博碩士論文 103324010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.136.18.48
姓名 林政賢(Cheng-Hsien Lin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用聚己內酯/褐藻酸鈉之複合電紡絲擴增癌症幹細胞
(Electrospinning of Polycaprolactone/Alginate Composite Nanofibers for Cancer Stem Cell Enrichment)
相關論文
★ 利用穿膜胜肽改善帶正電高分子之轉染效率★ 利用導電高分子聚吡咯為基材以電刺激促進幹細胞分化
★ 以電刺激增進骨髓基質細胞骨分化之最佳化探討★ 利用電場控制導電性高分子以進行基因於聚電解質多層膜的組裝
★ 以短鏈胜肽接枝聚乙烯亞胺來進行基因輸送應用之研究★ 電紡絲製備褐藻酸鈉/聚己內酯之奈米複合纖維進行原位轉染
★ 電場對於複合奈米絲進行原位基因傳送之影響★ 利用電場調控聚電解質多層膜的釋放 以應用於基因輸送
★ 發展載藥電紡聚乳酸/多壁奈米碳管/聚乙二醇纖維★ 利用寡聚精胺酸促進去氧寡核苷酸輸送
★ 以二元體形式之Indolicidin 應用於去氧寡核苷酸之輸送★ Indolicidin之色胺酸殘基對於轉染效率的影響
★ Indolicidin之二聚體形式對輸送去氧寡核?酸的影響★ 搭建可提供電刺激與機械刺激之生物反應器
★ 硬脂基化的Indolicidin作為傳送質體去氧核 酸的非病毒載體★ 開發促進傷口癒合之複合敷料
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 雖然褐藻酸鈉製成的電紡絲支架可以用來篩選出具有較佳抗藥性的癌細胞,但是其細胞貼附率和細胞增生的能力都較差,因此我們加入聚己內酯纖維進行混合紡絲。透過改變高分子進料的流率,我們得以控制複合纖維的組成。之後將複合纖維篩選出的癌細胞進行抗藥性實驗,發現與褐藻酸鈉沒有明顯的差別,但是在細胞的貼附與增生上有上升的現象。為了瞭解篩選出來之癌細胞之細胞特性,我們利用qPCR去分析細胞的基因表現,發現褐藻酸鈉和複合材料篩選出的細胞具有較佳的幹性、侵入性、化學抗性、上皮間質轉換和血管新生的基因表現,代表我們所篩選出來的是癌症幹細胞。透過傷口癒合實驗、群落形成實驗和細胞侵入性實驗發現,利用褐藻酸鈉和複合材料篩選出來的癌症幹細胞表現都比聚己內酯纖維來的好,此結果與qPCR基因表現可相互驗証。這些結論都顯示了利用複合纖維支架來進行癌症幹細胞的篩選,在癌症藥物的研究和治療上都可以有很大的助益。
摘要(英) Although electrospun alginate scaffolds can be used to enrich cancer cells with high drug resistance, the low cell adhesion and proliferation restricts its application. Therefore, we incorporated polycaprolactone (PCL) for coelectrospinning to prepare composite nanofibrous scaffolds. The composition of nanofibers can be regulated through adjusting the perfusion rates of polymer jets. These composite scaffolds were applied to culture cancer cell lines. The enriched cells were treated anti-cancer drug to evaluate their drug resistances. The results suggested that the drug resistance of cells selected from composite scaffolds was similar to those from alginate fibers. However, their adhesion and proliferation were highly improved. We applied qPCR to analyzed gene expression of selected cells, and the results demonstrated that cell collected from alginate and composite fibers all exhibited high stemness, invasion, chemical resistance, epithelial-mesenchymal transition, and angiogenesis compared to those on PCL fibers, suggesting these cells should be cancer stem cells. Furthermore, the data of wound healing, colony forming, and cell invasion experiments were also consistence to the qPCR results that alginate and composite fibers can enrich cells exhibiting high cancer-stem-cell properties. These results indicated that cancer stem cell enrichment through composite nanofibrous scaffolds should be beneficial to anti-cancer drug development and the research of cancer therapy.
關鍵字(中) ★ 奈米電紡絲
★ 癌症幹細胞
★ 擴增
關鍵字(英) ★ Electrospun nanofiber
★ Cancer stem cell
★ Enrichment
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 viii
圖目錄 xi
表目錄 xiv
第一章 緒論 1
1.1 背景 1
1.2 實驗目的 2
第二章 文獻回顧 3
2.1 癌症 3
2.1.1 癌症幹細胞 3
2.1.2 癌症幹細胞特性 5
2.1.3 癌症幹細胞篩選 6
2.1.4 癌症幹細胞相關基因 9
2.2 電紡絲 13
2.2.1 電紡絲原理 13
2.2.2 電紡絲於癌症幹細胞的應用 15
2.3 褐藻酸鈉 18
2.3.1 褐藻酸鈉之來源 18
2.3.2 褐藻酸鈉之性質 18
2.3.3 褐藻酸鈉於癌症幹細胞的應用 19
2.4 聚己內酯 22
2.4.1 聚己內酯之來源 22
2.4.2 聚己內酯之性質 22
2.4.3 聚己內酯於癌症幹細胞的應用 23
2.5 複合材料 25
2.5.1 複合材料之簡介 25
2.5.2 複合材料於癌症幹細胞的應用 25
2.6電紡絲製備複合材料 28
2.6.1 電紡絲製備複合材料的應用 29
第三章 實驗與方法 31
3.1 實驗藥品 31
3.2 實驗儀器 35
3.3 實驗方法 37
3.3.1 電紡絲溶液製備 37
3.3.2 電紡絲纖維製備 38
3.3.3 收集量量測 38
3.3.4 纖維材料表面分析 39
3.3.5 生物實驗 39
第四章 結果與討論 54
4.1 褐藻酸鈉/聚己內酯電紡絲抗藥性 54
4.1.1 篩選之細胞於支架外抗藥性 54
4.1.2 支架上之抗藥性表現 60
4.2 褐藻酸鈉/聚己內酯之複合纖維性質 65
4.2.1 纖維之收集量 65
4.2.2 複合纖維之收集 69
4.3 支架對細胞形態的影響 70
4.3.1 細胞於纖維上之螢光圖 70
4.3.2細胞於纖維上之SEM圖 75
4.4 複合材料之藥物抗性 77
4.5 癌症幹細胞相關基因表現 82
4.5.1 癌細胞之幹性相關基因表現 82
4.5.2 癌症幹細胞之上皮間質轉換相關基因 85
4.5.3 癌症幹細胞之侵入性相關基因 88
4.5.4 癌症幹細胞之血管新生相關基因 90
4.5.5 癌症幹細胞之化學抗性相關基因 92
4.6 癌症幹細胞之群落形成 94
4.7 癌症幹細胞之細胞移動能力 98
4.8 癌症幹細胞之細胞侵入能力 103
第五章 結論 105
第六章 參考資料 107
參考文獻 [1] B. W. Stewart "World Cancer Report," 2014.
