博碩士論文 103324001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:40 、訪客IP:3.142.130.47
姓名 林玟志(Wen-Chih Lin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 低溫銅燒結及定向貼附機制探討
(Low-temperature Cu Sintering and the Mechanism of Oriented Attachment)
相關論文
★ 錫碲擴散偶之擴散阻障層界面反應★ 熱電材料與擴散阻障層在電流影響下的界面反應研究
★ 無鉛銲料與無電鍍鈷基板於多次迴焊之界面反應與可靠度測試★ 無電鍍鎳磷層應用於熱電材料與無鉛銲料之界面研究
★ 高可靠度車用印刷電路板之表面處理層開發★ 共濺鍍銅鈦薄膜之相分離演化機制與其對機械性質於3DIC接合的影響
★ 添加微量錫銀銅合金之銅薄膜與銅基板之接合研究★ 新式低溫合金焊料之開發與界面反應探討及可靠度分析
★ 電遷移對純錫導線晶粒旋轉之研究★ 以同步輻射臨場量測電遷移對純錫導線應力分佈之研究
★ 鋁鍺薄膜封裝研究★ 無鉛銲料錫銀鉍銦與銅電極之電遷移研究
★ 以表面處理及塗佈奈米粒子抑制錫晶鬚生長★ 鋁鍺雙層薄膜之擴散行為與金屬誘發結晶現象研究
★ 鋁(銅)與鎳混合導線於矽通孔製程之電遷移現象研究★ 無鉛銲料與碲化鉍基材之界面反應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來全球人口老化問題日益嚴重,伴隨著勞動力衰退與勞動成本上升,農業與工業對人力需求將漸漸由自動化系統、人工智慧與機器人取代,也因此帶動了高功率模組的發展,催生低成本、高效率工作系統的需求。高功率模組的發展中,構裝的重要性不可言喻,由於傳統構裝中以錫為主的銲料球其熔點過低、易產生因熱膨脹係數不匹配所造成的翹曲現象、低封裝壽命以及低電遷移抵抗能力,因此錫合金銲料球勢必要被取代。為了改善封裝以錫銲料球產生的問題,近年來開發了暫態液相擴接合(transient liquid phase, TLP)以及銀燒結接合技術。其中,TLP技術所需接合時間過長導致難以控制接合品質,而銀燒結技術成本過高且其電遷移抵抗能力較差,因此以銅金屬作為接合材料逐漸受到封裝產業重視。傳統的銅直接接合製程溫度皆需要在高於250 oC以及施加一定的壓力之下才能完成接合。而本研究開發了新式銅膠於低溫50 oC以及無施加接合壓力等條件下完成銅直接接合。
本研究成功將銅膠應用於銅箔基板直接接合、銅柱直接接合以及直徑為100微米銅導線直接接合。利用掃描式電子顯微鏡、穿透式電子顯微鏡、低角度X光繞射、聚焦離子束以及電子背向散射繞射等儀器分析銅膠接合之微結構。銅膠是由經氧化後的微米銅球、抗壞血酸以及明膠共同混合而成,而經氧化後的微米銅球其表面所覆蓋的氧化銅層會被抗壞血酸還原成奈米銅球,而明膠所扮演的角色除了當保護劑防止銅氧化之外,其與奈米銅球之間的交互反應促使了奈米銅球之間產生定向貼附成長機制 (oriented attachment mechanism),使接合可於50 oC環境下放置30分鐘完成。此外,本研究利用DLVO理論以及動力學推導證實銅膠燒結反應內定向貼附成長機制之存在。
摘要(英) Increasing demands for artificial intelligence, automatic systems, and intelligent robots have driven the development of power module packaging. Due to the issues of low re-melting temperature for Sn-based solder ball, warpage induced by CTE mismatch, low packaging lifetime of Sn-based solder, low electromigration resistance for Ag nanoparticle sintering and high cost of Ag, the Cu direct bonding is a potential method for assembling power electronics. Therefore, the development of Cu direct bonding is a main trend for 3D IC packaging in high-power device. Researchers are seeking new materials and novel approaches for low temperature bonding. Traditional bonding requires a temperature for bonding at around 250 oC or above. Usually low temperature bonding requires additional pressure. This study reports a method that can greatly reduce the warpage of the chip. Bonding without pressure also saves the chip from damage due to stress.
