博碩士論文 103324025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:49 、訪客IP:3.20.205.228
姓名 陳思翰(Si-Han Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 具抗菌潛力之胜肽如何影響脂質膜的彈性性質與結構完整性
(On the Mechanism of How the Antimicrobial-Competent Peptides Dictate the Elastic Properties and Structural Integrity of Lipid Membranes)
相關論文
★ 雙連續相中孔二氧化鈦光催化以及電子結構之實驗與模擬研究★ 聚合物-奈米粒子複合材料在玻璃轉移溫度下的結構與動力學相關性之實驗與模擬研究
★ 新興糖基雙子型界面活性劑之結構以及其對基因轉染效率之影響★ 自發曲率、金屬離子吸附以及微脂體膜融合效率三者間之相關性探討
★ 脂質組成成分對細胞膜物理性質與生物功能的影響★ 添加具有抗菌潛力的胜肽對磷脂質自組裝結構與彈性性質的影響
★ 分子構型與表面電荷密度對雙子型陰陽離子界面活性劑系統之相行為影響★ 探討具有不同間隔長度的陰、陽離子雙子型界面活性劑對於DNA壓實與解壓實之影響
★ CoCrFeMnNi 高熵合金 形變行為之探討★ 透過改變磷脂質排列密度減少Amyloid β與膜之間交互作用
★ 對生物膜具活性的胜肽誘導相分離脂質膜產生結構上擾動★ 人類脂肪幹細胞於生醫材料塗佈細胞外間質之純化及分化
★ 發展量測雙層脂質膜的排列密度之實驗技術★ 利用酸鹼度敏感型雙子型界面活性劑製作之基因載體對核內體脂質膜結構之影響
★ 開發預測雙子型界面活性劑之自組裝結構的方法★ 抗肌萎縮蛋白的膜結合錨如何影響其與脂質膜的相互作用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 抗菌肽存在於許多生物體的免疫系統中,由於其作用對象主要為細胞膜而非特定蛋白,因此其相對於傳統抗生素而言具有較廣泛的抗菌能力;另一方面,細胞膜組成成分上的差異使得抗菌肽並不會對人體細胞,如紅血球等造成損害。為了能更深入了解抗菌肽如何與病原體生物膜作用及其與人體細胞膜作用上的差異,在本研究中我們探討了胜肽的胺基酸序列及長度如何對胜肽與脂質膜之間的交互作用造成影響。我們選用了兩種在抗菌肽中常見的胺基酸—帶負電的賴氨酸(Lysine, K)與具疏水性的色胺酸(Tryptophan, W)合成四種人造胜肽,並觀察這些胜肽如何影響脂質膜的彈性性質以及結構完整性。我們發現,以純賴氨酸組成的胜肽並無法對由不帶電磷脂質組成的脂質膜產生顯著影響,但植入疏水性的色胺酸卻提供了胜肽破壞脂質膜與改變其彈性性質的能力。此現象推測與色胺酸側鏈的獨特性質有關,因該側鏈傾向進入至脂質膜的極性/非極性界面,使得脂質膜的彈性自由能因此增加而容易形成孔洞等彎曲結構。然而,無論胜肽的胺基酸序列為何,其對於部分組成成分為帶電磷脂質的脂質膜皆無顯著之影響。我們推測,靜電作用力將胜肽吸附於脂質膜的表面而使其無法深入至極性/非極性界面,為造成此一現象的主要原因。由以上的實驗觀察我們得知,在本研究的系統中影響胜肽與脂質膜間相互作用的最重要作用力為靜電作用力,其次則為疏水作用力及氫鍵等其他作用力。
摘要(英) Antimicrobial peptides are important players in the immune systems all across the biological spectrum. These peptides exert their influences mainly through their interactions with biomembranes rather than with specific proteins as for conventional antibiotics. This feature, along with the difference in the membrane compositions, makes human cells (e.g., blood cells) free from being the targets of the peptides, posing the peptides as promising candidates for the therapeutics of next generation. To understand how the peptides interact with the biomembranes of pathogens and human cells differentially, we investigate how the variations in the amino acid (AA) sequence and length of an antimicrobial-competent peptide dictate its influences on the elastic properties and structural integrity of a lipid membrane, with the AAs enriched in common antimicrobial peptides, the acidic lysine (K) and hydrophobic tryptophan (W), used to construct a family of artificial peptides. It is found that while peptides purely made of lysine has essentially no influence on the properties of an electrically neutral lipid membrane, incorporating tryptophan to the peptides endows them the capability to modulate the elastic properties and disrupt the structural integrity of the membrane. The discrepancy might arise from the fact that the tryptophan side chain prefers being located on the polar/apolar interface, which elevates the elastic energy of the membrane and thus energetically favors the formation of curved structures (e.g., pore). On the contrary, all the studied peptides, regardless of their AA sequences, lose their capability to affect the elastic properties of a membrane when the membrane contains acidic lipids. We speculate that the strong electrostatic force, which secures the peptides on the membrane surface rather than allowing them to move deep into the polar/apolar interface, is responsible for the phenomenon. It is therefore concluded that the electrostatic force is the dominant factor in the interactions between the peptides and lipid membranes studied here, whereas the hydrophobic interaction and hydrogen bonding are secondary to the electrostatic force in this respect.