(https://shop.iarc.fr/products/wcr2014)
[2] J. F. Lv and J. S. Shim, "Existing drugs and their application in drug discovery targeting cancer stem cells," Archives of Pharmacal Research, vol. 38, pp. 1617-1626, 2015.
[3] X.-Z. Wu, "Origin of cancer stem cells: The role of self-renewal and differentiation," Annals of Surgical Oncology, vol. 15, pp. 407-414, 2008.
[4] X. Zheng, D. Cui, S. Xu, G. Brabant, and M. Derwahl, "Doxorubicin fails to eradicate cancer stem cells derived from anaplastic thyroid carcinoma cells: Characterization of resistant cells," International Journal of Oncology, vol. 37, pp. 307-315, 2010.
[5] S. A. Rabbani and A. P. Mazar, "Evaluating distant metastases in breast cancer: from biology to outcomes," Cancer and Metastasis Reviews, vol. 26, pp. 663-674, 2007.
[6] C. S. Szot, C. Buchabab, P. Gatenholm, M. N. Rylander, and J. Freeman, "Investigation of cancer cell behavior on nanofibrous scaffolds," Materials Science & Engineering C-Materials for Biological Applications, vol. 31, pp. 37-42, 2011.
[7] O. Hartman, C. Zhang, E. L. Adams, M. C. Farach-Carson, N. J. Petrelli, B. D. Chase, and J. F. Rabolt, "Biofunctionalization of electrospun PCL-based scaffolds with perlecan domain IV peptide to create a 3-D pharmacokinetic cancer model," Biomaterials, vol. 31, pp. 5700-5718, 2010.
[8] X. Xu, M. C. Farach-Carson, and X. Jia, "Three-dimensional in vitro tumor models for cancer research and drug evaluation," Biotechnology Advances, vol. 32, pp. 1256-1268, 2014.
[9] M. Shakibaei, P. Kraehe, B. Popper , P. Shayan, A. Goel, and C. Buhrmann, "Curcumin potentiates antitumor activity of 5-fluorouracil in a 3D alginate tumor microenvironment of colorectal cancer," Bmc Cancer, vol. 15, pp. 103-118, 2015.
[10] C. P. Godugu, A.R. Desai, U.;Andey, T. Sams, and A.Singh, M., "AlgiMatrixTM Based 3D Cell Culture System as an In-Vitro Tumor Model for Anticancer Studies," Plos One, vol. 8(1), pp. 332-345, 2013.
[11] M. R. Cristina and L. Myriam, "Three-dimensional constructs using hyaluronan cell carrier as a tool for the study of cancer stem cells," Journal of Biomedical Materials Research Part B-Applied Biomaterials, vol. 103, pp. 1249-1257, 2015.
[12] J. W. Koten, J. P. Neijt, B. A. Zonnenberg, and W. Denotter, "The difference between benign and malignant-tumors explained with the 4-mutation paradigm forcarcinogenesis " Anticancer Research, vol. 13, pp. 1179-1182, 1993.
[13] R. J. Li, X. Ying, Y. Zhang, R. J. Ju, X. X. Wang, H. J. Yao, Y. Men, W. Tian, Y. Yu, L. A. Zhang, R. J. Huang, and W. L. Lu, "All-trans retinoic acid stealth liposomes prevent the relapse of breast cancer arising from the cancer stem cells," Journal of Controlled Release, vol. 149, pp. 281-291, 2011.
[14] L. Cao, Y. M. Zhou, B. B. Zhai, J. Liao, W. Xu, R. X. Zhang, J. Li, Y. Zhang, L. Chen, H. H. Qian, M. C. Wu, and Z. F. Yin, "Sphere-forming cell subpopulations with cancer stem cell properties in human hepatoma cell lines," BMC Gastroenterology, vol. 11, pp. 238-249, 2011.
[15] J. X. Gao, "Cancer stem cells: the lessons from pre-cancerous stem cells," Journal of Cellular and Molecular Medicine, vol. 12, pp. 67-96, 2008.
[16] V. L. Bautch, "Cancer: Tumour stem cells switch sides," Nature, pp. 770-771, 2010.