In this study, we develop a Cu paste of oxidized micron-size Cu particles and water-based fluid of ascorbic acid and gelatin. The Cu paste is successfully applied to Cu foils, Cu pillars and Cu wires direct bonding at 50 oC for 30 min without bonding pressure. The interfacial reaction is investigated by scanning electron microscopy, focus ion beam, transmission electronic microscopy, grazing incidence X-ray diffraction and electron backscatter diffraction. In the sintering processes, we find that the Cu nanoparticle sintering is controlled by oriented attachment. The DLVO theory and kinetic calculation are employed to verify the oriented attachment mechanism in Cu sintering process. This study suggests a very effective method to achieve sintering of Cu at low temperature without pressure, which would greatly reduce the cost of the processing.
關鍵字(中) ★ 銅直接接合
★ 低溫銅燒結
★ 間隙奈米溶液
★ 定向貼附接合
★ 大氣無壓接合
關鍵字(英) ★ Direct bonding copper
★ Low temperature Cu sintering
★ Interstitial nano-fluid
★ Oriented attachment
★ Pressureless bonding
論文目次 摘要 I
Abstract II
致謝辭 III
Contents V
List of Figures VII
List of Tables XII
Chapter 1 Introduction 1
1-1 Background 1
1-2 Issues of current packaging materials 3
1-2-1 Sn-based solder bump 3
1-2-2 Transients liquid phase (TLP) bonding 6
1-2-3 Ag-based NP ink sintering 8
1-3 Cu-to-Cu direct bonding 9
1-3-1 Surface-activated bonding (SAB) method 9
1-3-2 Passivation layer bonding 11
1-3-3 Thermal compression bonding 13
1-3-4 Cu-based NP ink sintering 14
1-4 Challenges of advanced packaging technologies 17
Chapter 2 Motivation 20
Chapter 3 Experimental 22
3-1 Preparation of the Cu paste 22
3-2 Application of the Cu paste 23
3-3 Analysis of Cu paste 24
3-3-1 Interfacial reaction 24
3-3-2 Electrical measurement 25
Chapter 4 Results and Discussion 27
4-1 Evolution of Cu paste sintering 27
4-2 Application of Cu foil direct bonding 29
4-2-1 Cross-sectional SEM results of interfacial reaction 29
4-2-2 HRTEM results of Cu foil and micron-size Cu 32
4-2-3 HRTEM results of Cu paste sintered on Cu foil 34
4-2-4 EBSD analysis of Cu paste and Cu foil 40
4-3 The application of Cu pillar bonding 42
4-3-1 Cross-sectional SEM results of the interfacial reaction 42
4-3-2 Evolution of the microstructure of Cu paste sintered 43
4-3-3 Internal FIB observation of the Cu paste sintered on a Cu pillar. 45
4-3-4 HRTEM results of the Cu paste sintered on a Cu pillar 47
4-4 The application of Cu wire bonding 50
4-4-1 Cross-sectional SEM results of Cu paste applied to Cu wire bonding 50
4-4-2 Electrical resistivity of Cu wires 51
4-5 Mechanism discussion 53
4-5-1 Macroscopic response 53
4-5-2 Microscopic mechanism of the interstitial nano-fluid 56
Chapter 5 Conclusion 69
Reference 71
參考文獻 [1] The Power Electronics Industry is Showing Steady Growth and High Dynamism, 2017. Available:https://www.signalintegrityjournal.com/articles/489-the-power-electronics-industry-is-showing-steady-growth-and-high-dynamism
[2] Introducing Mitsubishi Electric Power Device Technologies and Product Trends. Available:http://www.mitsubishielectric.com/semiconductors/triple_a_plus/technology/01/index.html
[3] J.H. Lau, "Recent advances and new trends in nanotechnology and 3D integration for semiconductor industry", ECS Transactions, Vol, 44, pp. 805-825, 2012.
