博碩士論文 103324014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:3.140.188.16
姓名 丁翊修(Yi-Hsiu Ting)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 預測固體溶質於超臨界二氧化碳添加共溶劑系統之溶解度
(Predict the solubility of solid compounds in SCCO2 with cosolvents)
相關論文
★ 碳酸二乙酯與低碳醇類於常壓下之汽液相平衡★ 探討Peng-Robinson+COSMOSAC狀態方程式中分散項與溫度之關係
★ 探討分散項之溫度函數與體積參數之修正對PR+COSMOSAC於相平衡預測之影響★ 預測有機物與二氧化碳雙成份系統之固液氣三相平衡
★ 常壓下乙酸酯類之雙成份混合物汽液相平衡★ 以第一原理計算鋰嵌入與擴散於具氧空缺之二氧化鈦結構
★ 探討不同量子化學方法對PR+COSMOSAC狀態方程式應用於預測純物質及混合流體相行為之影響★ 預測固體溶質於超臨界二氧化碳中的溶解度
★ 鋯金屬有機框架材料之碳氫氣體吸附與分離預測★ 甲基水楊酸異構物於超臨界二氧化碳中之溶解度量測
★ 原料藥與水楊酸衍生物於超臨界二氧化碳中之溶解度量測★ 以第一原理計算探討鋰於鈮摻雜二氧化鈦之嵌入與擴散路徑
★ 探討COSMO-SAC-dsp模型中分散項和組合項之效應★ 第一原理計算探討藍磷烯異質結構用於鋰離子電池負極材料之特性
★ 以第一原理計算探討鋰離子於鐵摻雜磷酸鋰鈷之塊材與表面附近之擴散路徑★ 利用分子結構快速估算藥物與染料分子於超臨界二氧化碳中之溶解度
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用Peng-Robinson + COSMOSAC 狀態方程式 ( PR + COSMOSAC EOS) 預測藥物固體在超臨界二氧化碳添加共溶劑的系統之溶解度,收集近年相關文獻中23種藥物於雙成分超臨界二氧化碳溶液中的溶解度數據,利用此模型進行計算並探討其結果。同時也採用了Wang and Lin [1] 等人提出的環狀結構修正參數加入此模型進行優化並預測固體溶解度。本研究計算了23種固體溶質共60個系統,總共約1132個實驗數據點,計算的溫度範圍從298.15 K至353 K,壓力最高達40 MPa,整體的平均對數誤差從優化前的0.77降至優化後的0.64,此結果與Wang and Lin [1] 差異不大,這也代表PR+COSMOSAC EOS不僅能夠預測藥物固體在雙成份超臨界二氧化碳中的溶解度,也適用於三成分超臨界二氧化碳系統。
不僅如此,某些物質的熔點與熔化熱,來自各個文獻提供之數據頗有差異,經研究發現,改變物質熔點及熔化熱會影響其預測結果,且這些誤差不可忽視。所以,若取得適當的熔點及熔化熱,即能更進一步增加預測之精確度,故PR+COSMOSAC EOS 在超臨界流體技術工業上是一種方便且有用的計算工具,而相關的參數優化仍持續研究中。
摘要(英) In the study, we use Peng-Robinson + COSMOSAC equation of state (EOS) to predict the solubility of solid solutes in supercritical carbon dioxide (SCCO2) with cosolvent. We collected solubility data including 23 solid solutes from literatures published in recent years and we used the model to calculate solubility and discussed results. We also added optimized parameter which was proposed by Wang and Lin [1] to improve prediction accuracy for solids with ring structure. In the study, 23 solid solutes including 60 systems were calculated. ( T = 298.15-353 K, P = 0.1-40 MPa, and about 1126 solubility data.) The ALD-x (average logarithmic deviation in solubility) is 0.77 and decreased to 0.64 when adding the optimized parameter in program. This result is similar to the Wang and Lin ‘s, that is, PR + COSMOSAC EOS can predict the solubility of solid solutes not only in SCCO2, but also in SCCO2 with cosolvents.
Moreover, melting temperature (Tm) and heat of fusion (Hm) of a solid compound are required in the method. It is found that experimental results of Tm and Hm from different research groups are different. These errors cannot be neglected. Therefore, choosing suitable Tm andHm of solid compounds can increase prediction accuracy. We think our prediction result is acceptable and we still devote to optimizing the parameter of the method. Furthermore, PR+COSMOSAC EOS is also a useful tool in the future, especially for solid compounds whose experimental data are difficult to obtain.
