博碩士論文 103324012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.238.199.4
姓名 游欣敏(Hsin-Min Yu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 變壓吸附程序捕獲合成氣中二氧化碳之實驗研究與吸附劑之選擇評估
相關論文
★ 醫療用氧氣濃縮機之改善與發展★ 變壓吸附法濃縮及回收氣化產氫製程中二氧化碳與氫氣之模擬
★ 變壓吸附法應用於小型化醫療用製氧機及生質酒精脫水產生無水酒精之模擬★ 變壓吸附法濃縮及回收氣化產氫製程中一氧化碳、二氧化碳與氫氣之模擬
★ 利用吸附程序於較小型發電廠煙道氣進氣量下捕獲二氧化碳之模擬★ 利用週期性吸附反應程序製造高純度氫氣並捕獲二氧化碳之模擬
★ 變溫吸附程序分離煙道氣中二氧化碳之連續性探討與實驗設計分析★ 利用PEI/SBA-15於變溫及真空變溫吸附捕獲煙道氣中二氧化碳之模擬
★ PEI/SBA-15固態吸附劑對二氧化碳吸附之實驗研究★ 以變壓吸附法分離汙染空氣中氧化亞氮之模擬
★ 以變壓吸附法分離汙染空氣中氧化亞氮之實驗★ 以變壓吸附法濃縮己二酸工廠尾氣中氧化亞氮之模擬
★ 利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗★ 變壓吸附法回收發電廠廢氣與合成氣中二氧化碳之模擬
★ 利用變壓吸附程序分離甲醇裂解產氣中氫氣及一氧化碳之模擬★ 以變壓吸附法回收水煤氣反應後合成氣中二氧化碳之模擬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究為測試並評估二氧化碳吸附劑之性能,選用的吸附劑為UOP 13X zeolite以及工研院PEI/SBA-15 solid adsorbent、X-type zeolite fiber、amine-grafted fiber和台電綜合研究所製備之solid polyaniline CO2 adsorbent,藉由微量天平實驗測試其等溫平衡吸附曲線,獲得在不同壓力下之氣體吸附量,作為吸附劑的選擇依據。
本研究以經水煤氣轉化後之合成氣作為變壓吸附分離程序實驗之進料氣體 (模擬為41.4 % CO2和58.6 % N2),選用UOP 13X zeolite進行微量天平等溫平衡吸附實驗,測得高溫時二氧化碳與氮氣在不同壓力下的吸附量,再將其填入單塔中以進行貫流曲線實驗與脫附曲線實驗。藉由改變不同壓力與溫度來探討貫流曲線與脫附曲線之變化,以作為變壓吸附分離程序實驗之基礎探討。
接續進行單塔四步驟變壓吸附分離程序實驗進行二氧化碳的濃縮與純化,藉由改變程序步驟時間與塔內溫度之操作變因來分析二氧化碳濃度與回收率,從而找到最佳操作條件,期望能作為未來放大規模製程之參考。
摘要(英) In this study, we intended to test and evaluate the performance of CO2 adsorbent. The adsorbents in the study include UOP 13X zeolite and ITRI PEI/SBA-15 solid adsorbent, X-type zeolite fiber, amine-grafted fiber, and solid polyaniline CO2 adsorbents provided by the Taiwan Power Research Institute. By microbalance experiments, we can measure their isothermal equilibrium adsorption curve of the gas adsorption capacity under different pressure. We hope these evaluations can provide selection basis for CO2 adsorption process.
The main subject of the present study is to use the syngas after water-gas-shift reactor as feed gas (simulated as 41.4 % CO2和58.6 % N2) of pressure swing adsorption process. We chose UOP 13X zeolite as the adsorbent to measure the adsorption capacity of CO2 and N2 under different pressures with microbalance isothermal equilibrium adsorption experiments. Breakthrough curve experiments and desorption curve experiments were performed by changing different pressure and temperature to investigate changes in the breakthrough curve and desorption curve. These experimental results could be the basis of investigating pressure swing adsorption separation process.

A single-bed four-step pressure swing adsorption process was applied to concentrate and recover CO2. We evaluated the purity and recovery of CO2 and N2 by changing the step time and the operating temperature of the column. At the end, the optimal operating condition was found and we expect that it can be a reference for the scale-up process.
