博碩士論文 103324002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.145.16.90
姓名 鄧光穎(Kuang-Ying Deng)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 以物理氣相沉積合成過渡金屬二硫屬化物之碲化物
(Tellurium-Based Transition Metal Dichalcogenides Synthesized by Physical Vapor Deposition)
相關論文
★ 醫療用氧氣濃縮機之改善與發展★ 變壓吸附法濃縮及回收氣化產氫製程中二氧化碳與氫氣之模擬
★ 變壓吸附法應用於小型化醫療用製氧機及生質酒精脫水產生無水酒精之模擬★ 變壓吸附法濃縮及回收氣化產氫製程中一氧化碳、二氧化碳與氫氣之模擬
★ 利用吸附程序於較小型發電廠煙道氣進氣量下捕獲二氧化碳之模擬★ 利用週期性吸附反應程序製造高純度氫氣並捕獲二氧化碳之模擬
★ 變溫吸附程序分離煙道氣中二氧化碳之連續性探討與實驗設計分析★ 利用PEI/SBA-15於變溫及真空變溫吸附捕獲煙道氣中二氧化碳之模擬
★ PEI/SBA-15固態吸附劑對二氧化碳吸附之實驗研究★ 以變壓吸附法分離汙染空氣中氧化亞氮之模擬
★ 以變壓吸附法分離汙染空氣中氧化亞氮之實驗★ 以變壓吸附法濃縮己二酸工廠尾氣中氧化亞氮之模擬
★ 利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗★ 變壓吸附法回收發電廠廢氣與合成氣中二氧化碳之模擬
★ 利用變壓吸附程序分離甲醇裂解產氣中氫氣及一氧化碳之模擬★ 變壓吸附程序捕獲合成氣中二氧化碳之實驗研究與吸附劑之選擇評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 自從石墨烯(Graphene)發現以來,其特殊的二維結構伴隨的物理性質,一直受到很多矚目,如超高的載子遷移率(≥200000 cm2V-1s-1),但其沒有能帶間隙的本質,限制了它在電子元件上的應用,於是科學界便開始尋找其他具二維特性的材料,二維過渡金屬二硫屬化物(Two-dimensional transition metal dichalcogenides, 2D TMDs)便是其中一種,它具有無懸浮鍵的表面以及適當大小的能帶間隙,使其作為電子及光電元件有十分大的潛力。
本篇著重於二碲化鎢(WTe2)及二碲化鉬(MoTe2)兩種TMDs材料的合成,目前科學界常用於TMDs合成的方式有二,其一為剝除法,為直接從結晶良好的塊材上剝除到基板上,以此方式較難以得到大面積且均勻的薄膜,二為化學氣相沉積,為利用氣相反應的方式讓氣體原子反應沉積到基板上,其缺點在於必須利用硫/碲化的製程來修補試片表面缺陷,此製程在控制上不易且碲具有毒性,在此我們選擇以物理氣相沉積的方式合成薄膜,藉由三步驟的方式合成二碲化鎢及二碲化鉬薄膜,首先由濺鍍的方式沉積薄膜,接著利用電子束蒸鍍系統及電漿輔助化學氣相沉積系統,沉積二氧化矽覆蓋層,而後進行退火處理,增加試片的結晶性。
藉由拉曼光譜儀、X射線光電子能譜、穿透式電子顯微鏡等分析儀器我們可確認薄膜的品質,由分析結果可得知,以物理氣相沉積的方式製作出的薄膜,與化學氣相沉積及剝除法所得的薄膜具相似的拉曼訊號,證明了以此方式也可以得到結晶良好的薄膜,同時我們也針對二碲化鎢及二碲化鉬的濺鍍溫度以及退火溫度進行討論,此兩種材料皆對於製程溫度十分敏感,形成具良好結晶相的薄膜並不容易。
我們以濺鍍、覆蓋層沉積、退火的三步驟製程,成功在二氧化矽及藍寶石基板上合成出1T’相之二碲化鎢、1T’相之二碲化鉬、2H相之二碲化鉬之薄膜,避免了難以控制的碲化製程,未來也可將此製程套用於其他TMDs材料,為合成TMDs薄膜提供了一條新的途徑。
摘要(英) Since the discovery of graphene, various two-dimensional (2D) materials have been explored. Graphene has a two-dimensional structure and unique physical properties, like high carrier mobility (≥200000 cm2V-1s-1). However, graphene is a gapless material, which limits its applications in electronic devices. Other 2D materials have been explored. Two-dimensional transition metal dichalcogenides (2D TMDs) is one of 2D materials. The absence of dangling bonds, and finite and distinctive band gaps, making it a good candidate for electronics and optoelectronics.