關鍵字(中) ★ 超臨界二氧化碳
★ 固體溶解度
★ 共溶劑
★ 純預測模型
關鍵字(英) ★ Supercritical carbon dioxide
★ solid solubility
★ cosolvent
★ PR+COSMOSAC EOS
論文目次 中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 v
圖目錄 vii
符號說明 ix
第一章 緒論 1
1-1 超臨界流體性質及相關發展 1
1-2 添加共溶劑之影響 4
1-3 熱力學理論模型及文獻回顧 4
第二章 預測固體溶質於超臨界二氧化碳添加共溶劑系統之溶解度 8
2-1 研究背景及動機 8
2-2 理論模式 8
2-2-1 Peng-Robinson + COSMOSAC 狀態方程式 9
2-2-2分子表面電荷密度 10
2-3 計算細節 15
第三章 結果與討論 20
3-1 添加不同共溶劑對預測結果之影響 21
3-2 物質熔點(Tm)及熔化熱(∆Hm)選擇之重要性 22
3-3 多重根的影響 23
第四章 結論 25
參考文獻 64
參考文獻 [1] L.-H. Wang, S.-T. Lin, A predictive method for the solubility of drug in supercritical carbon dioxide, The Journal of Supercritical Fluids, 85 (2014) 81-88.
[2] K. Zaghdoudi, X. Framboisier, C. Frochot, R. Vanderesse, D. Barth, J. Kalthoum-Cherif, F. Blanchard, Y. Guiavarc’h, Response surface methodology applied to Supercritical Fluid Extraction (SFE) of carotenoids from Persimmon (Diospyros kaki L.), Food Chemistry, 208 (2016) 209-219.
[3] M. Li, W. Liu, T. Short, X. Qing, Y. Dong, Y. He, H.-C. Zhang, Pre-treatment of remanufacturing cleaning by use of supercritical CO2 in comparison with thermal cleaning, Clean Technologies and Environmental Policy, 17 (2015) 1563-1572.
[4] B.Y. Shekunov, P. York, Crystallization processes in pharmaceutical technology and drug delivery design, Journal of Crystal Growth, 211 (2000) 122-136.
[5] E. Reverchon, R. Adami, S. Cardea, G.D. Porta, Supercritical fluids processing of polymers for pharmaceutical and medical applications, The Journal of Supercritical Fluids, 47 (2009) 484-492.
[6] R.T. Kurnik, R.C. Reid, Solubility of solid mixtures in supercritical fluids, Fluid Phase Equilibria, 8 (1982) 93-105.
[7] J.M. Dobbs, J.M. Wong, R.J. Lahiere, K.P. Johnston, Modification of supercritical fluid phase behavior using polar cosolvents, Industrial & Engineering Chemistry Research, 26 (1987) 56-65.
[8] J.S. Haselow, S.J. Han, R.A. Greenkorn, K.C. Chao, Equation of State for Supercritical Extraction, in: Equations of State, American Chemical Society, (1986) 156-178.
[9] I. Ashour, R. Almehaideb, S.E. Fateen, G. Aly, Representation of solid-supercritical fluid phase equilibria using cubic equations of state, Fluid Phase Equilibria, 167 (2000) 41-61.
[10] M.-J. Huron, J. Vidal, New mixing rules in simple equations of state for representing vapour-liquid equilibria of strongly non-ideal mixtures, Fluid Phase Equilibria, 3 (1979) 255-271.
[11] C.S. Su, Prediction of solubilities of solid solutes in carbon dioxide-expanded organic solvents using the predictive Soave-Redlich-Kwong (PSRK) equation of state, Chemical Engineering Research & Design, 91 (2013) 1163-1169.
[12] J. Chrastil, Solubility of solids and liquids in supercritical gases, The Journal of Physical Chemistry, 86 (1982) 3016-3021.
[13] J. Méndez-Santiago, A.S. Teja, The solubility of solids in supercritical fluids, Fluid Phase Equilibria, 158–160 (1999) 501-510.
[14] J.-S. Cheng, M. Tang, Y.-P. Chen, Correlation of solid solubility for biological compounds in supercritical carbon dioxide: comparative study using solution model and other approaches, Fluid Phase Equilibria, 194–197 (2002) 483-491.
[15] Y. Iwai, T. Fukuda, Y. Koga, Y. Arai, Solubilities of myristic acid, palmitic acid, and cetyl alcohol in supercritical carbon dioxide at 35.degree.C, Journal of Chemical & Engineering Data, 36 (1991) 430-432.
[16] J.G. Gmehling, T.F. Anderson, J.M. Prausnitz, Solid-Liquid Equilibria Using UNIFAC, Industrial & Engineering Chemistry Fundamentals, 17 (1978) 269-273.
[17] I. Kikic, M. Lora, A. Bertucco, A Thermodynamic Analysis of Three-Phase Equilibria in Binary and Ternary Systems for Applications in Rapid Expansion of a Supercritical Solution (RESS), Particles from Gas-Saturated Solutions (PGSS), and Supercritical Antisolvent (SAS), Industrial & Engineering Chemistry Research, 36 (1997) 5507-5515.
