博碩士論文 103324021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.236.52.68
姓名 黃緯農(Wei-Nung Huang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 以變壓吸附法回收水煤氣反應後合成氣中二氧化碳之模擬
相關論文
★ 醫療用氧氣濃縮機之改善與發展★ 變壓吸附法濃縮及回收氣化產氫製程中二氧化碳與氫氣之模擬
★ 變壓吸附法應用於小型化醫療用製氧機及生質酒精脫水產生無水酒精之模擬★ 變壓吸附法濃縮及回收氣化產氫製程中一氧化碳、二氧化碳與氫氣之模擬
★ 利用吸附程序於較小型發電廠煙道氣進氣量下捕獲二氧化碳之模擬★ 利用週期性吸附反應程序製造高純度氫氣並捕獲二氧化碳之模擬
★ 變溫吸附程序分離煙道氣中二氧化碳之連續性探討與實驗設計分析★ 利用PEI/SBA-15於變溫及真空變溫吸附捕獲煙道氣中二氧化碳之模擬
★ PEI/SBA-15固態吸附劑對二氧化碳吸附之實驗研究★ 以變壓吸附法分離汙染空氣中氧化亞氮之模擬
★ 以變壓吸附法分離汙染空氣中氧化亞氮之實驗★ 以變壓吸附法濃縮己二酸工廠尾氣中氧化亞氮之模擬
★ 利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗★ 變壓吸附法回收發電廠廢氣與合成氣中二氧化碳之模擬
★ 利用變壓吸附程序分離甲醇裂解產氣中氫氣及一氧化碳之模擬★ 變壓吸附程序捕獲合成氣中二氧化碳之實驗研究與吸附劑之選擇評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究利用變壓吸附法回收水煤氣反應後合成氣中二氧化碳,將二氧化碳濃縮並加以封存,根據美國能源部報告書之封存標準為二氧化碳濃度90%、回收率90%,如此可減少二氧化碳之排放,以避免溫室氣體對環境的持續惡化。
合成氣的進氣組成為41.4%二氧化碳、1.3%一氧化碳和57.3%氫氣,本研究使用UOP 13X沸石作為吸附劑,以Langmuir-Freundlich為模型迴歸吸附劑對各成份氣體的之等溫平衡吸附曲線以取得各項參數,利用理論計算線性驅動力質傳係數用於程序模擬,並與突破曲線實驗、脫附實驗及單塔四步驟程序實驗結果進行驗證,證明程式的可靠度。
最後採用雙塔六步驟變壓吸附程序進行模擬,藉由探討不同的操作變因以尋求最適化操作條件並嘗試提高溫度,以進料壓力3.95 atm,塔長110 cm,真空壓力0.05 atm、高壓吸附160秒,同向減壓10秒,抽真空130秒,平衡時間5秒,溫度393 K為最終操作條件,其塔底二氧化碳濃度達95.3%,回收率97.6%,預期可作為小型試驗工廠之操作條件。
摘要(英) This research studies the separation and concentraion of carbon oxide from syngas after water gas shift reaction by pressure swing adsorption (PSA) process. According to the NETL report , the compositions of syngas are 41.4% carbon dioxide ,1.3% carbon oxide and 57.3% hydrogen.
The commercialized UOP 13X zeolite is used as adsorbent in this study. First of all, Langmuir-Freundlich isotherm equation is uesd to regress the isotherm data to obtain the parameters of CO2, N2, CO, H2. The linear driving force (LDF) model were calculated by theory. In order to test the reliability of the simulation program, we also compare the simulation program with breakthrough curve , desorption curve experiment and the results of a single-bed four-step process experiments.
Finally, we employ dual-bed six-step PSA process for syngas feed to find the optimal operating conditions and try to rise temperature. The optimal operating conditions can be obtained by assessing different operating variables. The results of final conditions are 95.3% purity and 97.6% recovery of CO2 in bottom product.