In experiment, we focused on the synthesis of tungsten ditelluride (WTe2) and molybdenum ditelluride (MoTe2). There are two common methods to obtain TMDs thin films. First is mechanical exfoliation, which is hard to create a large and uniform thin film.
This method is most used in research. Second is chemical vapor deposition (CVD), which needs tellurization to achieve high quality thin film. However, tellurization process is hard to control, and tellurium is harmful for health. We develop a three-step process. Comprising of physical vapor deposition, capping layer deposition and annealing process. First, we used ultra-high vacuum sputter system (UHV-sputter system) to deposit WTe2 or MoTe2 thin film. Second, we deposited a silicon oxide capping layer, to prevent oxidation of thin film oxidize or sublimate during the following annealing. Finally, the annealing process will improve thin film quality and crystallinity.
Various analysis methods, including Raman spectroscopy, transmission electron microscopy and X-ray photoelectron spectroscopy were used to characterize the thin film quality. The different phases of thin films like 1T’-WTe2, 1T’-MoTe2 and 2H-MoTe2 were confirmed by Raman analysis. Our thin films show similar properties as compared with CVD and exfoliation methods. Moreover, The thin film quality is very sensitive to sputtering temperature and annealing temperature. Without proper time and temperature, it’s hard to synthesize thin film successfully.
We developed a new process to synthesize WTe2 and MoTe2 thin films. The PVD method without tellurization process is safe and easily controlled. This process can also expand to other TMDs materials. Our research shows the potential of PVD process for TMDs thin film in the future.
關鍵字(中) ★ 二維材料
★ 過渡金屬二硫屬化物
★ 物理氣相沉積
關鍵字(英) ★ Two-dimensional materials
★ Transition metal dichalcogenides
★ Physical vapor deposition
論文目次 摘要-I
Abstract-II
致謝-IV
論文目次-V
圖目錄-VII
表目錄-IX
一、緒論-1
1-1過渡金屬二硫屬化物薄膜簡介-1
1-2研究動機-5
二、薄膜製程-6
2-1以濺鍍法合成薄膜-6
2-2覆蓋層沉積以及退火製程-8
三、薄膜分析及討論-14
3-1 XPS分析-14
3-1-1二碲化鉬XPS分析-15
3-1-2二碲化鎢之XPS分析-17
3-2 TEM分析-21
3-3拉曼光譜分析-23
3-3-1拉曼光譜(Raman spectroscopy)原理-23
四、影響薄膜成長因素-27
4-1退火對於薄膜的影響-27
4-2影響二碲化鎢之生長因素-29
4-2-1退火製程的影響-29
4-2-2濺鍍溫度的影響-31
4-2-3退火溫度影響 -32
4-2-4基板的選擇性 -34
4-2-5二碲化鎢之覆蓋層去除-35
4-3影響二碲化鉬之生長因素-37
4-3-1退火環境溫度 -37
4-3-2退火時間-40
4-3-3濺鍍環境溫度-43
4-3-4覆蓋層之影響 -45
4-3-5二碲化鉬之覆蓋層去除-46
4-4影響薄膜生長因素之總整理-47
五、薄膜電晶體製程與電性分析-48
5-1二碲化鉬之電晶體-48
5-2二碲化鉬薄膜電晶體製程-49
5-2-1源汲/汲極之定義-50
5-2-2源汲/汲極之金屬沉積-51
5-2-3定義薄膜電晶體主動區-52
5-2-4二碲化鉬薄膜電晶體製程圖-53
5-2-5二碲化鉬薄膜電晶體之電性討論-54
六、結論與未來展望-57
七、參考文獻-58
參考文獻 [1] A. K. Geim and K. S. Novoselov, "The rise of graphene," Nature Materials, vol. 6, pp. 183-191, 2007.
[2] F. Schwierz, "Graphene transistors," Nature Nanotechnology, vol. 5, pp. 487-496, 2010.
[3] C. Lee, X. Wei, J. W. Kysar, and J. Hone, "Measurement of the elastic properties and intrinsic strength of monolayer graphene," Science, vol. 321, pp. 385-388, 2008.
[4] B. Radisavljevic, A. Radenovic, J. Brivio, i. V. Giacometti, and A. Kis, "Single-layer MoS2 transistors," Nature Nanotechnology, vol. 6, pp. 147-150, 2011.
[5] T. Böker, R. Severin, A. Müller, C. Janowitz, R. Manzke, D. Voß, "Band structure of MoS2, MoSe2, and α− MoTe2: Angle-resolved photoelectron spectroscopy and ab initio calculations," Physical Review B, vol. 64, p. 235305, 2001.