[17] C. Fanali, D. Lucchetti, M. Farina, M. Corbi, V. Cufino, A. Cittadini, and A. Sgambato, "Cancer stem cells in colorectal cancer from pathogenesis to therapy: Controversies and perspectives," World Journal of Gastroenterology, vol. 20, pp. 923-942, 2014.
[18] T. Kondo, "Brain cancer stem-like cells," European Journal of Cancer, vol. 42, pp. 1237-1242, 2006.
[19] L. Wang, H. J. Guo, C. Y. Lin, L. Q. Yang, and X. J. Wang, "Enrichment and characterization of cancer stem-like cells from a cervical cancer cell line," Molecular Medicine Reports, vol. 9, pp. 2117-2123, 2014.
[20] X. Ma, J. Zhou, C. X. Zhang, X. Y. Li, N. Li, R. J. Ju, J. F. Shi, M. G. Sun, W. Y. Zhao, L. M. Mu, Y. Yan, and W. L. Lu, "Modulation of drug-resistant membrane and apoptosis proteins of breast cancer stem cells by targeting berberine liposomes," Biomaterials, vol. 34, pp. 4452-4465, 2013.
[21] Y. Hosokawa, H. Takahashi, A. Inoue, Y. Kawabe, Y. Funahashi, K. Kameda, K. Sugimoto, H. Yano, H. Harada, S. Kohno, S. Ohue, T. Ohnishi, and J. Tanaka, "Oct-3/4 modulates the drug-resistant phenotype of glioblastoma cells through expression of ATP binding cassette transporter G2," Biochimica Et Biophysica Acta-General Subjects, vol. 1850, pp. 1197-1205, 2015.
[22] V. Sigurdsson, B. Hilmarsdottir, H. Sigmundsdottir, A. J. R. Fridriksdottir, M. Ringner, R. Villadsen, A. Borg, B. A. Agnarsson, O. W. Petersen, M. K. Magnusson, and T. Gudjonsson, "Endothelial Induced EMT in Breast Epithelial Cells with Stem Cell Properties," Plos One, vol. 6, pp. 405-416, 2011.
[23] T. Kiesslich, M. Pichler, and D. Neureiter, "Epigenetic control of epithelial-mesenchymal-transition in human cancer," Molecular and Clinical Oncology, vol. 1:, pp. P3-11, 2013.
[24] S. L. Ham, R. Joshi, P. S. Thakuri, and H. Tavana, "Liquid-based three-dimensional tumor models for cancer research and drug discovery," Experimental Biology and Medicine, vol. 241, pp. 939-954, 2016.
[25] P. P. Szotek, R. Pieretti-Vanmarcke, P. T. Masiakos, D. M. Dinulescut, D. Connolly, R. Foster, D. Dombkowski, F. Preffer, D. T. MacLaughlin, and P. K. Donahoe, "Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian Inhibiting Substance responsiveness," Proceedings of the National Academy of Sciences of the United States of America, vol. 103, pp. 11154-11159, 2006.
[26] H. P. Pan, M. Y. Lung, and C. C. Ou, "Cancer and Cancer Stem Cells," 藥學雜誌, pp. 74-77, 2012.
[27] L. Zhang, H. Yao, Y. Yu, Y. Zhang, R. Li, R. Ju, X. Wang, M. Sun, J. Shi, and W. Lu, "Mitochondrial targeting liposomes incorporating daunorubicin and quinacrine for treatment of relapsed breast cancer arising from cancer stem cells," Biomaterials, vol. 33(2), pp. P565-582, 2012.
[28] L. Moserlea, M. Ghisia, A. Amadoria, and S. Indraccolo, "Side population and cancer stem cells: Therapeutic implications,"ELSEVIER, vol.288(1), pp. 1-9, 2010.
[29] C. W. Scharenberg, M. A. Harkey, and B. Torok-Storb, "The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors," Blood, vol. 99, pp. 507-512, 2002.
[30] M. P. S. Ponnusamy, P, Vaz, A Dey, and P. Batra, S.K. , "MUC4 stabilizes HER2 expression and maintains the cancer stem cell population in ovarian cancer cells," Journal of Ovarian Research, vol. 4:, p. 7, 2011.
[31] X. X. Xu, C. Liu, Y. Liu, L. Yang, N. Li, X. Guo, G. W. Sun, and X. J. Ma, "Enrichment of cancer stem cell-like cells by culture in alginate gel beads," Journal of Biotechnology, vol. 177, pp. 1-12, 2014.
[32] S. P. Qiao, Y. F. Zhao, C. F. Li, Y. B. Yin, Q. Y. Meng, F. H. Lin, Y. Liu, X. L. Hou, K. Guo, X. B. Chen, and W. M. Tian, "An alginate-based platform for cancer stem cell research," Acta Biomaterialia, vol. 37, pp. 83-92, 2016.
[33] Y. Z. Li, H. A. Rogoff, S. Keates, Y. Gao, S. Murikipudi, K. Mikule, D. Leggett, W. Li, A. B. Pardee, and C. J. Li, "Suppression of cancer relapse and metastasis by inhibiting cancer stemness," Proceedings of the National Academy of Sciences of the United States of America, vol. 112, pp. 1839-1844, 2015.
[34] X. Yin, B. H. Zhang, S. S. Zheng, D. M. Gao, S. J. Qiu, W. Z. Wu, and Z. G. Ren, "Coexpression of gene Oct4 and Nanog initiates stem cell characteristics in hepatocellular carcinoma and promotes epithelial-mesenchymal transition through activation of Stat3/Snail signaling," Journal of Hematology & Oncology, vol. 8, pp. 1326-1339, 2015.
