博碩士論文 103323601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.238.99.243
姓名 尤卞藤(Bayu Pranoto)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 Performance characteristic modeling of hybrid proton conducting solid oxide fuel cell (pSOFC) and micro gas turbine (MGT) system using a double bypass valve for heat management
(Performance characteristic modeling of hybrid proton conducting solid oxide fuel cell (pSOFC) and micro gas turbine (MGT) system using a double bypass valve for heat management)
相關論文
★ 熱塑性聚胺酯複合材料製備燃料電池 雙極板之研究★ 以穿刺實驗探討鋰電池安全性之研究
★ 金屬多孔材應用於質子交換膜燃料電池內流道的研究★ 不同表面處理之金屬發泡材於質子交換膜燃料電池內的研究
★ PEMFC電極及觸媒層之電熱流傳輸現象探討★ 熱輻射對多孔性介質爐中氫、甲烷燃燒之影響
★ 高溫衝擊流熱傳特性之研究★ 輻射傳遞對磁流體自然對流影響之研究
★ 小型燃料電池流道設計與性能分析★ 雙重溫度與濃度梯度下多孔性介質中磁流體之雙擴散對流現象
★ 氣體擴散層與微孔層對於燃料電池之影響與分析★ 應用於PEMFC陰極氧還原反應之Pt-Cu雙元觸媒製備及特性分析
★ 加熱對肌肉組織之近紅外光光學特性影響之研究★ 超音速高溫衝擊流之暫態分析
★ 質子交換膜燃料電池陰極端之兩相流模擬與研究★ 矽相關半導體材料光學模式之實驗量測儀器發展
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-1-31以後開放)
摘要(中) 摘要
質子傳導型固態氧化物燃料電池(pSOFC)搭配微型渦輪機(MGT)是現今常見的複合系統。此電廠系統藉由中溫型pSOFC(大約700-800oC)溫度去提升微型渦輪機的性能,相較於傳統的SOFC,pSOFC操作溫度較低且有著快速開啟/關閉和較佳的耐久度特性,本文將根據先前研究者的模組去研發新的模組,同時,藉由Matlab-Simulink模擬此複合系統,利用改變參數,例如壓力、水碳比和燃料當量比,模擬此pSOFC-MGT複合系統的行為,本文也提出三個系統配置,將分流管放置於(i)燃燒室之後、(ii)渦輪機之後、(iii)燃燒室與渦輪機之後。

結果顯示配置1和2隨操作壓力越高,系統效率越低;配置3則是隨操作壓力越高,系統效率越低。水碳比影響部分,配置1在操作壓力是1-2(bar)時,提高水碳比會降低效率,而配置2與配置3則是提高效率。燃料當量比部分,所有配置都會隨燃料當量增加,系統效率同樣增加。分流率改變部分,所有配置都會隨分流率增加而系統效率增加。若考慮所有的結果,配置3比起配置1和配置2擁有較佳的性能。配置1、配置2和配置3的系統效率分別為48.93%、62.63%和67.79%。研究發現在配置3中,若熱交換器之熱交換速率大於5 W/K,探討的參數影響性將大幅下降。藉由成本分析並選取適當系統裝置來建立配置3。與能量分析相比,有用能分析也有相同趨勢,但數值不相同。因為過程中有用能會有損耗,因此,能量的數值會比有用能來的高,為了瞭解有用能損耗,我們利用熵的增加來計算,將系統中裝置依有用能損失由高到低排列依序為燃燒室60.235[kW]、pSOFC 22.773[kW]、壓縮機21.706[kW]、幫浦5.535[kW]、燃料熱交換器0.886[kW]、重組器0.681[kW]、水熱交換器0.345[kW]、空氣熱交換器0.225[kW]和微型渦輪機0.21[kW]。

關鍵字:質子傳導型固態氧化物燃料電池(pSOFC)、微型渦輪機(MGT)、Matlab-Simulink、複合配置
摘要(英) Abstract
Conducting Proton-Solid Oxide Fuel Cell (pSOFC), by attaching Micro Gas Turbine (MGT) is oneof the outstanding hybrid system nowadays. The intermediate temperature of pSOFC (around 700 – 800 [0C])is used to raise the performance of micro gas turbine in apower plantsystem. pSOFC has a lower temperature characteristic than old type of SOFC, which can afford more rapid start up/down and improve durability. A new model is proposed in the research based on themodels developed by earlier researchers.The proposed hybrid system is simulated using Matlab-Simulink. Simulations were performed to study the behavior of the pSOFC-MGT hybrid system by changing respective parameters such as pressure, steam to carbon ratio, and fuel utilization.In our research, we proposed, three different configurations by changing the bypass position in my proposed system i.e., with placing the bypass(i) after the combustor, (ii) after turbine, and (iii) after the combustor and turbine.