[18] S.-T. Lin, C.-M. Hsieh, M.-T. Lee, Solvation and chemical engineering thermodynamics, Journal of the Chinese Institute of Chemical Engineers, 38 (2007) 467-476.
[19] C.-M. Hsieh, S.-T. Lin, Determination of cubic equation of state parameters for pure fluids from first principle solvation calculations, AIChE Journal, 54 (2008) 2174-2181.
[20] C.-M. Hsieh, S.-T. Lin, First-Principles Predictions of Vapor−Liquid Equilibria for Pure and Mixture Fluids from the Combined Use of Cubic Equations of State and Solvation Calculations, Industrial & Engineering Chemistry Research, 48 (2009) 3197-3205.
[21] Mullins, E.; Oldland, R.; Liu, Y. A.; Wang, S.; Sandler, S. I.; Chen, C. C.; Zwolak, M.; Seavey, K. C. Sigma-Profile Database for Using Cosmo-Based Thermodynamic Methods. Industrial & Engineering Chemistry Research, 45 (2006) 4389–4415.
[22] Mullins, E.; Liu, Y. A.; Ghaderi, A.; Fast, S. D. Sigma Profile Database for Predicting Solid Solubility in Pure and Mixed Solvent Mixtures for Organic Pharmacological Compounds with Cosmo-Based Thermodynamic Methods. Industrial & Engineering Chemistry Research, 47 (2008) 1707–1725.
[23] C.-M. Hsieh, S.-T. Lin, Prediction of liquid–liquid equilibrium from the Peng–Robinson+COSMOSAC equation of state, Chemical Engineering Science, 65 (2010) 1955-1963.
[24] S.S.T. Ting, D.L. Tomasko, N.R. Foster, S.J. Macnaughton, Solubility of naproxen in supercritical carbon dioxide with and without cosolvents, Industrial & Engineering Chemistry Research, 32 (1993) 1471-1481.
[25] Z. Huang, Y.C. Chiew, W.-D. Lu, S. Kawi, Solubility of aspirin in supercritical carbon dioxide/alcohol mixtures, Fluid Phase Equilibria, 237 (2005) 9-15.
[26] C. Garlapati, G. Madras, Solubilities of Dodecanoic and Tetradecanoic Acids in Supercritical CO2 with and without Entrainers, Journal of Chemical & Engineering Data, 53 (2008) 2637-2641.
[27] Z. Liu, D. Li, G. Yang, B. Han, Solubility of organic acids in ethyl acetate expanded with CO2, Fluid Phase Equilibria, 167 (2000) 123-130.
[28] C. Garlapati, G. Madras, Solubilities of Hexadecanoic and Octadecanoic Acids in Supercritical CO2 With and Without Cosolvents, Journal of Chemical & Engineering Data, 53 (2008) 2913-2917.
[29] L. Brandt, O. Elizalde-Solis, L.A. Galicia-Luna, J. Gmehling, Solubility and density measurements of palmitic acid in supercritical carbon dioxide + alcohol mixtures, Fluid Phase Equilibria, 289 (2010) 72-79.
[30] M. Zhong, B. Han, H. Yan, Solubility of stearic acid in supercritical CO2 with cosolvents, The Journal of Supercritical Fluids, 10 (1997) 113-118.
[31] G.S. Gurdial, S.J. Macnaughton, D.L. Tomasko, N.R. Foster, Influence of chemical modifiers on the solubility of o- and m-hydroxybenzoic acid in supercritical carbon dioxide, Industrial & Engineering Chemistry Research, 32 (1993) 1488-1497.
[32] H. Singh, S.L.J. Yun, S.J. Macnaughton, D.L. Tomasko, N.R. Foster, Solubility of cholesterol in supercritical ethane and binary gas mixtures containing ethane, Industrial & Engineering Chemistry Research, 32 (1993) 2841-2848.
[33] N.R. Foster, H. Singh, S.L.J. Yun, D.L. Tomasko, S.J. Macnaughton, Polar and nonpolar cosolvent effects on the solubility of cholesterol in supercritical fluids, Industrial & Engineering Chemistry Research, 32 (1993) 2849-2853.
[34] Z. Huang, S. Kawi, Y.C. Chiew, Solubility of cholesterol and its esters in supercritical carbon dioxide with and without cosolvents, The Journal of Supercritical Fluids, 30 (2004) 25-39.
[35] J.-s. Jin, Z.-t. Zhang, Q.-s. Li, Y. Li, E.-p. Yu, Solubility of Propyl p-Hydroxybenzoate in Supercritical Carbon Dioxide with and without a Cosolvent, Journal of Chemical & Engineering Data, 50 (2005) 801-803.