[4] A. Bajwa, Y. Qin, J. Wilde et al., "Assembly and packaging technologies for high-temperature and high-power GaN HEMTs," 2014 IEEE 64th Electronic Components and Technology Conference (ECTC) pp. 2181-2188, 2014.
[5] A. Bajwa and J. Wilde, "Reliability of Ag-Sintering and Sn-Ag TLP-Bonding for Mounting of SiC and GaN Devices," CIPS 2016; 9th International Conference on Integrated Power Electronics Systems pp. 1-6, 2016.
[6] M. Becker and R. Eisele, "Novel bonding and joining technology for power electronics - Enabler for improved lifetime, reliability, cost and power density", 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), 2013.
[7] R. Abebe, G. Vakil, G.L. Calzo et al., "Integrated motor drives: state of the art and future trends", IET Electric Power Applications, Vol, 10, pp. 757-771, 2016.
[8] Y. Nishimura, K. Onishi, and E. Mochizuki, "Lead-free IGBT Modules", FUJI ELECTRIC REVIEW, Vol, 52, pp. 58-61, 2006.
[9] P. Rajaguru, H. Lu, C. Bailey et al., "Impact of underfill and other physical dimensions on Silicon Lateral IGBT package reliability using computer model with discrete and continuous design variables", Microelectronics Reliability, Vol, 83, pp. 146-156, 2018.
[10] J.B. Andrews, J.A. Cardenas, C.J. Lim et al., "Fully Printed and Flexible Carbon Nanotube Transistors for Pressure Sensing in Automobile Tires", IEEE Sensors Journal, Vol, 18, pp. 7875-7880, 2018.
[11] C. Ho, S. Yang, and C. Kao, Interfacial reaction issues for lead-free electronic solders, Lead-Free Electronic Solders, Springer2006, pp. 155-174.
[12] O.Y. Liashenko and F. Hodaj, "Differences in the interfacial reaction between Cu substrate and metastable supercooled liquid Sn–Cu solder or solid Sn–Cu solder at 222° C: Experimental results versus theoretical model calculations", Acta Materialia, Vol, 99, pp. 106-118, 2015.
[13] J. Morris, J.F. Goldstein, and Z. Mei, "Microstructure and mechanical properties of Sn-In and Sn-Bi solders", JOM, Vol, 45, pp. 25-27, 1993.
[14] W.R. Osório, D.R. Leiva, L.C. Peixoto et al., "Mechanical properties of Sn–Ag lead-free solder alloys based on the dendritic array and Ag3Sn morphology", Journal of Alloys and Compounds, Vol, 562, pp. 194-204, 2013.
[15] W.R. Osório, L.C. Peixoto, L.R. Garcia et al., "Microstructure and mechanical properties of Sn–Bi, Sn–Ag and Sn–Zn lead-free solder alloys", Journal of Alloys and Compounds, Vol, 572, pp. 97-106, 2013.
[16] J. Pan, B.J. Toleno, T.-C. Chou et al., "The effect of reflow profile on SnPb and SnAgCu solder joint shear strength", Soldering & Surface Mount Technology, Vol, 18, pp. 48-56, 2006.
[17] F. Wang, Y. Huang, Z. Zhang et al., "Interfacial reaction and mechanical properties of Sn-Bi solder joints", Materials, Vol, 10, p. 920, 2017.
[18] C. Chen, H.-Y. Hsiao, Y.-W. Chang et al., "Thermomigration in solder joints", Materials Science and Engineering: R: Reports, Vol, 73, pp. 85-100, 2012.
[19] H. Chen, H.Y. Lee, C.S. Ku et al., "Evolution of residual stress and qualitative analysis of Sn whiskers with various microstructures", Journal of materials science, Vol, 51, pp. 3600-3606, 2016.
[20] Y.-T. Huang, C.-H. Chen, S. Chakroborty et al., "Crystallographic Orientation Effect on Electromigration in Ni-Sn Microbump", JOM, Vol, 69, pp. 1717-1723, 2017.