關鍵字(中) ★ 變壓吸附
★ 合成氣
★ 二氧化碳
關鍵字(英)
論文目次 摘要 I
ABSTRACT II
誌謝 III
目錄 IV
圖目錄 VIII
表目錄 XIV
第一章、 緒論 1
第二章、 簡介及文獻回顧 4
2-1 吸附之簡介 4
2-1-1 吸附基本原理 4
2-1-2 吸附劑及其選擇性 6
2-2 文獻回顧 8
2-2-1 PSA程序之發展與改進 8
2-2-2 理論之回顧 12
2-3 研究背景與目的 15
第三章、 理論 19
3-1 基本假設 20
3-2 統制方程式 21
3-3 吸附平衡關係式 26
3-3-1 等溫吸附平衡關係式 26
3-3-2 質傳驅動力模式 26
3-3-3 吸附熱關係式 27
3-4 參數推導 28
3-4-1 軸向分散係數 28
3-4-2 熱傳係數 31
3-4-3 線性驅動力質傳係數 34
3-5 邊界條件與流速 37
3-5-1 邊界條件與節點流速 37
3-5-2 閥公式 38
3-6 求解步驟 39
第四章、 等溫平衡吸附曲線與吸脫附曲線 42
4-1 吸附平衡(ADSORPTION EQUILIBRIUM) 43
4-1-1 氣體與吸附劑性質 43
4-1-2 等溫平衡吸附曲線(Isotherm) 45
4-2 吸附動力學(ADSORPTION KINETICS) 51
4-2-1 線性驅動力質傳係數 51
4-2-2 突破曲線模擬驗證 52
4-2-3 脫附實驗模擬驗證 57
第五章、 製程描述 63
5-1 單塔四步驟變壓吸附程序 64
5-2 雙塔六步驟變壓吸附程序 66
5-3 產率與能耗計算 68
第六章、 數據分析與結果討論 70
6-1 單塔四步驟變壓吸附法捕獲合成氣中二氧化碳之驗證 70
6-1-1 高壓吸附時間對雙成份單塔四步驟PSA製程之影響 72
6-1-2 抽真空時間對雙成份單塔四步驟PSA製程之影響 76
6-1-3 進氣組成對單塔四步驟PSA製程之影響 82
6-2 合成氣進料單塔四步驟變壓吸附程序之模擬 84
6-2-1 高壓吸附時間對單塔四步驟PSA製程之影響 85
6-2-2 抽真空時間對單塔四步驟PSA製程之影響 88
6-2-3 同向減壓時間對單塔四步驟PSA製程之影響 91
6-2-4 塔長對單塔四步驟PSA製程之影響 94
6-3 合成氣進料雙塔六步驟變壓吸附程序之模擬 97
6-3-1 進料壓力對雙塔六步驟PSA製程之影響 99
6-3-2 高壓吸附時間/抽真空時間對雙塔六步驟PSA製程之影響 104
6-3-3 高壓吸附時間/同向減壓時間對雙塔六步驟PSA製程之影響 110
6-3-4 壓力平衡時間對雙塔六步驟PSA製程之影響 115
6-3-5 塔長對雙塔六步驟PSA製程之影響 120
6-3-6 抽真空壓力對雙塔六步驟PSA製程之影響 127
6-3-7 溫度對雙塔六步驟PSA製程之影響 133
第七章、 結論 138
7-1 結論 138
符號說明 144
參考文獻 149
附錄A、流速之估算方法 155
參考文獻 [1] 台灣電力公司, " 發電裝置容量 " 105年6月25日,取自: http://www.taipower.com.tw/UpFile/ClauseFile/main_2_5_3_2.pdf.
[2] European Commission, " Emission database for global atmospheric research EDGAR " 2016年6月25日,取自: http://edgar.jrc.ec.europa.eu/.
[3] R. K. Pachauri and L. A. Meyer, " Climate change 2014: synthesis report " IPCC, 2014.