關鍵字(中) ★ 抗菌肽
★ 脂質膜
★ 彈性性質
關鍵字(英) ★ Antimicrobial peptide
★ Lipid membrane
★ Elastic property
論文目次 中文摘要........................................................................................................................ I
英文摘要...................................................................................................................... III
致謝............................................................................................................................... V
目錄............................................................................................................................ VII
圖目錄.......................................................................................................................... IX
表目錄............................................................................................................................ 1
第一章 緒論............................................................................................................ 2
1.1 抗菌肽(Antimicrobial peptide) .............................................................. 2
1.2 細胞膜(Biomembrane) ........................................................................... 7
1.3 磷脂質(Phospholipids) ........................................................................... 8
1.4 彈性性質(Elastic properties) ............................................................... 10
1.4.1 自發曲率(Spontaneous curvature) .............................................. 11
1.4.2 彎曲係數(Bending modulus) ........................................................ 14
1.4.3 彈性自由能(Elastic energy) ......................................................... 16
1.5 研究動機(Motivation) ........................................................................... 17
第二章 實驗材料與方法...................................................................................... 19
2.1 實驗材料...................................................................................................... 19
2.1.1 磷脂質(Phospholipid) ................................................................... 19
2.1.2 人工胜肽(Artificial peptide) ........................................................ 22
2.1.3 非生物性樣品 ..................................................................................... 24
2.2 實驗設備...................................................................................................... 25
2.3 實驗步驟...................................................................................................... 26
2.3.1 Lipid dispersion製備 ............................................................................. 26
2.3.2 大型微脂體製備(Large unilamellar vesicles, LUV) .................. 28
2.3.3 X光數據收集 .......................................................................................... 29
2.3.4 螢光數據收集 ..................................................................................... 30
2.4 實驗原理...................................................................................................... 31
2.4.1 X光小角度散射(Small angle-X ray scattering) ............................. 31
2.4.2 動態光散射(Dynamic light scattering) ....................................... 34
2.4.3 螢光光譜儀(Fluorescence spectroscopy) .................................... 36
2.4.4 圓二色光譜(Circular dichroism) ................................................. 37
2.5 數據處理...................................................................................................... 39
2.5.1 量化自發曲率(Spontaneous curvature) ...................................... 39
2.5.2 量化彎曲係數(Bending modulus) ................................................ 42
2.5.3 微脂體膜厚(Membrane thickness) .............................................. 43
2.5.4 螢光洩漏率(Leakage rate of fluorescence probe) ...................... 44
第三章 實驗結果.................................................................................................. 45
3.1 胜肽對微脂體結構穩定性的影響 ............................................................. 45
3.2 胜肽的二級結構變化 ................................................................................. 49
3.3 胜肽對微脂體的結構與膜厚之影響 ......................................................... 52
3.4 胜肽對自發曲率之影響 ............................................................................. 55
3.5 胜肽對彎曲係數之影響 ............................................................................. 58
第四章 討論.......................................................................................................... 61
4.1 彈性自由能 ................................................................................................. 61
4.2 靜電作用力 ................................................................................................. 67
4.3 Snorkeling of lysine v.s Hydrophobic force ............................................. 70
4.4 疏水性(Hydrophobicity) ...................................................................... 74
4.5 作用機制...................................................................................................... 76
第五章 結論.......................................................................................................... 78
參考文獻 .................................................................................................................. 79
附 錄............................................................................................................................ 90
1. 小角度X光一維散射圖 ................................................................................. 91
2. 脂質膜彎曲係數.............................................................................................. 96
參考文獻 1. Nguyen, L. T.; Haney, E. F.; Vogel, H. J., The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol. 2011, 29 (9), 464-472.