[35] J. J. Zhou, X. G. Deng, X. Y. He, Y. Zhou, M. Yu, W. C. Gao, B. Zeng, Q. B. Zhou, Z. H. Li, and R. F. Chen, "Knockdown of NANOG enhances chemosensitivity of liver cancer cells to doxorubicin by reducing MDR1 expression," International Journal of Oncology, vol. 44, pp. 2034-2040, 2014.
[36] C. Ginestier, M. H. Hur, E. Charafe-Jauffret, F. Monville, J. Dutcher, M. Brown, J. Jacquemier, P. Viens, C. G. Kleer, S. Liu, A. Schott, D. Hayes, D. Birnbaum, M. S. Wicha, and G. Dontu, "ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome," Cell Stem Cell, vol. 1, pp. 555-567, 2007.
[37] K. Nakahata, S. Uehara, S. Nishikawa, M. Kawatsu, M. Zenitani, T. Oue, and H. Okuyama, "Aldehyde Dehydrogenase 1 (ALDH1) Is a Potential Marker for Cancer Stem Cells in Embryonal Rhabdomyosarcoma," Plos One, vol. 10, pp. 3241-3257, 2015.
[38] D. Pellacani, R. J. Packer, F. M. Frame, E. E. Oldridge, P. A. Berry, M. C. Labarthe, M. J. Stower, M. S. Simms, A. T. Collins, and N. J. Maitland, "Regulation of the stem cell marker CD133 is independent of promoter hypermethylation in human epithelial differentiation and cancer," Molecular Cancer, vol. 10, pp. 110-124, 2011.
[39] A. H. Yin, S. Miraglia, E. D. Zanjani, G. AlmeidaPorada, M. Ogawa, A. G. Leary, J. Olweus, J. Kearney, and D. W. Buck, "AC133, a novel marker for human hematopoietic stem and progenitor cells," Blood, vol. 90, pp. 5002-5012, 1997.
[40] C. A. O′Brien, A. Pollett, S. Gallinger, and J. E. Dick, "A human colon cancer cell capable of initiating tumour growth in immunodeficient mice," Nature, vol. 445, pp. 106-110, 2007.
[41] S. A. Choi, J. Y. Lee, J. H. Phi, K. C. Wang, C. K. Park, S. H. Park, and S. K. Kim, "Identification of brain tumour initiating cells using the stem cell marker aldehyde dehydrogenase," European Journal of Cancer, vol. 50, pp. 137-149, 2014.
[42] A. Suetsugi, M. Nagaki, H. Aoki, T. Motohashi, T. Kunisada, and H. Moriwaki, "Characterization of CD133(+) hepatocellular carcinoma cells as cancer stem/progenitor cells," Biochemical and Biophysical Research Communications, vol. 351, pp. 820-824, Dec 2006.
[43] J. W. Shi, W. Liu, T. T. Zhang, S. C. Wang, X. L. Lin, J. Li, J. S. Jia, H. F. Sheng, Z. F. Yao, W. T. Zhao, Z. L. Zhao, R. Y. Xie, S. Yang, F. Gao, Q. R. Fan, M. Y. Zhang, M. Yue, J. Yuan, W. W. Gu, K. T. Yao, and D. Xiao, "The enforced expression of c-Myc in pig fibroblasts triggers mesenchymal-epithelial transition (MET) via F-actin reorganization and RhoA/Rock pathway inactivation," Cell Cycle, vol. 12, pp. 1119-1127, 2013.
[44] T. Sumi, N. Tsuneyoshi, N. Nakatsuji, and H. Suemori, "Apoptosis and differentiation of human embryonic stem cells induced by sustained activation of c-Myc," Oncogene, vol. 26, pp. 5564-5576, 2007.
[45] H. Akita, J. U. Marquardt, M. E. Durkin, M. Kitade, D. Seo, E. A. Conner, J. B. Andersen, V. M. Factor, and S. S. Thorgeirsson, "MYC Activates Stem-like Cell Potential in Hepatocarcinoma by a p53-Dependent Mechanism," Cancer Research, vol. 74, pp. 5903-5913, 2014.
[46] J. S. Chen, X. H. Huang, Q. Wang, J. Q. Huang, L. J. Zhang, X. L. Chen, J. Lei, and Z. X. Cheng, "Sonic hedgehog signaling pathway induces cell migration and invasion through focal adhesion kinase/AKT signaling-mediated activation of matrix metalloproteinase (MMP)-2 and MMP-9 in liver cancer," Carcinogenesis, vol. 34, pp. 10-19, 2013.
[47] B. Dave and J. Chang, "Treatment Resistance in Stem Cells and Breast Cancer," Journal of Mammary Gland Biology and Neoplasia, vol. 14(1), pp. 79-82, 2009.
[48] S. Takahashi, K. Aiba, Y. Ito, K. Hatake, M. Nakane, T. Kobayashi, S. Minowa, H. Shibata, J. Mitsuhashi, S. Tsukahara, E. Ishikawa, R. Suzuki, T. Tsuruo, and Y. Sugimoto, "Pilot study of MDR1 gene transfer into hematopoietic stem cells and chemoprotection in metastatic breast cancer patients," Cancer Science, vol. 98, pp. 1609-1616, 2007.
[49] H. T. Zhu, D. Q. Wang, L. R. Zhang, X. D. Xie, Y. Y. Wu, Y. F. Liu, G. B. Shao, and Z. L. Su, "Upregulation of autophagy by hypoxia-inducible factor-1 alpha promotes EMT and metastatic ability of CD133(+) pancreatic cancer stem-like cells during intermittent hypoxia," Oncology Reports, vol. 32, pp. 935-942, 2014.