The results show that the higher operating pressure will reduce system efficiency for configuration 1 and 2, and increase the efficiency for configuration 3. The effect of raising Steam to Carbon Ratio will reduce the efficiency of configuration 1 for anoperating pressure of 1 – 2 [bar], but it increasesthe efficiency of configuration 2 and configuration 3. The higherfuel utilization will increase the efficiency for all configurations. For bypass ratio variation, increase in bypass ratio will increase the efficiency of all configurations. Considering all the results ofconfiguration 3 provide the best performance compared to configuration 1 and 2 in all three models. The efficiencies of configuration 1, configuration 2, and configuration 3 are 49%, 63%, and68% respectively. The study obtained that using the overall heat exchanger over 5 W/K will not give an effect to configuration 3 performance so much. The cost analysis can be taken into consideration bychoosing an appropriate device to build a configuration 3 model. The exergy analysis has a same tendency with energy analysis, but it will different in value. Due to the exergy destruction during the process, the value of energy is higher than exergy. To know an amount of exergy destruction, it carried out thecalculations based on the amount of entropy generation and found the devices that have lost exergy from the largest to the smallest in a sequence is combustor 60.2[kW], pSOFC 22.8 [kW] Compressor 21.7 [kW], Pump 5.5 [kW], Fuel Heater 0.9 [kW], reformer 0.7 [kW], water heater 0.4 [kW], air heater 0.23 [kW], and MGT 0.21 [kW].

Keywords: Proton-Conducting Solid Oxide Fuel Cell (pSOFC), Micro Gas Turbine (MGT), Matlab-Simulink, Hybrid configuration mode
論文目次 Contents
Abstract i
Acknowledgements ii
Contents iii
List of Tables vi
List of Figures vii
Nomenclature xii
Chapter 1 Introduction 1
1.1 Backgrounds 1
1.2 References Review 5
1.3 Motivation 6
Chapter 2 Literature Review and Modeling 8
2.1. Proton Solid Oxide Fuel Cell 8
2.1.1. Anode 10
2.1.2. Cathode 11
2.1.3. Electrolyte 12
2.1.4. Interconnect 12
2.1.5. Seals 14
2.1.6. Electrical Model 14
2.1.6.1. Activation Overpotential Losses 16
2.1.6.2. Ohmic Overpotential Losses 18
2.1.6.3. Concentration Overpotential Losses 18
2.2. Micro Gas Turbine 20
2.3. Compressor 20
2.4. Heat Exchanger 21
2.5. Combustor 24
2.6. Mixer 24
2.7. Reformer 25
2.8. Balance of Plant 25
2.9. Fuel Utilization (Uf) 26
2.10. Steam to Carbon Ratio (S/C) 27
2.11. The Cost Study 27
2.12. The Exergy Study 29
Chapter 3 Methodology 33
3.1. Modelling Assumptions and Operating Conditions 33
3.2. The Configurations Model 34
3.2.1. Configuration 1 34
3.2.2. Configuration 2 35
3.2.3. Configuration 3 37
Chapter 4 Results and Discussion 40
4.1 Effect of Operating Parameter 40
4.1.1. Effect of Hybrid System Operating Pressure 40
4.1.1.1. Configuration 1 40
4.1.1.2. Configuration 2 46
4.1.1.3. Configuration 3 50
4.1.2. Effect of pSOFC Fuel Utilization (Uf) 54
4.1.2.1. Configuration 1 55
4.1.2.2. Configuration 2 59
4.1.2.3. Configuration 3 63
4.1.3. Effect of pSOFC Steam to Carbon Ratio (S/C) 67
4.1.3.1. Configuration 1 67
4.1.3.2. Configuration 2 72
4.1.3.3. Configuration 3 76
4.1.4. Effect of pSOFC Bypass Ratio 80
4.1.4.1. Configuration 1 81
4.1.4.2. Configuration 2 85
4.1.4.3. Configuration 3 89
4.2 Configuration Selection 93
4.3 The Detail Analysis of Choosen Model Configuration 94
4.3.1. The Sensitivity Study of The Configuration 3 94
4.3.2. The Cost Model Analysis 96
4.3.3. The Exergy Model Analysis 100
Chapter 5 Conclusions and Suggestion 107
5.1. Conclusion 107
5.2. Suggestions 108
References
Attachment
參考文獻 References

[1] A. Srisiriwat, “High Temperature Solid Oxide Fuel Cell Integrated with Authothermal reformer”, 2nd IEEE International Conference on Power and Energy, Johor Baharu, Malaysia, December 1-3, 2008.