2. Teixeira, V.; Feio, M. J.; Bastos, M., Role of lipids in the interaction of antimicrobial peptides with membranes. Prog. Lipid Res. 2012, 51 (2), 149-177.
3. Hsu, C. H.; Chen, C.; Jou, M. L.; Lee, A. Y.; Lin, Y. C.; Yu, Y. P.; Huang, W. T.; Wu, S. H., Structural and DNA-binding studies on the bovine antimicrobial peptide, indolicidin: evidence for multiple conformations involved in binding to membranes and DNA. Nucleic Acids Res. 2005, 33 (13), 4053-4064.
4. Haney, E. F.; Petersen, A. P.; Lau, C. K.; Jing, W.; Storey, D. G.; Vogel, H. J., Mechanism of action of puroindoline derived tryptophan-rich antimicrobial peptides. Biochim. Biophys. Acta 2013, 1828 (8), 1802-1813.
5. Chang, W. F. Infleuences of antimicrobial-potent peptides on the structures and elastic properties of the phospholipid self-assemblies. Master Thesis, National Central University, 2015.
6. Lee, M. T.; Sun, T. L.; Hung, W. C.; Huang, H. W., Process of inducing pores in membranes by melittin. Proc. Natl. Acad. Sci. U.S.A. 2013, 110 (35), 14243-14248.
7. Yang, L.; Harroun, T. A.; Weiss, T. M.; Ding, L.; Huang, H. W., Barrel-stave model or toroidal model? A case study on melittin pores. Biophys. J. 2001, 81 (3), 1475-1485.

8. Ludtke, S. J.; He, K.; Heller, W. T.; Harroun, T. A.; Yang, L.; Huang, H. W., Membrane pores induced by magainin. Biochemistry 1996, 35 (43), 13723-13728.
9. Shai, Y., Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by α-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim. Biophys. Acta 1999, 1462 (1), 55-70.
10. Derossi, D.; Calvet, S.; Trembleau, A.; Brunissen, A.; Chassaing, G.; Prochiantz, A., Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent. J. Biol. Chem. 1996, 271 (30), 18188-18193.
11. Pokorny, A.; Almeida, P. F., Kinetics of dye efflux and lipid flip-flop induced by δ-lysin in phosphatidylcholine vesicles and the mechanism of graded release by amphipathic, α-helical peptides. Biochemistry 2004, 43 (27), 8846-8857.
12. Deevona. What biomolecules are found in the cell membrane? https://socratic.org/questions/what-biomolecules-are-found-in-the-cell-membrane (accessed July 19, 2016).
13. Madani, F.; Lindberg, S.; Langel, Ü.; Futaki, S.; Gräslund, A., Mechanisms of cellular uptake of cell-penetrating peptides. J Biophys 2011, 1-10.
14. Mishra, A.; Lai, G. H.; Schmidt, N. W.; Sun, V. Z.; Rodriguez, A. R.; Tong, R.; Tang, L.; Cheng, J.; Deming, T. J.; Kamei, D. T., Translocation of HIV TAT peptide and analogues induced by multiplexed membrane and cytoskeletal interactions. Proc. Natl. Acad. Sci. U.S.A. 2011, 108 (41), 16883-16888.

15. Chen, Y.; Jena, K. C.; Lütgebaucks, C.; Okur, H. I.; Roke, S., Three Dimensional Nano “Langmuir Trough” for Lipid Studies. Nano Lett. 2015, 15 (8), 5558-5563.
16. Chung, M. F.; Chen, K. J.; Liang, H. F.; Liao, Z. X.; Chia, W. T.; Xia, Y.; Sung, H. W., A liposomal system capable of generating CO2 bubbles to induce transient cavitation, lysosomal rupturing, and cell necrosis. Angew. Chem. Int. Ed. Engl. 2012, 51 (40), 10089-10093.
17. Shearman, G.; Ces, O.; Templer, R.; Seddon, J., Inverse lyotropic phases of lipids and membrane curvature. J Phys: Condens Matter 2006, 18 (28), S1105.
18. Jahn, R.; Grubmüller, H., Membrane fusion. Curr. Opin. Cell Biol. 2002, 14 (4), 488-495.
19. Fuller, N.; Rand, R., The influence of lysolipids on the spontaneous curvature and bending elasticity of phospholipid membranes. Biochim. Biophys. Acta 2001, 81 (1), 243-254
20. Tsang, K. Y. The infleuences of lipid composition on the physical properties and biological function of the cell membrane. Master thesis, National Central University, 2015.