[4] P. Luby, " Zero carbon power generation " Petroleum & Coal, vol. 46, pp. 1-16, 2004.
[5] A. Agarwal, " Advanced strategies for optimal design and operation of pressure swing adsorption processes " Proquest, 2010.
[6] Anten Chemical, " Zeolite - structure and properties " 2016年6月26日,取自: http://www.antenchem.com/en/News/Zeolite_technology/ZeoliteMolecularSieve.html.
[7] C. W. Skarstrom, " Esso research and engineering company " US Patent: 2944627, 1960.
[8] A. E. Rodrigues, M. D. LeVan and D. Tondeur, " Adsorption: science and technology ", Kluwer Academic, U.S.A. 1988.
[9] W. Choi, T. Kwon and Y. Yeo, " Optimal operation of the pressure swing adsorption (PSA) process " Korean J. Chem. Eng., vol. 20, pp. 617-623, 2003.
[10] R. T. Yang, " Gas seperation by adsorption process ", World Scientific 1997.
[11] D. Daniel and M. P. G. De, " Process for separating a binary gaseous mixture by adsorption " United States Patent: 3,155,468, 1964.
[12] B. K. Na, H. L. Lee, K. K. Koo and H. K. Song, " Effect of rinse and recycle methods on the pressure swing adsorption process to recover CO2 from power plant flue gas using activated carbon " Ind. Eng. Chem. Res., vol. 41, pp. 5498-5503, 2002.
[13] K. Chihara and M. Suzuki, " Air drying by pressure swing adsorption " J. Chem. Eng. Jpn., vol. 16, pp. 293-299, 1983.
[14] J. J. Collins, " Air separation by adsorption " United States Patent: 4,026,680, 1975.
[15] S. J. Doong and R. T. Yang, " Hydrogen purification by the multibed pressure swing adsorption process " React. Polym., vol. 6, pp. 7-13, 1987.
[16] L. Jiang, V.G. Fox and L.T. Biegler, " Simulation and optimal design of multiple-bed pressure swing adsorption systems " AIChE J., vol. 50, pp. 2904-2914, 2004.
[17] A. Fuderer and E. Rudelstorfer, " Selective adsorption process " United States Patent: 3,986,849, 1976.
[18] P. H. Turnock and R. H. Kadlec, " Separation of nitrogen and methane via periodic adsorption " AIChE J., vol. 17, pp. 335-342, 1971.
[19] R.T. Yang and S. J. Doong, " Gas separation by pressure swing adsorption: a pore-diffusion model for bulk separation " AIChE J., vol. 31, pp. 1829-1842, 1985.
[20] M. M. Hassan, N. S. Raghvan and D. M. Ruthven, " Pressure swing air separation on a carbon molecular sieve—II. investigation of a modified cycle with pressure equalization and no purge " Chem. Eng. Sci., vol. 42, pp. 2037-2043, 1987.
[21] S. Farooq and D. M. Ruthven, " A comparison of linear driving force and pore diffusion models for a pressure swing adsorption bulk separation process " Chem. Eng. Sci., vol. 45, pp. 107-115, 1990.
[22] E. Glueckauf and J. I. Coates, " Theory of chromatography. part IV. the influence of incomplete equilibrium on the front boundary of chromatograms and on the effectiveness of separation " J. Chem. Soc., pp. 1315-1321, 1947.
[23] P. Webley, R. Singh, M. K. R. Reddy, S. Wilson, K. Joshi and J. C. D. D. Costa, "High temperature materials for CO2 capture " Energy Procedia, vol. 1, pp. 623-630, 2008.
[24] Q. Huang and M. Eić, " Commercial adsorbents as benchmark materials for separation of carbon dioxide and nitrogen by vacuum swing adsorption process " Sep. Purif. Technol., vol. 103, pp. 203-215, 2013.
[25] R. Haghpanah, A. Rajendran, S. Farooq and I. A. Karimi, " Optimization of one- and two-stage kinetically controlled CO2 capture processes from postcombustion flue gas on a carbon molecular sieve " Ind. Eng. Chem. Res., vol. 53, pp. 9186-9198, 2014.