[2] A. Arpornwichanop, Y. Patcharavorachat and S. Assabumrungrat, “Analysis of a proton conducting SOFC with direct internal reforming”, Chemical Engineering Science, Vol. 65, pp. 581-589, 2010.
[3] A. M. Murshed, B. Huang, and K. Nandakumar, “Control relevant modeling of planar solid oxide fuel cell system”, Journal of Power Sources, Vol. 163, pp. 830-845, 2007.
[4] B.C.H. Steele, “Material science and engineering: The enabling technology for the comer- cialisation of fuel cell systems”, Journal Material Science, Vol 36, pp. 1053-1068,2001.
[5] S.H. Chan, H.K. Ho, Y. Tian. “Multi level modelling of SOFC-gas turbine hybrid system”, International Journal Hydrogen Energy, Vol. 28, pp. 889-900, 2003.
[6] S.H. Chan, K.A. Khor, Z.T. Xia. “A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness”,Journal of Power Sources,Vol.93, pp.130-40, 2001.
[7] P. Costamagna, K. Hoenegger. “Modelling of solid oxide heat exchanger integrated stacks and simulation at high fuel utilization”,Journal of Electrochemical Society, Vol. 145(11), 1998.
[8] S.H. Chan, H.K. Ho, Y. Tian. ”Modeling of simple hybrid solid oxide fuel cell and gas turbine power plant”,Journal of Power Sources, Vol. 109, pp. 111–120, 2002.
[9] S.H. Chan, H.K. Ho, Y. Tian. “Modeling of part-load operation of solid oxide fuel cell–gas turbine hybrid power plant”, Journal of Power Sources, Vol. 114, pp. 213–227, 2003.
[10] S.H. Chan, H.K. Ho, Y. Tian. “Multi-level modeling of SOFC–gas turbine hybrid system”, International Journal of Hydrogen Energy, Vol. 28, pp. 889–900, 2003.
[11] P.Costamagna, L.Magistri, A.F.Massardo. “Design and part-load performance of a hybrid system based on a solid oxide fuel cell reactor and a micro gas turbine”,Journal of Power Sources, Vol. 96, pp. 352–368, 2001.
[12] D. Browning, M. Weston, J. B. Lakeman, P. Jones, M. Cherry and D. J. D Corcoran, “Proton Conducting Ceramics for Use in Intermediate Temperature Proton Conducting Fuel Cell”, Journal of New Materials for Materials for Electrochemical Systems, Vol 5, pp. 25-30, 2002.
[13] D. Coco, V. Tola, “SOFC-MGT hybrid system power plants fuelled by methane and methanol”, Proceedings of ESDA 2006 8th Biennial ASME Conference on Engineering System Design and Analysis, Torino, Italy, July 4-7, 2006.
[14] D. Coco, V. Tola, “Externally reformed solid oxide fuel cell-micro gas turbine (SOFC-MGT) hybrid systems fueled by methanol and di-methyl-ether (DME)”, International Journal of Energy, Vol. 34, pp. 2124-2130, 2009.
[15] D. Gullu and A. Demirbaş, “Biomass to methanol via pyrolysis process”, Energy Conversion and Management, Vol. 42, pp. 1349 – 1356, 2001.
[16] D. J. L. Brett, A. Atkinson, N. P. Brandon and S. J. Skinner, “Intermediate temperature solid oxide fuel cells”, Chemical Society Reviews, Vol 37, pp. 1568-1578, 2008.
[17] D. Saebea, S. Authayanun, Y. Patcharavorachot, W. Paengjuntuek, A. Arpornwichanop, “Use of different renewable fuels in a steam reformer integrated into a solid oxide fuel cell: Theoretical analysis and performance”, Energy, Vol. 51, pp. 305-313, 2013.
[18] F. Cheddie, “Thermo-economic optimization of an indirectly coupled solid oxide fuel cell/gas turbine hybrid power plant”, International Journal of Hydrogen Energy, Vol. 36, pp. 1702-1709, 2011.
[19] F. Calise, M. Dentice d’Accadia, A. Palombo, L. Vanoli. “Simulation and exergy analysis of a hybrid Solid Oxide Fuel Cell (SOFC)-Gas Turbine System”, Journal of Energy, Vol. 31, pp. 3278-3299, 2006.
[20] F. L. Joud, G Gauthier, and J. Mougin, “ Current status of proton-conducting solid oxide fuel cells development”, Journal Applied Electrochemistry, Vol 39, pp. 535-543, 2009.