[6] H. Fang, S. Chuang, T. C. Chang, K. Takei, T. Takahashi, and A. Javey, "High-performance single layered WSe2 p-FETs with chemically doped contacts," Nano Letters, vol. 12, pp. 3788-3792, 2012.
[7] H. Schmidt, F. Giustiniano, and G. Eda, "Electronic transport properties of transition metal dichalcogenide field-effect devices: surface and interface effects," Chemical Society Reviews, vol. 44, pp. 7715-7736, 2015.
[8] G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, "Photoluminescence from chemically exfoliated MoS2," Nano Letters, vol. 11, pp. 5111-5116, 2011.
[9] S. Fathipour, N. Ma, W. Hwang, V. Protasenko, S. Vishwanath, H. Xing, "Exfoliated multilayer MoTe2 field-effect transistors," Applied Physics Letters, vol. 105, p. 192101, 2014.
[10] R. I. Woodward and E. J. Kelleher, "2D saturable absorbers for fibre lasers," Applied Sciences, vol. 5, pp. 1440-1456, 2015.
[11] J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, "Two-dimensional nanosheets produced by liquid exfoliation of layered materials," Science, vol. 331, pp. 568-571, 2011.
[12] I. G. Lezama, A. Arora, A. Ubaldini, C. Barreteau, E. Giannini, M. Potemski, "Indirect-to-direct band gap crossover in few-layer MoTe2," Nano Letters, vol. 15, pp. 2336-2342, 2015.
[13] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, "Electronics and optoelectronics of two-dimensional transition metal dichalcogenides," Nature Nanotechnology, vol. 7, pp. 699-712, 2012.
[14] T. Niu and A. Li, "From two-dimensional materials to heterostructures," Progress in Surface Science, vol. 90, pp. 21-45, 2015.
[15] Y. Sun, S.-C. Wu, M. N. Ali, C. Felser, and B. Yan, "Prediction of Weyl semimetal in orthorhombic MoTe2," Physical Review B, vol. 92, p. 161107, 2015.
[16] A. H. Reshak and S. Auluck, "Band structure and optical response of 2H−MoX2 compounds (X= S, Se, and Te)," Physical Review B, vol. 71, p. 155114, 2005.
[17] C.-H. Lee, E. C. Silva, L. Calderin, M. A. T. Nguyen, M. J. Hollander, B. Bersch, "Tungsten Ditelluride: a layered semimetal," Scientific Reports, vol. 5, p.10013, 2015.
[18] K. Krishnamoorthy, P. Pazhamalai, G. K. Veerasubramani, and S. J. Kim, "Mechanically delaminated few layered MoS2 nanosheets based high performance wire type solid-state symmetric supercapacitors," Journal of Power Sources, vol. 321, pp. 112-119, 2016.
[19] A. Pezeshki, S. H. H. Shokouh, T. Nazari, K. Oh, and S. Im, "Electric and Photovoltaic Behavior of a Few‐Layer α‐MoTe2/MoS2 Dichalcogenide Heterojunction," Advanced Materials, vol. 28, pp.3216–3222, 2016.
[20] D. H. Keum, S. Cho, J. H. Kim, D.-H. Choe, H.-J. Sung, M. Kan, "Bandgap opening in few-layered monoclinic MoTe2," Nature Physics, vol. 11, pp. 482-486, 2015.
[21] M. N. Ali, J. Xiong, S. Flynn, J. Tao, Q. D. Gibson, L. M. Schoop, "Large, non-saturating magnetoresistance in WTe2," Nature, vol. 514, pp. 205-208, 2014.
[22] J. Park, Y. Kim, Y. I. Jhon, and Y. M. Jhon, "Temperature dependent Raman spectroscopic study of mono-, bi-, and tri-layer molybdenum ditelluride," Applied Physics Letters, vol. 107, p. 153106, 2015.
[23] Y. Jiang, J. Gao, and L. Wang, "Raman fingerprint for semi-metal WTe2 evolving from bulk to monolayer," Scientific Reports, vol. 6, p. 19624, 2016.
[24] N. R. Pradhan, D. Rhodes, S. Feng, Y. Xin, S. Memaran, B.-H. Moon, "Field-effect transistors based on few-layered α-MoTe2," ACS Nano, vol. 8, pp. 5911-5920, 2014.
指導教授 周正堂、侯拓宏、李耀仁(Cheng-Tang Chou Tuo-Hung Hou Yao-Jen Lee) 審核日期 2016-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明