21. Chen, Z.; Rand, R., The influence of cholesterol on phospholipid membrane curvature and bending elasticity. Biophys. J. 1997, 73 (1), 267.
22. Rand, R.; Fuller, N.; Gruner, S.; Parsegian, V., Membrane curvature, lipid segregation, and structural transitions for phospholipids under dual-solvent stress. Biochemistry 1990, 29 (1), 76-87.
23. Szule, J. A.; Rand, R., The effects of gramicidin on the structure of phospholipid assemblies. Biophys. J. 2003, 85 (3), 1702-1712.

24. Schmidt, N. W.; Tai, K. P.; Kamdar, K.; Mishra, A.; Lai, G. H.; Zhao, K.; Ouellette, A. J.; Wong, G. C., Arginine in α-defensins differential effects on bactericidal activity correspond to geometry of membrane curvature generation and peptide-lipid phase behavior. J. Biol. Chem. 2012, 287 (26), 21866-21872.
25. Harms, M. J.; Schlessman, J. L.; Sue, G. R., Arginine residues at internal positions in a protein are always charged. Proc. Natl. Acad. Sci. U.S.A. 2011, 108 (47), 18954-18959.
26. 1. Pujals, S.; Miyamae, H.; Afonin, S.; Murayama, T.; Hirose, H.; Nakase, I.; Taniuchi, K.; Umeda, M.; Sakamoto, K.; Ulrich, A. S., Curvature engineering: positive membrane curvature induced by epsin N-terminal peptide boosts internalization of octaarginine. ACS Chem. Biol. 2013, 8 (9), 1894-1899.
27. Schmidt, N. W.; Mishra, A.; Lai, G. H.; Davis, M.; Sanders, L. K.; Tran, D.; Garcia, A.; Tai, K. P.; McCray Jr, P. B.; Ouellette, A. J., Criterion for amino acid composition of defensins and antimicrobial peptides based on geometry of membrane destabilization. J. Am. Chem. Soc. 2011, 133 (17), 6720-6727.
28. Als-Nielsen, J.; McMorrow, D., Elements of modern X-ray physics. John Wiley & Sons: 2011.
29. Harroun, T. A.; Kučerka, N.; Nieh, M.-P.; Katsaras, J., Neutron and X-ray scattering for biophysics and biotechnology: examples of self-assembled lipid systems. Soft Matter 2009, 5 (14), 2694-2703.
30. Tabaei, S. R.; Rabe, M.; Zhdanov, V. P.; Cho, N.-J.; Höök, F., Single vesicle analysis reveals nanoscale membrane curvature selective pore

formation in lipid membranes by an antiviral α-helical peptide. Nano Lett. 2012, 12 (11), 5719-5725.
31. Alves, I. D.; Goasdoué, N.; Correia, I.; Aubry, S.; Galanth, C.; Sagan, S.; Lavielle, S.; Chassaing, G., Membrane interaction and perturbation mechanisms induced by two cationic cell penetrating peptides with distinct charge distribution. Biochim. Biophys. Acta 2008, 1780 (7), 948-959.
32. Chen, Y.-H.; Yang, J. T.; Chau, K. H., Determination of the helix and β form of proteins in aqueous solution by circular dichroism. Biochemistry 1974, 13 (16), 3350-3359.
33. Circular Dichroism (CD). http://www.sibcb.ac.cn/cfmb/download/Circular%20Dichroism.pdf (accessed July 19, 2016).
34. Harper, P. E.; Mannock, D. A.; Lewis, R. N.; McElhaney, R. N.; Gruner, S. M., X-Ray diffraction structures of some phosphatidylethanolamine lamellar and inverted hexagonal phases*. Biophys. J. 2001, 81 (5), 2693-2706.
35. Stanley, C. B.; Strey, H. H., Measuring osmotic pressure of poly (ethylene glycol) solutions by sedimentation equilibrium ultracentrifugation. Macromolecules 2003, 36 (18), 6888-6893.
36. Katayama, S.; Nakase, I.; Yano, Y.; Murayama, T.; Nakata, Y.; Matsuzaki, K.; Futaki, S., Effects of pyrenebutyrate on the translocation of arginine-rich cell-penetrating peptides through artificial membranes: recruiting peptides to the membranes, dissipating liquid-ordered phases, and inducing curvature. Biochim. Biophys. Acta 2013, 1828 (9), 2134-2142.

37. Schmidt, N.; Mishra, A.; Lai, G. H.; Wong, G. C., Arginine-rich cell-penetrating peptides. FEBS lett. 2010, 584 (9), 1806-1813.
