrey Sauldubois, Nadjib Semmar, “Structural, Optical, and Thermophysical Properties of Mesoporous Silicon Layers: Influence of Substrate Characteristics,” Vol.121, pp.7821-7828, 2017.
[20]M.Lajvardi,H.Eshghi, M.E. Ghazi, M. Izadifard, A. Goodarzi, ”Structural and optical properties of silicon nanowires synthesized by Ag assisted chemical etching,” Materials Science in Semiconductor Processing, Vol.40, pp.556-563, 2015.
[21]Nguyen Tien Dai, Eui-Tae Kim, Khac An Dao,”Ag nanoparticle catalyst based on Ga2O3/GaAs semiconductor nanowire growth by VLS method,”Article in Journal of Materials Science Materials in Electronics, Vol.26, pp.8747-8752 , 2015.
[22]Mohammad Amin Baghchesara, Mohsen Cheraghizade, Ramin Yousefi, ”Growth and characterization of ZnTe nanowires grown in a large scale by a CVD method”, Vol.162, pp195-198, 2016.
[23] S. T. Lee et al., J. Mater. Res., Vol.14, pp.4503, 1999.
[24]M.Lazar, H.Vang, P. Brosselard, C. Raynaud, P. Cremillieu, J.-L.Leclercq, A. Descamps, S. Scharnholz, D. Planson, “Deep SiC etching with RIE”, Superlattices and Microstructures,Vol.40, Issues 4-6, pp.388-392, 2006.
[25] Fu. Y. Q, A. Colli, A. Colli, A. Fasoli, J. K. Luo , A. J. Flewitt, A. C. Ferrari, W. I. Milne,“Deep reactive ion etching as a tool for nanostructure fabrication,”Journal of Vacuum Science Technology B , Micro electronics and Vol.27, pp.1520, 2009.
[26] Zachary R. Smith, Rosemary L.Smith, Scott D.Collins, “Mechanism of nanowire formation in metal assisted chemical etching,” Electrochimica Acta , Vol.92, pp.139-147, 2013.
[27] V. Jean, S. Fumeron, K. Termentzidis, S. Tutashkonko, D. Lacroix, J. Appl. Phys. pp.115, 2014.
[28] F.X. Alvarez, D. Jou, A. Sellitto, Appl. Phys. Lett. 97, 2010.
[29] V. Lysenko, Ph. Roussel, B. Remaki, G. Delhomme, A. Dittmar, D. Barbier, V.Strikha, C. Martelet, J. Porous Mater.7 , pp.177,2000.
[30] I. Sumirat, Y. Ando, S. Shimamura, J. Porous Mater.13, pp.439,2006.
[31]HatimMachrafi, GeorgyLebon,”Size and porosity effects on thermal conductivity of nanoporous material with an extension to nanoporous particles
embedded inahost matrix,” Physics Letters A, Vol.379 , pp.968-973, 2015.
[32]Karol Pietrak , Tomasz S. Wi´sniewski ,“A review of models for effective thermal conductivity of composite materialsmaterials,” Journal of Power Technologies, Vol.95, pp.14-24, 2015.
[33]Karl Jousten Hrsg, “Wutz Handbuch Vakuumtechnik”, Vol.7, Publisher, 2004, pp. 668.
[34]G. Chen, “Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices, ” Physical Review B, vol. 57, pp.14958-14973, 1998.
[35] Yanrong Li Zhengzhong Yun, “Materials Physics Introduction,” Publisher, 2003, pp. 91-92.
[36]Leonid Khriachtchev, “Silicon Nanophotonics: Basic Principles, Current Status and Perspectives,”Publisher, 2009, pp. 452.
指導教授 洪銘聰 審核日期 2017-11-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明