[21] F. Zhao,S. Wang, L. Dixon and F. Chen, “Novel BaCe0.7In0.2Yb0.1O3-δ proton conductor as electrolyte for intermediate-temperature SOFCs”, Fuel Cells Bulletin, Vol 2011, pp. 12-16, 2011.
[22] H. Yokokawa, N. Sakai, T. Horita, and K. Yamaji, “Recent Developments in Solid Oxide Fuel Cell Materials”, Fuel Cells, Vol 1, pp.117-131, 2001.
[23] http: wwww.powergeneration.siemens.com
[24] J. B. Goodenough, “Oxide Ion Electrolytes”, Annual Review of Materials Science, Vol 33, pp. 91-128, 2003.
[25] J. S. Yang, Jeong L. Sohn, Sung Tack Ro. “Performance characteristics of part-load operations of a solid oxide fuel cell/gas turbine hybrid systemusing air-bypass valves”,Journal of Power Sources, Vol.175, pp. 296-302,2008.
[26] J. W. Fergus, “Sealants for solid oxide fuel cells”, Journal of Power Sources, Vol 147, pp. 46-57, 2005.
[27] M.Jonsson, J.Yan. “Humidified gas turbines – a review of proposed and implemented cycles”,Journal of Energy,Vol. 30(7), pp.1013–78, 2005.
[28] K. Hilpert, W. J. Quadakkers, and L. Singheiser, “Handbook of Fuel Cells-Fundamental Technology and Application”, John Wiley & Sons, New Jersey, USA, 2003.
[29] K. Faungnawakij, R. Kikuchi and K. Eguchi, “Thermodynamic evaluation of methanol steam reforming for hydrogen production”, Journal of Power Sources, Vol 161, pp. 87-94, 2006.
[30] L. Duan, B. He and Y. Yang, “Parameter optimization study on SOFC-MGT hybrid power system”, International Journal of Energy Research, Vol 35, pp. 721-732, 2011.
[31] L. Villegas, N. Guilhaume, H. Provendier, C. Daniel, F. Masset, C. Mirodatos, “A combined thermodynamic/experimental study for the optimization of hydrogen production by catalytic reforming of isooctane”, Applied Catalyst A, Vol 281, pp.75-83, 2005.
[32] J.Larminie, A.Dicks. Fuel cell systems explained. New York: John Wiley and Sons, Inc.; 2000.
[33] J. Larminie, A. Dicks. Fuel cell system explained. New York:Willey;2004.
[34] L. Duan, B. He, and Y. Yang, “Parameter optimization study on SOFC-MGT hybrid power system”, International Journal of Energy Research, Vol. 35, pp. 721-732, 2010.
[35] M. Ni, M. K. H. Leung and D. Y. Leung, “Mathematical modeling of proton-conducting solid oxide fuel cell and comparison with oxygen-ion-conducting counterpart”, Fuel Cells, Vol 4, pp. 269-278, 2007.
[36] M. Shahli, “Study on the concentration of isooctane from oleic acid”, Master thesis, Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Malaysia.
[37] M. Ni, Z. Shao, K. Y. Chan. “Modeling of proton-conducting solid oxide fuel cells fueled with syngas”, Energies, Vol.;7, pp. 4381-4396, 2014.
[38] P. Chinda and P. Brault, “The hybrid solid oxide fuel cell (SOFC) and gas turbine (GT) systems steady state modeling”, International Journal of Hydrogen Energy, Vol. 37, pp. 9237-9248, 2012.
[39] P. Costamagna, L. Magistri, A. F. Massardo, “Design and part-load performance of a hybrid system based on a solid oxide fuel cell reactor and micro gas turbine”, Journal of Power Sources, Vol. 96, pp. 352-368, 2001.
[40] P. I. Cowin, C. T. G. Petit, R. Lan, J. T. S Irvine, and S. Tao, “Recent Progress in the Development of Anode Materials for Solid Oxide Fuel Cells”, Advanced Energy Materials, Vol 1, pp. 314-332, 2011.
[41] P. Ranran, W. Yan, Y. Lizhai and M. Zhongqiang, “Electrochemical properties of intermediate-temperature SOFCs based on proton conducting Sm-doped BaCeO3 electrolyte thin film”, Solid State Ionics, Vol 177, pp. 389-393, 2006.
[42] J.Palsson, A.Selimovic, L.Sjunnesson. “Combined solid oxide fuel cell and gas turbine systems for efficient power and heat generation”,Journal of Power Sources, Vol.. 86, pp. 442–448, 2000.
[43] Praharso, A. A. Adesina, D. L. Trimm, N. W. Cant, “Kinetic study of iso-octane steam reforming over a nickel-based catalyst”, Chemical Engineering Journal, Vol 99, pp.131-136, 2004.