關鍵字(中) ★ 變壓吸附程序 關鍵字(英)
論文目次 目錄
摘要 i
ABSTRACT ii
誌謝 iv
目錄 v
圖目錄 viii
表目錄 xv
第一章、 緒論 1
第二章、 簡介與文獻回顧 4
2-1 吸附之簡介 4
2-2 變壓吸附法基本操作步驟 6
2-3 PSA程序之發展與改進 8
2-4吸附劑及其選擇性 11
2-5等溫平衡吸附曲線 13
2-6貫流曲線與其吸附現象 17
2-7文獻回顧 19
第三章、 實驗設備及方法 23
3-1 吸附劑選擇 23
3-2 等溫平衡吸附曲線實驗 25
3-2-1 實驗裝置 25
3-2-2 實驗步驟 30
3-2-3 天平校正 32
3-2-4 浮力校正 33
3-3 貫流曲線實驗與脫附曲線實驗 34
3-3-1 實驗裝置、各部規格及特性 34
3-3-2 實驗步驟 38
3-4 變壓吸附實驗 39
3-4-1 實驗裝置、各部規格及特性 42
3-4-2 實驗步驟 46
第四章、 實驗結果與討論 49
4-1 等溫平衡吸附曲線實驗結果與討論 49
4-1-1 浮力校正結果 50
4-1-2 二氧化碳吸附劑之等溫平衡吸附實驗結果 62
4-2 貫流曲線實驗與脫附曲線實驗結果與討論 69
4-2-1 進料壓力與流速對貫流曲線的影響 72
4-2-2 塔內溫度對貫流曲線的影響 76
4-2-3 進料壓力與流速對脫附曲線的影響 80
4-2-4 塔內溫度對脫附曲線的影響 84

4-3 變壓吸附實驗結果與討論 87
4-3-1高壓吸附時間對單塔四步驟變壓吸附程序之影響 89
4-3-2抽真空時間對單塔四步驟變壓吸附程序之影響 94
4-3-3同向減壓時間對單塔四步驟變壓吸附程序之影響 100
4-3-4塔內溫度對單塔四步驟變壓吸附程序之影響 108
4-4能耗及吸附劑的產率計算結果分析 113
第五章、 結論 118
參考文獻 120
附錄A、等溫平衡吸附曲線詳細數據 123
參考文獻 參考文獻
[1] 台灣電力公司, “歷年發電量佔比,” [線上]. Available: http://www.taipower.com.tw/content/new_info/new_info-c37.aspx?LinkID=13[存取日期: 13 7 2016].
[2] National Energy Technology Laboratory, "Evaluation of alternate water gas shift configurations for IGCC systems", The United States Department of Energy, DOE/NETL-401/080509, 2009.
[3] C. W. Skarstrom, "Method and apparatus for fractionating gaseous mixtures by adsorption". United States Patent 2,944,627, 1960.
[4] P. G. de Montgareuil and D. Domine, "Process for separating a binary gaseous mixture by adsorption". United States Patent 3,155,468, 1964.
[5] R. T. Yang, Gas Separation by Adsorption Process, London: Imperial College Press, 1997.
[6] W. D. Marsh, F. S. Pramuk, R. C. Hoke and C. W. Skarstrom, "Pressure equalization depressuring in heatless adsorption". United States Patent 3,142,547, 1964.
[7] T. Tamura, "Absorption process for gas separation". United States Patent 3,797,201, 1974.
[8] K. Chihara and M. Suzuki, "Air drying by pressure swing adsorption", Chemistry Engineering Science, vol. 16, pp. 293-299, 1983.
[9] J. J. Collins, "Air separation by adsorption". United States Patent 4,026,680, 1975.
[10] S. J. Doong and R. T. Yang, "Hydrogen purification by the multibed pressure swing adsorption process", Reactive Polymers, vol. 6, pp. 7-13, 1987.
[11] L. Jiang, V. G. Fox and L. T. Biegler, "Simulation and optimal design of multiple-bed pressure swing adsorption systems", AIChE Journal, vol. 50, pp. 2904-2914, 2004.
[12] A. Furderer and E. Rudelstorfer, U.S. Patent 3,986,849 (1976), to Union Carbide Corporation.
[13] R. Kumar, W. C. Kratz, D. E. Guro, D. L. Rarig and W. P. Schimidt, "Gas mixture fractionation to produce two high purity products by pressure swing adsorption", Separation Science and Technoogy, vol. 27, pp. 509-522, 1992.
[14] A. Fuderer and E. Rudelstorfer, "Selective adsorption process". United States Patent 3,986,849, 1976.
[15] K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol and T. Siemieniewska, "Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity", Pure & Applied Chemistry, vol. 57, no. 4, pp. 603—619, 1985.