[26] V. G. Gomes and K. W. K. Yee, " Pressure swing adsorption for carbon dioxide sequestration from exhaust gases " Sep. Purif. Technol., vol. 28, pp. 161-171, 2002.
[27] J. Zhang, P. A. Webley and P. Xiao, " Effect of process parameters on power requirements of vacuum swing adsorption technology for CO2 capture from flue gas " Energy Convers. Manage., vol. 49, pp. 346-356, 2008.
[28] T. L. P. Dantsa, F. M. T. Luna, I. J. Silva Jr., A. E. B. Torres, D. C. S. de Azevedo, A. E. Rodrigues and R. F. P. M. Moreira, " Carbon dioxide-nitrogen separation through pressure swing adsorption " Chem. Eng. J., vol. 172, pp. 698-704, 2011.
[29] S. V. Sivakumar and D. P. Rao, " Modified duplex PSA. 1. sharp separation and process intensification for CO2−N2−13X zeolite system " Ind. Eng. Chem. Res., vol. 50, pp. 3426-3436, 2011.
[30] S. Krishnamurthy, V. R. Rao, S. Guntuka, P. Sharratt, R. Haghpanah, A. Rajendran, M. Amanullah, I. A. Karimi and S. Farooq, " CO2 capture from dry flue gas by vacuum swing adsorption: a pilot plant study " AIChE J., vol. 60, pp. 1830-1842, 2014.
[31] D. Marx, L. Joss, M. Hefti, M. Gazzani and M. Mazzotti, " CO2 capture from a binary CO2/N2 and a ternary CO2/N2/H2 mixture by PSA: experiments and predictions " Ind. Eng. Chem. Res., vol. 54, pp. 6035-6045, 2015.
[32] A. Golmakani, S. Fatemi and J. Tamnanloo, " CO2 capture from the tail gas of hydrogen purification unit by vacuum swing adsorption process, using SAPO-34 " Ind. Eng. Chem. Res., vol. 55, pp. 334-350, 2016.
[33] L. Riboldi and O. Bolland, " Evaluating pressure swing adsorption as a CO2 separation technique in coal-fired power plants " Int. J. Greenhouse Gas Control, vol. 39, pp. 1-16, 2015.
[34] D. Y. C. Leunga, G. Caramannab and M. M. Maroto-Valerb, " An overview of current status of carbon dioxide capture and storage technologies " Renewable Sustainable Energy Rev., vol. 39, pp. 426-443, 2014.
[35] M. Zaman and J. H. Lee, " Carbon capture from stationary power generation sources: a review of the current status of the technologies " Korean J. Chem. Eng., vol. 30, pp. 1497-1526, 2013.
[36] N. Susarla, R. Haghpanahb, I. A. Karimia, S. Farooqa, A. Rajendranb, L. S. C. Tanc and J. S. T. Limca, " Energy and cost estimates for capturing CO2 from a dry flue gas using pressure/vacuum swing adsorption " Chem. Eng. Res. Des., vol. 102, pp. 354-367, 2015.
[37] D. Duong, " Adsorption analysis: equilibria and kinetics " 1998.
[38] C. Y. Fan and L. T. Wen, " Models for flow systems and chemical reactors " 1975.
[39] R. B. Bird, W. E. Stewart and E. N. Lightfoot, " Transport phenomena " 2nd ed., 2007.
[40] E. N. Fuller, P. D. Schettler and J. C. Giddings, " A comparison of methods for predicting gaseous diffusion coefficients " J. Gas Chromatogr., vol. 3, pp. 222-227, 1965.
[41] E. N. Fuller, K. Ensley and J. C. Giddings, " Diffusion of halogenated hydrocarbons in helium. the effect of structure on collision cross sections " J. Phys. Chem., vol. 73, pp. 3679-3685, 1969.