[44] R. J. Braun, S. A. Klein, and D. T. Reindl, “Evaluation of system configurations for solid oxide fuel cell-based micro-combined heat and power generator in residential application”, Journal of Power Sources, Vol 158, pp. 1290-1305, 2006.
[45] S. C. Singhal and K. Kendall, “High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications”, Elsevier Science, Oxford, UK, 2003.
[46] S. Fontana, R. Amendola, S. Chevalier, P. Piccardo, G. Caboche, M. Viviani, R. Molins, and M. Sennour, “Metallic interconnects for SOFC: Characterisation of corrosion resistance and conductivity evaluation at operating temperature of differently coated alloys”, Journal of Power Sources, Vol 171, pp. 652-662, 2007.
[47] S. Han, “Analysis of intermediate temperature solid oxide fuel cell combined system”, Master Thesis, Faculty of Mechanical Engineering, National Central university, Taiwan.
[48] S. J. Skinner, “Recent advances in Perovskite-type materials for solid oxide fuel cell cathodes”, International Journal of Inorganic Materials, Vol 3, pp. 113-121, 2001.
[49] S. P. Jiang andS. H. Chan, “A review of anode materials development in solid oxide fuel cells”, Journal Material Science, Vol 39, pp. 4405-4439, 2004.
[50] S. Prasad, A. Singh, N. Jain and H. C. Joshi, “Ethanol production from sweet sorghum syrup for utilization as automotive fuel in India”, Energy Fuels, Vol 21, pp. 2415-2420, 2007.
[51] T.W.Song, J.L.Sohn, J.H.Kim, T.S.Kim, S.T.Ro, K. Suzuki. “Performance analysis of a tubular solid oxide fuel cell/gas turbine hybrid power system based on a quasi-two dimensional model”,Journal of Power Sources, Vol. 142, pp. 30–42, 2005.
[52] T. Shishido, Y. Yamamoto, H. Morioka, K. Takaki and K. Takehira, “Active Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation method in steam reforming of methanol”, Applied Catalyst A, Vol 263, pp. 249-253, 2004.
[53] W. Jamsak, S. Assabumrungrat, P. L. Douglas, N. Laosiripojana, R. Suwanwarangkul, S. Charojrochkul, E. Croiset, “Performance of Ethanol-fuelled solid oxide fuel cells : Proton and oxygen ion conductor”, Chemical Engineering Journal, Vol 133, pp. 187-194, 2007.
[54] W. Z. Zhu, S. C. Deevi, “Development of interconnect materials for solid oxide fuel cells”, Materials Science and Engineering: A, Vol 348, pp. 227-243, 2003.
[55] W. Z. Zhu, S. C. Deevi, “Opportunity of metallic interconnects for solid oxide fuel cells: a status on contact resistance”, Materials Research Bulletin, Vol 38, pp. 957-972, 2003.
[56] X. Zhang, S. H. Chan, G. Li, H. K. Ho, J. Li, and Z. Feng, “A review of integration strategies for solid oxide fuel cells”, Journal of Power Sources, Vol. 195, pp. 685-702, 2010.
[57]Y. Zhe, L. Qizhao and B. Zhu, “Thermodynamic analysis of ITSOFC co-generation System Fuelled by Ethanol”, International Journal of Energy Research, Vol 35, pp. 1025-1031, 2011.
[58] Y. Yi, Ashok D. Rao, J.Brouwer, G.S. Samuelsen, “Analysis and optimization of a solid oxide fuel cell and intercooled gas turbine (SOFC-ICGT) hybrid cycle”, Journal of Power Sources, Vol. 132, pp. 77-85, 2004.
[59] http://classes.engineering.wustl.edu/2009/spring/mase-thermal-lab/me372b5.htm
[60] A. Alexandros, “Thermoeconomic modeling and parametric study of hybrid SOFC-gas turbine-steam turbine power plants ranging from 1.5 to 10 MWe”, Journal of Power Sources, Vol. 181, pp. 313-326, 2008.
[61] S. Sanaye, A. Katebi, “4E analysis and multi objective optimization of a micro gas turbine and solid oxide fuel cell hybrid combined heat and power system”, Journal of Power Sources, Vol. 247, pp. 294-306, 2014.
[62] Y. Haseli, I. Dincer, G.F. Naterer, “Thermodynamic analysis of a combined gas turbine power system with a solid oxide fuel cell through exergy”, Thermochimica Acta, Vol. 480, pp. 1-9, 2008.
指導教授 曾重仁 審核日期 2016-1-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明