[50] S. Kuphal and A. K. Bosserhoff, "Influence of the cytoplasmic domain of E-cadherin on endogenous N-cadherin expression in malignant melanoma," Oncogene, vol. 25, pp. 248-259, 2006.
[51] R. Nishioka, S. Itoh, T. Gui, Z. B. Gai, K. Oikawa, M. Kawai, M. Tani, H. Yamaue, and Y. Muragaki, "SNAIL induces epithelial-to-mesenchymal transition in a human pancreatic cancer cell line (BxPC3) and promotes distant metastasis and invasiveness in vivo," Experimental and Molecular Pathology, vol. 89, pp. 149-157, 2010.
[52] J. Zhang and L. Ma, "Micro RNAs and epithelial mesenchymal transition incance," vol. 31(0), pp. 653-662, 2012.
[53] A. Fantozzi, D. C. Gruber, L. Pisarsky, C. Heck, A. Kunita, M. Yilmaz, N. Meyer-Schaller, K. Cornille, U. Hopfer, M. Bentires-Alj, and G. Christofori, "VEGF-Mediated Angiogenesis Links EMT-Induced Cancer Stemness to Tumor Initiation," Cancer Research, vol. 74, pp. 1566-1575, 2014.
[54] C. Godugu, A. R. Patel, U. Desai, T. Andey, A. Sams, and M. Singh, "AlgiMatrixTM Based 3D Cell Culture System as an In-Vitro Tumor Model for Anticancer Studies," Plos One, vol. 8(1), pp. 332-345, 2013.
[55] M. Konishi, Y. Tabata, M. Kariya, A. Suzuki, M. Mandai, K. Nanbu, K. Takakura, and S. Fujii, "In vivo anti-tumor effect through the controlled release of cisplatin from biodegradable gelatin hydrogel," Journal of Controlled Release, vol. 92, pp. 301-313, 2003.
[56] O. Hartman, C. Zhang, E. L. Adams, M. C. Farach-Carson, N. J. Petrelli, B. D. Chase, and J. F. Rabolt, "Microfabricated Electrospun Collagen Membranes for 3-D Cancer Models and Drug Screening Applications," Biomacromolecules, vol. 10, pp. 2019-2032, 2009.
[57] L. Van der Schueren, B. De Schoenmaker, O. I. Kalaoglu, and K. De Clerck, "An alternative solvent system for the steady state electrospinning of polycaprolactone," European Polymer Journal, vol. 47, pp. 1256-1263, 2011.
[58] A. Yükseltürk, "Electrospinning. OR for nanotechnology," 2010.
(https://orfornano.wordpress.com/2010/10/27/electrospinning/)
[59] G. Ma, D. Fang, Y. Liu, X. Zhu, and J. Nie, "Electrospun sodium alginate/poly(ethylene oxide) core-shell nanofibers scaffolds potential for tissue engineering applications," Carbohydrate Polymers, vol. 87, pp. 737-743, 2012.
[60] M. G. Yeo and G. H. Kim, "Fabrication of cell-laden electrospun hybrid scaffolds of alginate-based bioink and PCL microstructures for tissue regeneration," Chemical Engineering Journal, vol. 275, pp. 27-35, 2015.
[61] R. Zheng, H. Duan, J. Xue, Y. Liu, B. Feng, S. Zhao, Y. Zhu, Y. Liu, A. He, W. Zhang, W. Liu, Y. Cao, and G. Zhou, "The influence of Gelatin/PCL ratio and 3-D construct shape of electrospun membranes on cartilage regeneration," Biomaterials, vol. 35, pp. 152-164, 2014.
[62] X. H. Wang, X. Zhang, Z. R. Fu, and H. Yin, "A bioengineered metastatic pancreatic tumor model for mechanistic investigation of chemotherapeutic drugs," Journal of Biotechnology, vol. 166, pp. 166-173, 2013.
[63] Y. J. Kim, H. I. Bae, O. K. Kwon, and M. S. Choi, "Three-dimensional gastric cancer cell culture using nanofiber scaffold for chemosensitivity test," International Journal of Biological Macromolecules, vol. 45, pp. 65-71, 2009.
[64] J. A. Rowley, G. Madlambayan, and D. J. Mooney, "Alginate hydrogels as synthetic extracellular matrix materials," Biomaterials, vol. 20, pp. 45-53, 1999.
[65] A. Matin, H. Shafi, M. Wang, Z. Khan, K. Gleason, and F. Rahman, "Reverse osmosis membranes surface-modified using an initiated chemical vapor deposition technique show resistance to alginate fouling under cross-flow conditions: Filtration & subsequent characterization," Desalination, vol. 379, pp. 108-117, 2016.
[66] J. Yoon, D. X. Oh, C. Jo, J. Lee, and D. S. Hwang, "Improvement of desolvation and resilience of alginate binders for Si-based anodes in a lithium ion battery by calcium-mediated cross-linking," Physical Chemistry Chemical Physics, vol. 16, pp. 25628-25635, 2014.
[67] N. Bhattarai and M. Q. Zhang, "Controlled synthesis and structural stability of alginate-based nanofibers," Nanotechnology, vol. 18, pp. 1435-1445, 2007.
[68] T. Hashimoto, Y. Suzuki, M. Tanihara, Y. Kakimaru, and K. Suzuki, "Development of alginate wound dressings linked with hybrid peptides derived from laminin and elastin," Biomaterials, vol. 25, pp. 1407-1414, 2004.