[21] T. Laurila, V. Vuorinen, and M. Paulasto-Kröckel, "Impurity and alloying effects on interfacial reaction layers in Pb-free soldering", Materials Science and Engineering: R: Reports, Vol, 68, pp. 1-38, 2010.
[22] K. Lee, J. Yu, T. Park et al., "Low-cycle fatigue characteristics of Sn-based solder joints", Journal of Electronic Materials, Vol, 33, pp. 249-257, 2004.
[23] C. Buttay, D. Planson, B. Allard et al., "State of the art of high temperature power electronics", Materials Science and Engineering: B, Vol, 176, pp. 283-288, 2011.
[24] Y.-c. Huang, S.-w. Chen, and K.-s. Wu, "Size and substrate effects upon undercooling of Pb-free solders", Journal of Electronic Materials, Vol, 39, pp. 109-114, 2010.
[25] J.-M. Park, S.-H. Kim, M.-H. Jeong et al., "Effect of Cu–Sn intermetallic compound reactions on the Kirkendall void growth characteristics in Cu/Sn/Cu microbumps", Japanese Journal of Applied Physics, Vol, 53, p. 05HA06, 2014.
[26] Y. Kim, S.-K. Kang, S.-D. Kim et al., "Wafer warpage analysis of stacked wafers for 3D integration", Microelectronic Engineering, Vol, 89, pp. 46-49, 2012.
[27] M. Amagai, "Characterization of chip scale packaging materials", Microelectronics Reliability, Vol, 39, pp. 1365-1377, 1999.
[28] D. Jung, A. Sharma, M. Mayer et al., "A Review on Recent Advances in Transient Liquid Phase (TLP) Bonding for Thermoelectric Power Module", Reviews on Advanced Materials Science, Vol, 53, pp. 147-160, 2018.
[29] A. Bajwa, Y. Qin, and R. Zeiser, "Foil based transient liquid phase bonding as a die-attachment method for high temperature devices," CIPS 2014; 8th International Conference on Integrated Power Electronics Systems pp. 1-6, 2014.
[30] A. Lis and C. Leinenbach, "Effect of process and service conditions on TLP-bonded components with (Ag, Ni–) Sn interlayer combinations", Journal of Electronic Materials, Vol, 44, pp. 4576-4588, 2015.
[31] T.A. Tollefsen, A. Larsson, O.M. Løvvik et al., "Au-Sn SLID bonding—properties and possibilities", Metallurgical and Materials Transactions B, Vol, 43, pp. 397-405, 2012.
[32] W. Zhang and W. Ruythooren, "Study of the Au/In reaction for transient liquid-phase bonding and 3D chip stacking", Journal of Electronic Materials, Vol, 37, pp. 1095-1101, 2008.
[33] O. Mokhtari and H. Nishikawa, "The shear strength of transient liquid phase bonded Sn–Bi solder joint with added Cu particles", Advanced Powder Technology, Vol, 27, pp. 1000-1005, 2016.
[34] H.-L. Feng, J.-H. Huang, J. Yang et al., "Investigation of microstructural evolution and electrical properties for Ni-Sn transient liquid-phase sintering bonding", Electronic Materials Letters, Vol, 13, pp. 489-496, 2017.
[35] T. Hu, H. Chen, M. Li et al., "Microstructure evolution and thermostability of bondline based on Cu@ Sn core-shell structured microparticles under high-temperature conditions", Materials & Design, Vol, 131, pp. 196-203, 2017.
[36] N. Bosco and F. Zok, "Strength of joints produced by transient liquid phase bonding in the Cu–Sn system", Acta materialia, Vol, 53, pp. 2019-2027, 2005.
[37] T.L. Yang, T. Aoki, K. Matsumoto et al., "Full intermetallic joints for chip stacking by using thermal gradient bonding", Acta Materialia, Vol, 113, pp. 90-97, 2016.
[38] B. Liu, Y. Tian, J. Feng et al., "Enhanced shear strength of Cu–Sn intermetallic interconnects with interlocking dendrites under fluxless electric current-assisted bonding process", Journal of materials science, Vol, 52, pp. 1943-1954, 2017.