[36] J.M. Dobbs, K.P. Johnston, Selectivities in pure and mixed supercritical fluid solvents, Industrial & Engineering Chemistry Research, 26 (1987) 1476-1482.
[37] J. Jin, C. Zhong, Z. Zhang, Y. Li, Solubilities of benzoic acid in supercritical CO2 with mixed cosolvent, Fluid Phase Equilibria, 226 (2004) 9-13.
[38] J. Mendez-Santiago, A.S. Teja, Solubility of Benzoic Acid in Mixtures of CO2 + Hexane, Journal of Chemical & Engineering Data, 57 (2012) 3438-3442.
[39] W.J. Schmitt, R.C. Reid, The use of entrainers in modifying the solubility of phenanthrene and benzoic acid in supercritical carbon dioxide and ethane, Fluid Phase Equilibria, 32 (1986) 77-99.
[40] M. Johannsen, G. Brunner, Measurements of Solubilities of Xanthines in Supercritical Carbon Dioxide + Methanol, Journal of Chemical & Engineering Data, 40 (1995) 431-434.
[41] Z. Liu, D. Li, G. Yang, B. Han, Solubility of hydroxybenzoic acid isomers in ethyl acetate expanded with CO2, The Journal of Supercritical Fluids, 18 (2000) 111-119.
[42] S. Bristow, B.Y. Shekunov, P. York, Solubility Analysis of Drug Compounds in Supercritical Carbon Dioxide Using Static and Dynamic Extraction Systems, Industrial & Engineering Chemistry Research, 40 (2001) 1732-1739.
[43] W.E. Hollar, P. Ehrlich, Solubility of naphthalene in mixtures of carbon dioxide and ethane, Journal of Chemical & Engineering Data, 35 (1990) 271-275.
[44] G.R. Smith, C.J. Wormald, Solubilities of naphthalene in (CO2 + C2H6) and (CO2 + C3H8) up to 333 K and 17.7 MPa, Fluid Phase Equilibria, 57 (1990) 205-222.
[45] R.M. Lemert, K.P. Johnston, Solubilities and selectivities in supercritical fluid mixtures near critical end points, Fluid Phase Equilibria, 59 (1990) 31-55.
[46] D.J. Dixon, K.P. Johnston, Molecular thermodynamics of solubilities in gas antisolvent crystallization, Aiche Journal, 37 (1991) 1441-1449.
[47] A. Cháfer, T. Fornari, R.P. Stateva, A. Berna, Trans-Cinnamic Acid Solubility Enhancement in the Presence of Ethanol As a Supercritical CO2 Cosolvent, Journal of Chemical & Engineering Data, 54 (2009) 2263-2268.
[48] Y. Iwai, H. Nagano, G.S. Lee, M. Uno, Y. Arai, Measurement of entrainer effects of water and ethanol on solubility of caffeine in supercritical carbon dioxide by FT-IR spectroscopy, The Journal of Supercritical Fluids, 38 (2006) 312-318.
[49] J.G. Van Alsten, C.A. Eckert, Effect of entrainers and of solute size and polarity in supercritical fluid solutions, Journal of Chemical & Engineering Data, 38 (1993) 605-610.
[50] E. Pérez, A. Cabañas, J.A.R. Renuncio, Y. Sánchez-Vicente, C. Pando, Cosolvent Effect of Methanol and Acetic Acid on Dibenzofuran Solubility in Supercritical Carbon Dioxide, Journal of Chemical & Engineering Data, 53 (2008) 2649-2653.
[51] R.M. Lemert, K.P. Johnston, Chemical complexing agents for enhanced solubilities in supercritical fluid carbon dioxide, Industrial & Engineering Chemistry Research, 30 (1991) 1222-1231.
[52] C. Garlapati, G. Madras, Solubilities of Some Chlorophenols in Supercritical CO2 in the Presence and Absence of Cosolvents, Journal of Chemical & Engineering Data, 55 (2010) 273-277.
[53] A.M. Scurto, G. Xu, J.F. Brennecke, M.A. Stadtherr, Phase Behavior and Reliable Computation of High-Pressure Solid−Fluid Equilibrium with Cosolvents, Industrial & Engineering Chemistry Research, 42 (2003) 6464-6475.
[54] G. Xu, A.M. Scurto, M. Castier, J.F. Brennecke, M.A. Stadtherr, Reliable Computation of High-Pressure Solid−Fluid Equilibrium, Industrial & Engineering Chemistry Research, 39 (2000) 1624-1636.
指導教授 謝介銘(Chieh-Ming Hsieh) 審核日期 2016-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明