[69] Z. Li and M. Zhang, "Chitosan–alginate as scaffolding material for cartilage tissue engineering," Journal of Biomedical Materials Research Part A, vol. 75A, pp. 485-493, 2005.
[70] J. Yang, T. Woong Chung, M. Nagaoka, M. Goto, C.-S. Cho, and T. Akaike, "Hepatocyte-specific porous polymer-scaffolds of alginate/galactosylated chitosan sponge for liver-tissue engineering," Biotechnology Letters, vol. 23, pp. 1385-1389, 2001.
[71] P. Prang, R. Muller, A. Eljaouhari, K. Heckmann, W. Kunz, T. Weber, C. Faber, M. Vroemen, U. Bogdahn, and N. Weidner, "The promotion of oriented axonal regrowth in the injured spinal cord by alginate-based anisotropic capillary hydrogels," Biomaterials, vol. 27, pp. 3560-3569, 2006.
[72] S. I. Jeong, M. D. Krebs, C. A. Bonino, S. A. Khan, and E. Alsberg, "Electrospun Alginate Nanofibers with Controlled Cell Adhesion for Tissue Engineering," Macromolecular Bioscience, vol. 10, pp. 934-943, 2010.
[73] A. Y. A. Kaassis, N. Young, N. Sano, H. A. Merchant, D. G. Yu, N. P. Chatterton, and G. R. Williams, "Pulsatile drug release from electrospun poly(ethylene oxide)-sodium alginate blend nanofibres," Journal of Materials Chemistry B, vol. 2, pp. 1400-1407, 2014.
[74] S. O. T. Gonen, M.E. ;Kucukbayrak, S., "Evaluation of the factors influencing the resultant diameter of the electrospun gelatin/sodium alginate nanofibers via Box-Behnken design," Materials Science & Engineering C-Materials for Biological Applications, vol. 58, pp. 709-723, 2016.
[75] H. J. Kim, J. H. Lee, and G. I. Im, "Chondrogenesis using mesenchymal stem cells and PCL scaffolds," Journal of Biomedical Materials Research Part A, vol. 92A, pp. 659-666, 2010.
[76] M. S. Kim and G. H. Kim, "Three-dimensional electrospun polycaprolactone (PCL)/alginate hybrid composite scaffolds," Carbohydrate Polymers, vol. 114, pp. 213-221, 2014.
[77] M. Gumusderelioglu, S. Dalkiranoglu, R. S. T. Aydin, and S. Cakmak, "A novel dermal substitute based on biofunctionalized electrospun PCL nanofibrous matrix," Journal of Biomedical Materials Research Part A, vol. 98A, pp. 461-472, 2011.
[78] M. T. Nelson, A. Short, S. L. Cole, A. C. Gross, J. Winter, T. D. Eubank, and J. J. Lannutti, "Preferential, enhanced breast cancer cell migration on biomimetic electrospun nanofiber ′cell highways′," Bmc Cancer, vol. 14, pp. 997-1014, 2014.
[79] P. Iglesias, M. D. Bermudez, F. J. Carrion, S. Chandrasekar, and W. D. Compton, "A study of the wear behavior of polymer-matrix composites containing discontinuous nanocrystalline alloy reinforcements," Tribology International, vol. 40, pp. 479-489, 2007.
[80] H. F. B. L. C. Brinson, "Polymer Engineering Science and Viscoelasticity: An Introduction," p. 47-57, 2015.
[81] A. Al-Lal, A. Llamas, D. Bolonio, F. Sanz-Perez, M. Lapuerta, and L. Canoira, "Airplane materials compatibility with blends of fossil kerosene jet a1 with biokerosenes from babassu, palm kernel and coconut oils," Global Nest Journal, vol. 16, pp. 1066-1075, 2014.
[82] H. B. Yin, X. N. Gao, J. Ding, Z. G. Zhang, and Y. T. Fang, "Thermal management of electronic components with thermal adaptation composite material," Applied Energy, vol. 87, pp. 3784-3791, 2010.
[83] J. C. K. de Verney, M. F. S. Lima, and D. M. Lenz, "Properties of SBS and Sisal Fiber Composites: Ecological Material for Shoe Manufacturing," Materials Research-Ibero-American Journal of Materials, vol. 11, pp. 447-451, 2008.
[84] X. M. Liu, L. Yang, J. Li, Y. M. Zhang, W. J. Xu, Y. Ren, B. W. Liu, B. A. Yang, and B. X. Li, "GS/DBM/PLA porous composite biomaterial for the treatment of infective femoral condyle defect in rats," Experimental and Therapeutic Medicine, vol. 11, pp. 2107-2116, 2016.
[85] J. E. Davies, "Bone bonding at natural and biomaterial surfaces," Biomaterials, vol. 28, pp. 5058-5067, 2007.
[86] L. Chen, Z. F. Xiao, Y. Meng, Y. N. Zhao, J. Han, G. N. Su, B. Chen, and J. W. Dai, "The enhancement of cancer stem cell properties of MCF-7 cells in 3D collagen scaffolds for modeling of cancer and anti-cancer drugs," Biomaterials, vol. 33, pp. 1437-1444, 2012.
[87] J. Sims-Mourtada, R. A. Niamat, S. Samuel, C. Eskridge, and E. B. Kmiec, "Enrichment of breast cancer stem-like cells by growth on electrospun polycaprolactone-chitosan nanofiber scaffolds," International Journal of Nanomedicine, vol. 9, pp. 995-1003, 2014.
[88] L. Yildirimer and A. M. Seifalian, "Three-dimensional biomaterial degradation - Material choice, design and extrinsic factor considerations," Biotechnology Advances, vol. 32, pp. 984-999, 2014.