[39] H. Zhao, J. Liu, Z. Li et al., "Non-interfacial growth of Cu3Sn in Cu/Sn/Cu joints during ultrasonic-assisted transient liquid phase soldering process", Materials Letters, Vol, 186, pp. 283-288, 2017.
[40] S.A. Paknejad and S.H. Mannan, "Review of silver nanoparticle based die attach materials for high power/temperature applications", Microelectronics Reliability, Vol, 70, pp. 1-11, 2017.
[41] K. Sugiura, T. Iwashige, K. Tsuruta et al., "Reliability Evaluation of SiC Power Module With Sintered Ag Die Attach and Stress-Relaxation Structure", IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol, 9, pp. 609-615, 2019.
[42] H. Zhang, W. Wang, H. Bai et al., "Microstructural and mechanical evolution of silver sintering die attach for SiC power devices during high temperature applications", Journal of Alloys and Compounds, Vol, 774, pp. 487-494, 2019.
[43] Z. Zhang, C. Chen, Y. Yang et al., "Low-temperature and pressureless sinter joining of Cu with micron/submicron Ag particle paste in air", Journal of Alloys and Compounds, Vol, 780, pp. 435-442, 2019.
[44] E. Ide, S. Angata, A. Hirose et al., "Metal–metal bonding process using Ag metallo-organic nanoparticles", Acta materialia, Vol, 53, pp. 2385-2393, 2005.
[45] C. Buttay, A. Masson, J. Li et al., "Die attach of power devices using silver sintering–bonding process optimisation and characterization", Additional Papers and Presentations, Vol, 2011, pp. 000084-000090, 2011.
[46] K.-S. Kim, J.-O. Bang, and S.-B. Jung, "Electrochemical migration behavior of silver nanopaste screen-printed for flexible and printable electronics", Current Applied Physics, Vol, 13, pp. S190-S194, 2013.
[47] R. Abbel, L. van de Peppel, G. Kirchner et al., "Lifetime limitations in organic electronic devices due to metal electrochemical migration", MRS Communications, Vol, 7, pp. 664-671, 2017.
[48] T.H. Kim, M.M.R. Howlader, T. Itoh et al., "Room temperature Cu–Cu direct bonding using surface activated bonding method", Journal of Vacuum Science & Technology A, Vol, 21, pp. 449-453, 2003.
[49] A. Shigetou, T. Itoh, and T. Suga, "Direct bonding of CMP-Cu films by surface activated bonding (SAB) method", Journal of Materials Science, Vol, 40, pp. 3149-3154, 2005.
[50] R. He, M. Fujino, A. Yamauchi et al., "Combined Surface Activated Bonding Technique for Low-Temperature Cu/Dielectric Hybrid Bonding", ECS J. Solid State Sci. Technol., Vol, 5, pp. P419-P424, 2016.
[51] D.F. Lim, J. Wei, K.C. Leong et al., "Surface Passivation of Cu for Low Temperature 3D Wafer Bonding", ECS Solid State Lett., Vol, 1, pp. P11-P14, 2012.
[52] Y. Huang, Y. Chien, R. Tzeng et al., "Demonstration and Electrical Performance of Cu–Cu Bonding at 150 °C With Pd Passivation", IEEE Transactions on Electron Devices, Vol, 62, pp. 2587-2592, 2015.
[53] C.S. Tan, D.F. Lim, X.F. Ang et al., "Low temperature Cu-Cu thermo-compression bonding with temporary passivation of self-assembled monolayer and its bond strength enhancement", Microelectronics Reliability, Vol, 52, pp. 321-324, 2012.
[54] T. Ghosh, K. Krushnamurthy, A.K. Panigrahi et al., "Facile non thermal plasma based desorption of self assembled monolayers for achieving low temperature and low pressure Cu–Cu thermo-compression bonding", RSC Advances, Vol, 5, pp. 103643-103648, 2015.
[55] C.-T. Ko and K.-N. Chen, "Low temperature bonding technology for 3D integration", Microelectronics Reliability, Vol, 52, pp. 302-311, 2012.