[42] D. F. Fairbanks and C.R. Wilke, " Diffusion coefficients in multicomponent gas mixtures " Ind. Eng. Chem., vol. 42, pp. 471-475, 1950.
[43] W. L. McCabe, J. C. Smith and P. Harriott, " Unit operations of chemical engineering " 7th ed., New York, McGraw-Hill, 2005.
[44] W. H. McAdams, " Heat transmission " 3rd ed., New York, McGraw-Hill, 1954.
[45] S. Ruthven and D. M. Farooq, " Heat effects in adsorptioncolumn dynamics. 2. experimental validation of theone-dimensional model " Ind. Eng. Chem. Res., vol. 29, pp. 1084-1090, 1990.
[46] N. Wakao, S. Kaguei and T. Funazkri, " Effect of fluid dispersioncoefficients on particle-to-fluid heat transfer coefficients inpacked beds: correlation of nusselt numbers " Chem. Eng. Sci., vol. 34, pp. 325-336, 1979.
[47] G. Carta and A. Cincotti, " Film model approximation fornon-linear adsorption and diffusion in spherical particles " Chem. Eng. Sci., vol. 53, pp. 3483-3488, 1998.
[48] J. Karger and D. M. Ruthven, " Diffusion in zeolites and other microporous solids " John Wiley, New York, 1992.
[49] R. H. Perry and D. W. Green, " Perry’s chemical engineers’ handbook " 7th ed., New York, McGrawHill, 1997.
[50] K. Kawazoe, M. Suzuki and K. Chihara, " Chromatographic study of diffusion in molecular-sieving carbon " J. Chem. Eng. Jpn., vol. 7, pp. 151-157, 1974.
[51] H. Qinglin, S. M. Sundaram and S. Farooq, " Revisiting transport of gases in the micropores of carbon molecularsieves " Langmuir, vol. 19, pp. 393-405, 2003.
[52] P. V. Danckwerts, " Continuous flow systems: distribution of residence " Chem. Eng. Sci., vol. 2, pp. 1-13, 1953.
[53] J. A. Delgado, V. I. Águeda, M. A. Uguina, J. L. Sotelo, P. Brea and C. A. Grande, " Adsorption and diffusion of H2, CO, CH4, and CO2 in BPL activated carbon and 13X zeolite: evaluation of performance in pressure swing adsorption hydrogen purification by simulation " Ind. Eng. Chem. Res., vol. 53, pp. 15414-15426, 2014.
[54] 李念祖, 「 利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗 」 國立中央大學,碩士論文, 民國104年.
[55] J. M. Smith and H. C. Ness, " Introduction to chemical engineering thermodynamics " 4th ed., McGraw-Hill Inc., 1987.
[56] X. Hu, E. Mangano, D. Friedrich, H. Ahn and S. Brandani, " Diffusion mechanism of CO2 in 13X zeolite beads " Adsorption, vol. 20, pp. 121-135, 2014.
[57] T. L. P. Dantas, F. M. T. Luna, I. J. Silva Jr., A. E. B. Torres, D. C. S. de AzevedoA. E. Rodrigues and R. F. P. M. Moreira, " Modeling of the fixed-bed asdsorption of carbon dioxide and a carbon dioxide nitrogen mixture on zeolite 13X " Braz. J. Chem. Eng., vol. 28, pp. 533-544, 2011.
[58] National Energy Technology Laboratory, " Evaluation of alternate water gas shift configurations for IGCC systems " The United States Department of Energy, 2009.
[59] Y. A. Cengel and M. A. Boles, " Thermodynamics: an engineering approach " 5th ed., New York, 2004.
[60] A. Ntiamoah, J. Ling,P. Xiao and P. A. Webley, " CO2 capture by vacuum swing adsorption: role of multiple pressure equalization steps " Adsorption, vol. 21, pp. 509-522, 2015.
指導教授 周正堂(Cheng-Tung Chou) 審核日期 2016-8-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明