[89] J. R. Bago, G. J. Pegna, O. Okolie, M. Mohiti-Asli, E. G. Loboa, and S. D. Hingtgen, "Electrospun nanofibrous scaffolds increase the efficacy of stem cell-mediated therapy of surgically resected glioblastoma," Biomaterials, vol. 90, pp. 116-125, 2016.
[90] F. M. Kievit, S. J. Florczyk, M. C. Leung, K. Wang, J. D. Wu, J. R. Silber, R. G. Ellenbogen, J. S. H. Lee, and M. Q. Zhang, "Proliferation and enrichment of CD133(+) glioblastoma cancer stem cells on 3D chitosan-alginate scaffolds," Biomaterials, vol. 35, pp. 9137-9143, 2014.
[91] 余興寧, "電紡絲製備幾丁聚醣/褐藻酸鈉之奈米複合纖維結構對細胞貼附與增生之研究," 國立中央大學 化學與材料工程研究所學位論文, 2012.
[92] 胡哲誠, "電紡絲製備褐藻酸鈉/聚己內酯之奈米複合纖維進行原位轉染," 國立中央大學 化學與材料工程研究所學位論文, 2013.
[93] K. Lirdprapamongkol, K. Chiablaem, M. Sila-Asna, R. Surarit, A. Bunyaratvej, and J. Svasti, "Exploring stemness gene expression and vasculogenic mimicry capacity in well- and poorly-differentiated hepatocellular carcinoma cell lines," Biochemical and Biophysical Research Communications, vol. 422, pp. 429-435, 2012.
[94] X. Q. Wang, R. K. Ng, X. Y. Ming, W. Zhang, L. Chen, A. C. Y. Chu, R. Pang, C. M. Lo, S. W. Tsao, X. Q. Liu, R. T. P. Poon, and S. T. Fan, "Epigenetic Regulation of Pluripotent Genes Mediates Stem Cell Features in Human Hepatocellular Carcinoma and Cancer Cell Lines," Plos One, vol. 8, pp. 376-399, 2013.
[95] J. H. Kim, Y. J. Hwang, S. H. Han, Y. E. Lee, S. Kim, Y. J. Kim, J. H. Cho, K. A. Kwon, and S. H. Kim, "Dexamethasone inhibits hypoxia-induced epithelial-mesenchymal transition in colon cancer," World Journal of Gastroenterology, vol. 21, pp. 9887-9899, 2015.
[96] H. L. Bai, Y. G. Weng, S. J. Bai, Y. J. Jiang, B. L. Li, F. He, R. Y. Zhang, S. J. Yan, F. Deng, J. Wang, and Q. Shi, "CCL5 secreted from bone marrow stromal cells stimulates the migration and invasion of Huh7 hepatocellular carcinoma cells via the PI3K-Akt pathway," International Journal of Oncology, vol. 45, pp. 333-343, 2014.
[97] M. Amir, S. Romano, S. Goldman, and E. Shalev, "Plexin-B1, glycodelin and MMP7 expression in the human fallopian tube and in the endometrium," Reproductive Biology and Endocrinology, vol. 7, pp. 441-462, 2009.
[98] Y. L. Chen, J. J. Song, X. C. Chen, W. Xu, Q. Zhi, Y. P. Liu, H. Z. Xu, J. S. Pan, J. L. Ren, and B. Guleng, "Mechanisms of pyruvate kinase M2 isoform inhibits cell motility in hepatocellular carcinoma cells," World Journal of Gastroenterology, vol. 21, pp. 9093-9102, 2015.
[99] J. R. Knutson, J. Iida, G. B. Fields, and J. B. McCarthy, "CD44/chondroitin sulfate proteoglycan and alpha 2 beta 1 integrin mediate human melanoma cell migration on type IV collagen and invasion of basement membranes," Molecular Biology of the Cell, vol. 7, pp. 383-396, 1996.
[100]G. N. Su, Y. N. Zhao, J. S. Wei, J. Han, L. Chen, Z. F. Xiao, B. Chen, and J. W. Dai, "The effect of forced growth of cells into 3D spheres using low attachment surfaces on the acquisition of sternness properties," Biomaterials, vol. 34, pp. 3215-3222, 2013.
[101]S. Aroui, N. Ram, F. Appaix, M. Ronjat, A. Kenani, F. Pirollet, and M. De Waard, "Maurocalcine as a Non Toxic Drug Carrier Overcomes Doxorubicin Resistance in the Cancer Cell Line MDA-MB 231," Pharmaceutical Research, vol. 26, pp. 836-845, 2009.
[102]J. S. Yang, H. G. Yu, M. Shen, W. Wei, L. H. Xia, and P. Zhao, "N1-guanyl-1,7-diaminoheptane sensitizes bladder cancer cells to doxorubicin by preventing epithelial-mesenchymal transition through inhibition of eukaryotic translation initiation factor 5A2 activation," Cancer Science, vol. 105, pp. 219-227, 2014.
[103]K. T. Chan and M. L. Lung, "Mutant p53 expression enhances drug resistance in a hepatocellular carcinoma cell line," Cancer Chemotherapy and Pharmacology, vol. 53, pp. 519-526, 2004.
[104]J. Kapuscinski, "Interactions of nucleic-acids with fluorescent dyes-spectral properties of condensed complexes," Journal of Histochemistry & Cytochemistry, vol. 38, pp. 1323-1329, 1990.