[56] A.K. Panigrahy and K.N. Chen, "Low Temperature Cu-Cu Bonding Technology in Three-Dimensional Integration: An Extensive Review", J. Electron. Packag., Vol, 140, p. 11, 2018.
[57] C.S. Tan, R. Reif, N.D. Theodore et al., "Observation of interfacial void formation in bonded copper layers", Applied Physics Letters, Vol, 87, p. 201909, 2005.
[58] Y.-S. Tang, Y.-J. Chang, and K.-N. Chen, "Wafer-level Cu–Cu bonding technology", Microelectronics Reliability, Vol, 52, pp. 312-320, 2012.
[59] H. Moriceau, F. Rieutord, F. Fournel et al., "Low temperature direct bonding: An attractive technique for heterostructures build-up", Microelectronics Reliability, Vol, 52, pp. 331-341, 2012.
[60] S. Koyama, N. Hagiwara, and I. Shohji, "Cu/Cu direct bonding by metal salt generation bonding technique with organic acid and persistence of reformed layer", Japanese Journal of Applied Physics, Vol, 54, p. 030216, 2015.
[61] C.-M. Liu, H.-W. Lin, Y.-S. Huang et al., "Low-temperature direct copper-to-copper bonding enabled by creep on (111) surfaces of nanotwinned Cu", Scientific Reports, Vol, 5, p. 9734, 2015.
[62] G. Zhou and J.C. Yang, "Initial Oxidation Kinetics of Cu(100), (110), and (111) Thin Films Investigated by in Situ Ultra-high-vacuum Transmission Electron Microscopy", Journal of Materials Research, Vol, 20, pp. 1684-1694, 2005.
[63] J. Liu, H. Chen, H. Ji et al., "Highly Conductive Cu–Cu Joint Formation by Low-Temperature Sintering of Formic Acid-Treated Cu Nanoparticles", ACS Applied Materials & Interfaces, Vol, 8, pp. 33289-33298, 2016.
[64] X. Liu and H. Nishikawa, "Low-pressure Cu-Cu bonding using in-situ surface-modified microscale Cu particles for power device packaging", Scripta Materialia, Vol, 120, pp. 80-84, 2016.
[65] J.J. Li, C.L. Cheng, T.L. Shi et al., "Surface effect induced Cu-Cu bonding by Cu nanosolder paste", Materials Letters, Vol, 184, pp. 193-196, 2016.
[66] J. Li, X. Yu, T. Shi et al., "Low-Temperature and Low-Pressure Cu–Cu Bonding by Highly Sinterable Cu Nanoparticle Paste", Nanoscale Research Letters, Vol, 12, p. 255, 2017.
[67] Y. Gao, W. Li, C. Chen et al., "Novel copper particle paste with self-reduction and self-protection characteristics for die attachment of power semiconductor under a nitrogen atmosphere", Materials & Design, Vol, 160, pp. 1265-1272, 2018.
[68] Y. Yong, M.T. Nguyen, H. Tsukamoto et al., "Effect of decomposition and organic residues on resistivity of copper films fabricated via low-temperature sintering of complex particle mixed dispersions", Scientific Reports, Vol, 7, p. 45150, 2017.
[69] W.L. Li, S.R. Cong, J.T. Jiu et al., "Self-reducible copper inks composed of copper-amino complexes and preset submicron copper seeds for thick conductive patterns on a flexible substrate", Journal of Materials Chemistry C, Vol, 4, pp. 8802-8809, 2016.
[70] M. Jung, J. Mitra, D.Z. Pan et al., "TSV Stress-Aware Full-Chip Mechanical Reliability Analysis and Optimization for 3D IC", Commun. ACM, Vol, 57, pp. 107-115, 2014.
[71] Advanced packaging technologies are key for semiconductor innovation, 2018. Available: http://www.yole.fr/AdvancedPackagingIndustry_MarketStatus.aspx#.XSQ6WugzaUm
[72] C. Andersson, J. Ingman, E. Varescon et al., "Detection of cracks in multilayer ceramic capacitors by X-ray imaging", Microelectronics Reliability, Vol, 64, pp. 352-356, 2016.