[16] A. Kapoor, J. A. Ritter, and R. T. Yang, "An extended Langmuir model for adsorption of gas mixtures on heterogeneous surfaces", Langmuir, vol. 6, no. 3, pp. 660-664, 1990.
[17] R. B. Mansour, M.A. Habib, O.E. Bamidele, M. Basha, N.A.A. Qasem, A. Peedikakkal, T. Laoui and M. Ali "Carbon capture by physical adsorption: Materials, experimental investigations and numerical modeling and simulations - A review", Applied Energy, vol. 161, pp. 225-255, 2016.
[18] K. T. Chue, J. N. Kim, Y. J. Yoo, S. H. Cho and R. T. Yang, "Comparison of activated carbon and zeolite 13X for CO2 recovery from flue gas by pressure swing adsorption", Industrial & Engineering Chemistry Research, vol. 34, pp. 591-598, 1995.
[19] J. Ling, A. Ntiamoah, P. Xiao, P. A. Webley and Y. Zhai, "Effects of feed gas concentration, temperature and process parameters on vacuum swing adsorption performance for CO2 capture", Chemical Engineering Journal, vol. 265, pp. 47-57, 2015.
[20] J. Xiao, R. Li, P. Benard and R. Chahine, "Heat and mass transfer model of multicomponent adsorption system for hydrogen purification*", International Journal of Hydrogen Energy, vol. 40, no. 14, pp. 4794-4803, 2015.
[21] J. A. Delgado, V. I. Águeda, M. A. Uguina, J. L. Sotelo, P. Brea, and C. A. Grande, "Adsorption and diffusion of H2, CO, CH4, and CO2 in BPL activated carbon and 13X zeolite: Evaluation of performance in pressure swing adsorption hydrogen purification by simulation", Industrial & Engineering Chemistry Research, vol. 53, no. 40, pp. 15414–15426, 2014.
[22] V. I. Agueda, J. A. Delgado, M. A. Uguina, P. Brea, A. I. Spjelkavik, R. Blom and C. Grande, "Adsorption and diffusion of H2, N2, CO, CH4 and CO2 in UTSA-16 metal-organic framework extrudates", Chemical Engineering Science, vol. 124, pp. 159-169, 2015.
[23] M. R. Mello, D. Phanon, G. Q. Silveira, P. L. Llewellyn and C. M. Ronconi, "Amine-modified MCM-41 mesoporous silica for carbon dioxide capture", Microporous and Mesoporous Materials, vol. 143, no. 1, pp. 174-179, 2011.
[24] C. T. Hung, C. F. Yang, J. S. Lin, S. J. Huang, Y. C. Chang and S. B. Liu, "Capture of carbon dioxide by polyamine-immobilized mesostructured silica: A solid-state NMR study", Microporous and Mesoporous Materials, vol. xxx, pp. 1-12, 2016
[25] A. Sharafian, K. Fayazmanesh, C. McCague and M. Bahrami, "Thermal conductivity and contact resistance of mesoporous silica gel adsorbents bound with polyvinylpyrrolidone in contact with a metallic substrate for adsorption cooling system applications", International Journal of Heat and Mass Transfer, vol. 79, pp. 64-71, 2014.
[26] A. Golmakani, S. Fatemi, and J. Tamnanloo, "CO2 capture from the tail gas of hydrogen purification unit by vacuum swing adsorption process, using SAPO-34", Industrial & Engineering Chemistry Research, vol. 55, no. 1, pp. 334-350, 2016.
[27] 李念祖, 利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗, 國立中央大學,碩士論文, 民國104年.
[28] L. Wang, Y. Yang, W. Shen, X. Komg, P. Li, J. Yu and A. E. Rodrigues, "Experimental evaluation of adsorption technology for CO2 capture from flue gas in an existing coal-fired power plant", Chemical Engineering Science, vol. 101, pp. 615-619, 2013.
[29] K. Kotoh, M. Tanaka, T. Sakamoto, S. Takashima, T. Tsuge, Y. Asakura, T. Uda and T. Sugiyama, "Overshooting breakthrough curves formed in pressure swing adsorption process for hydrogen isotope separation", Fusion Science and Technology, vol. 56, no. 1, pp. 173-178, 2009.
[30] Y. A. Cengel and M. A. Boles, Thermodynamics: An engineering approach, fifth edtion, McGraw-Hill Inc., New York, 2004.
指導教授 周正堂、楊閎舜(Cheng-Tung Chou Hong-Sung Yang) 審核日期 2016-8-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明