[105]M. Balaz and A. Mansson, "Detection of small differences in actomyosin function using actin labeled with different phalloidin conjugates," Analytical Biochemistry, vol. 338, pp. 224-236, 2005.
[106]J. A. Cooper, "Effects of Cytochalasin and Phalloidin on Actin " The Journal of Cell Biology, vol. 105, pp. 1473-1478, 1987.
[107]R. Edmondson, J. J. Broglie, A. F. Adcock, and L. J. Yang, "Three-Dimensional Cell Culture Systems and Their Applications in Drug Discovery and Cell-Based Biosensors," Assay and Drug Development Technologies, vol. 12, pp. 207-218, 2014.
[108]J. S. Hale, M. Z. Li, and J. D. Lathia, "The malignant social network Cell-cell adhesion and communication in cancer stem cells," Cell Adhesion & Migration, vol. 6, pp. 346-355, 2012.
[109]J. H. Chen, Q. H. Xia, B. Jiang, W. L. Chang, W. Z. Yuan, Z. J. Ma, Z. Y. Liu, and X. G. Shu, "Prognostic Value of Cancer Stem Cell Marker ALDH1 Expression in Colorectal Cancer: A Systematic Review and Meta-Analysis," Plos One, vol. 10, pp. 554-569, 2015.
[110]V. Clement, V. Dutoit, D. Marino, P. Y. Dietrich, and I. Radovanovic, "Limits of CD133 as a marker of glioma self-renewing cells," International Journal of Cancer, vol. 125, pp. 244-248, 2009.
[111]H. Ju, Y. Shim, P. Arumugam, and J. M. Song, "Crosstalk-eliminated quantitative determination of aflatoxin B1-induced hepatocellular cancer stem cells based on concurrent monitoring of CD133, CD44, and aldehyde dehydrogenase1," Toxicology Letters, vol. 243, pp. 31-39, 2016.
[112]L. Lin, J. Fuchs, C. L. Li, V. Olson, T. Bekaii-Saab, and J. Y. Lin, "STAT3 signaling pathway is necessary for cell survival and tumorsphere forming capacity in ALDH(+)/CD133(+) stem cell-like human colon cancer cells," Biochemical and Biophysical Research Communications, vol. 416, pp. 246-251, 2011.
[113]A. Amsterdam, C. Raanan, L. Schreiber, O. Freyhan, Y. Fabrikant, E. Melzer, and D. Givol, "Differential localization of LGR5 and Nanog in clusters of colon cancer stem cells," Acta Histochemica, vol. 115, pp. 320-329, 2013.
[114]J. Zhang, L. A. Espinoza, R. J. Kinders, S. M. Lawrence, T. D. Pfister, M. Zhou, T. D. Veenstra, S. S. Thorgeirsson, and J. M. Jessup, "NANOG modulates stemness in human colorectal cancer," Oncogene, vol. 32, pp. 4397-4405, 2013.
[115]A. Miyoshi, Y. Kitajima, K. Sumi, K. Sato, A. Hagiwara, Y. Koga, and K. Miyazaki, "Snail and SIP1 increase cancer invasion by upregulating MMP family in hepatocellular carcinoma cells," British Journal of Cancer, vol. 90, pp. 1265-1273, 2004.
[116]K. Yokoyama, N. Kamata, R. Fujimoto, S. Tsutsumi, M. Tomonari, M. Taki, H. Hosokawa, and M. Nagayama, "Increased invasion and matrix metalloproteinase-2 expression by Snail-induced mesenchymal transition in squamous cell carcinomas," International Journal of Oncology, vol. 22, pp. 891-898, 2003.
[117]R. T. Tong, Y. Boucher, S. V. Kozin, F. Winkler, D. J. Hicklin, and R. K. Jain, "Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors," Cancer Research, vol. 64, pp. 3731-3736, 2004.
[118]Z. J. Huang, J. You, W. Y. Luo, B. S. Chen, Q. Z. Feng, B. L. Wu, L. Jiang, and Q. Luo, "Reduced tumorigenicity and drug resistance through the downregulation of octamer-binding protein 4 and Nanog transcriptional factor expression in human breast stem cells," Molecular Medicine Reports, vol. 11, pp. 1647-1654, 2015.
[119]H. M. R. Nicolaas A P Franken, Jan Stap, Jaap Haveman , Chris van Bree, "Clonogenic assay of cells in vitro," Nature Protocols, vol. 1, pp. 2315-2319, 2006.
[120]J. Y. Jeff H. Tsai, "Epithelial–mesenchymal plasticity in carcinoma metastasis," Genes & Development, vol. 27(20), pp. 2192-2206, 2013.
[121]K. V. Westermarck J, "Regulation of matrix metalloproteinase expression in tumor invasion," Faseb Journal, vol. 13(8), pp. 781-792, 1999.
[122]L. GarciaAlonso, R. D. Fetter, and C. S. Goodman, "Genetic analysis of Laminin A in Drosophila: Extracellular matrix containing laminin A is required for ocellar axon pathfinding," Development, vol. 122, pp. 2611-2621, 1996.
[123]M. Lohr, R. Scherer, H. T. Schneider, A. May, E. G. Hahn, H. Zirngibl, G. Kloppel, and C. Ell, "Extracellular-matrix proteins in human bile and gallstones," European Journal of Gastroenterology & Hepatology, vol. 7, pp. 135-140, 1995.
[124]E. Reichenberger and B. R. Olsen, "Collagens as organizers of extracellular matrix during morphogenesis," Seminars in Cell & Developmental Biology, vol. 7, pp. 631-638, 1996.
指導教授 胡威文(Wei-Wen Hu) 審核日期 2016-8-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明