[73] F. Yinug, Semiconductor Demand Drivers Increase Across the Board in 2018, 2019. Available: https://www.semiconductors.org/semiconductor-demand-drivers-increase-across-the-board-in-2018/
[74] O.A. Yeshchenko, I.M. Dmytruk, A.A. Alexeenko et al., "Size-dependent melting of spherical copper nanoparticles", arXiv preprint cond-mat/0701276, 2007.
[75] C.J. Wu, S.M. Chen, Y.J. Sheng et al., "Anti-oxidative copper nanoparticles and their conductive assembly sintered at room temperature", Journal of the Taiwan Institute of Chemical Engineers, Vol, 45, pp. 2719-2724, 2014.
[76] Y.Y. Dai, M.Z. Ng, P. Anantha et al., "Enhanced copper micro/nano-particle mixed paste sintered at low temperature for 3D interconnects", Applied Physics Letters, Vol, 108, p. 263103, 2016.
[77] M. Kanzaki, Y. Kawaguchi, and H. Kawasaki, "Fabrication of Conductive Copper Films on Flexible Polymer Substrates by Low-Temperature Sintering of Composite Cu Ink in Air", Acs Applied Materials & Interfaces, Vol, 9, pp. 20852-20858, 2017.
[78] J. Xiong, Y. Wang, Q.J. Xue et al., "Synthesis of highly stable dispersions of nanosized copper particles using L-ascorbic acid", Green Chemistry, Vol, 13, pp. 900-904, 2011.
[79] M. Bicer and I. Sisman, "Controlled synthesis of copper nano/microstructures using ascorbic acid in aqueous CTAB solution", Powder Technology, Vol, 198, pp. 279-284, 2010.
[80] S.P. Wu, "Preparation of fine copper powder using ascorbic acid as reducing agent and its application in MLCC", Materials Letters, Vol, 61, pp. 1125-1129, 2007.
[81] T. Yonezawa, H. Tsukamoto, and M. Matsubara, "Low-temperature nanoredox two-step sintering of gelatin nanoskin-stabilized submicrometer-sized copper fine particles for preparing highly conductive layers", Rsc Advances, Vol, 5, pp. 61290-61297, 2015.
[82] K. Ida, M. Tomonari, Y. Sugiyama et al., "Behavior of Cu nanoparticles ink under reductive calcination for fabrication of Cu conductive film", Thin Solid Films, Vol, 520, pp. 2789-2793, 2012.
[83] X.C. Wang, X.L. Hao, and T.T. Qiang, "Preparation and Desorption Performance of Gelatin Microspheres", Advanced Materials Research, Vol, 664, pp. 609-613, 2013.
[84] D. Todorović, Z. Dražić-Janković, and D. Marković, "Determination of the degree of adsorption on copper and brass tins by changing the temperature on the surface before inhibition, by following the corrosion parameters", Association of Metallurgical Engineers of Serbia, Vol, 14, pp. 285-293, 2008.
[85] S.M. Tosh and A.G. Marangoni, "Determination of the maximum gelation temperature in gelatin gels", Applied Physics Letters, Vol, 84, pp. 4242-4244, 2004.
[86] H.B. Bohidar and S.S. Jena, "Study of sol‐state properties of aqueous gelatin solutions", The Journal of Chemical Physics, Vol, 100, pp. 6888-6895, 1994.
[87] H. Firoozmand, B.S. Murray, and E. Dickinson, "Microstructure and rheology of phase-separated gels of gelatin+oxidized starch", Food Hydrocolloids, Vol, 23, pp. 1081-1088, 2009.
[88] N. Lorén, A.M. Hermansson, M.A.K. Williams et al., "Phase Separation Induced by Conformational Ordering of Gelatin in Gelatin/Maltodextrin Mixtures", Macromolecules, Vol, 34, pp. 289-297, 2001.
[89] S. Kariuki and H.D. Dewald, "Evaluation of diffusion coefficients of metallic ions in aqueous solutions", Electroanalysis, Vol, 8, pp. 307-313, 1996.
[90] K. Ueno, T. Ritzdorf, and S. Grace, "Seed layer dependence of room-temperature recrystallization in electroplated copper films", Journal of Applied Physics, Vol, 86, pp. 4930-4935, 1999.
[91] C.-C. Chen, C.-H. Yang, Y.-S. Wu et al., "Depth-dependent self-annealing behavior of electroplated Cu", Surface and Coatings Technology, Vol, 320, pp. 489-496, 2017.
[92] J. Li, T. Shi, X. Yu et al., "Low-Temperature and Low-Pressure Cu-Cu Bonding by Pure Cu Nanosolder Paste for Wafer-Level Packaging," 2017 IEEE 67th Electronic Components and Technology Conference (ECTC) pp. 976-981, 2017.
[93] J. Zürcher, K. Yu, G. Schlottig et al., "Nanoparticle assembly and sintering towards all-copper flip chip interconnects," 2015 IEEE 65th Electronic Components and Technology Conference (ECTC) pp. 1115-1121, 2015.
[94] K. Woo, Y. Kim, B. Lee et al., "Effect of Carboxylic Acid on Sintering of Inkjet-Printed Copper Nanoparticulate Films", ACS Applied Materials & Interfaces, Vol, 3, pp. 2377-2382, 2011.
[95] F. Wang, V.N. Richards, S.P. Shields et al., "Kinetics and Mechanisms of Aggregative Nanocrystal Growth", Chemistry of Materials, Vol, 26, pp. 5-21, 2014.
[96] S.P. Shields, V.N. Richards, and W.E. Buhro, "Nucleation Control of Size and Dispersity in Aggregative Nanoparticle Growth. A Study of the Coarsening Kinetics of Thiolate-Capped Gold Nanocrystals", Chemistry of Materials, Vol, 22, pp. 3212-3225, 2010.
[97] R.L. Penn and J.F. Banfield, "Imperfect Oriented Attachment: Dislocation Generation in Defect-Free Nanocrystals", Science, Vol, 281, pp. 969-971, 1998.
[98] D.S. Li, M.H. Nielsen, J.R.I. Lee et al., "Direction-Specific Interactions Control Crystal Growth by Oriented Attachment", Science, Vol, 336, pp. 1014-1018, 2012.
[99] X.G. Xue, R.L. Penn, E.R. Leite et al., "Crystal growth by oriented attachment: kinetic models and control factors", Crystengcomm, Vol, 16, pp. 1419-1429, 2014.
[100] Y. Lu, J.Y. Huang, C. Wang et al., "Cold welding of ultrathin gold nanowires", Nature Nanotechnology, Vol, 5, p. 218, 2010.
[101] K.T. Lee, A.N. Sathyagal, and A.V. McCormick, "A closer look at an aggregation model of the Stober process", Colloid Surf. A-Physicochem. Eng. Asp., Vol, 144, pp. 115-125, 1998.
[102] H. Ohshima, "Effective Surface Potential and Double-Layer Interaction of Colloidal Particles", Journal of Colloid and Interface Science, Vol, 174, pp. 45-52, 1995.
[103] H. Zhan, Z.-G. Chen, J. Zhuang et al., "Correlation between Multiple Growth Stages and Photocatalysis of SrTiO3 Nanocrystals", The Journal of Physical Chemistry C, Vol, 119, pp. 3530-3537, 2015.
[104] H. Zhan, X. Yang, C. Wang et al., "Multiple Growth Stages and Their Kinetic Models of Anatase Nanoparticles under Hydrothermal Conditions", The Journal of Physical Chemistry C, Vol, 114, pp. 14461-14466, 2010.
[105] A. Wolff, W. Hetaba, M. Wißbrock et al., "Oriented attachment explains cobalt ferrite nanoparticle growth in bioinspired syntheses", Beilstein journal of nanotechnology, Vol, 5, pp. 210-218, 2014.
指導教授 吳子嘉(Albert T. Wu) 審核日期 2019-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明