38. Menger, F. M.; Seredyuk, V. A.; Kitaeva, M. V.; Yaroslavov, A. A.; Melik-Nubarov, N. S., Migration of poly-L-lysine through a lipid bilayer. J. Am. Chem. Soc. 2003, 125 (10), 2846-2847.
39. Reuter, M.; Schwieger, C.; Meister, A.; Karlsson, G.; Blume, A., Poly-l-lysines and poly-l-arginines induce leakage of negatively charged phospholipid vesicles and translocate through the lipid bilayer upon electrostatic binding to the membrane. Biophys. Chem. 2009, 144 (1), 27-37.
40. Koren, E.; Torchilin, V. P., Cell-penetrating peptides: breaking through to the other side. Trends Mol Med 2012, 18 (7), 385-393.
41. Epand, R. F.; Savage, P. B.; Epand, R. M., Bacterial lipid composition and the antimicrobial efficacy of cationic steroid compounds (Ceragenins). Biochim. Biophys. Acta 2007, 1768 (10), 2500-2509.
42. Yang, L.; Harroun, T. A.; Weiss, T. M.; Ding, L.; Huang, H. W., Barrel-stave model or toroidal model? A case study on melittin pores. Biophys. J. 2001, 81 (3), 1475-1485.
43. Auer, H. E., Far-ultraviolet absorption and circular dichroism spectra of L-tryptophan and some derivatives. J. Am. Chem. Soc. 1973, 95 (9), 3003-3011.
44. Freskgaard, P.-O.; Maartensson, L.-G.; Jonasson, P.; Jonsson, B.-H.; Carlsson, U., Assignment of the contribution of the tryptophan residues to the circular dichroism spectrum of human carbonic anhydrase II. Biochemistry 1994, 33 (47), 14281-14288.

45. Hickel, A.; Danner-Pongratz, S.; Amenitsch, H.; Degovics, G.; Rappolt, M.; Lohner, K.; Pabst, G., Influence of antimicrobial peptides on the formation of nonlamellar lipid mesophases. Biochim. Biophys. Acta 2008, 1778 (10), 2325-2333.
46. Willumeit, R.; Kumpugdee, M.; Funari, S. S.; Lohner, K.; Navas, B. P.; Brandenburg, K.; Linser, S.; Andrä, J., Structural rearrangement of model membranes by the peptide antibiotic NK-2. Biochim. Biophys. Acta 2005, 1669 (2), 125-134.
47. Yang, L.; Gordon, V. D.; Mishra, A.; Som, A.; Purdy, K. R.; Davis, M. A.; Tew, G. N.; Wong, G. C., Synthetic antimicrobial oligomers induce a composition-dependent topological transition in membranes. J. Am. Chem. Soc. 2007, 129 (40), 12141-12147.
48. Mishra, A.; Gordon, V. D.; Yang, L.; Coridan, R.; Wong, G. C., HIV TAT Forms Pores in Membranes by Inducing Saddle‐Splay Curvature: Potential Role of Bidentate Hydrogen Bonding. Angew. Chem. Int. Ed. Engl. 2008, 47 (16), 2986-2989.
49. Rokitskaya, T. I.; Kolodkin, N. I.; Kotova, E. A.; Antonenko, Y. N., Indolicidin action on membrane permeability: carrier mechanism versus pore formation. Biochim. Biophys. Acta 2011, 1808 (1), 91-97.
50. Jing, W.; Demcoe, A. R.; Vogel, H. J., Conformation of a bactericidal domain of puroindoline a: structure and mechanism of action of a 13-residue antimicrobial peptide. J. Bacteriol. 2003, 185 (16), 4938-4947.
51. Koller, D.; Lohner, K., The role of spontaneous lipid curvature in the interaction of interfacially active peptides with membranes. Biochim. Biophys. Acta 2014, 1838 (9), 2250-2259.

52. Tossi, A.; Sandri, L.; Giangaspero, A., Amphipathic, α‐helical antimicrobial peptides. Biopolymers 2000, 55 (1), 4-30.
53. Yeaman, M. R.; Yount, N. Y., Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev. 2003, 55 (1), 27-55.
54. Braun, A. R.; Lacy, M. M.; Ducas, V. C.; Rhoades, E.; Sachs, J. N., α-Synuclein-induced membrane remodeling is driven by binding affinity, partition depth, and interleaflet order asymmetry. J. Am. Chem. Soc. 2014, 136 (28), 9962-9972.
55. Andrushchenko, V. V.; Aarabi, M. H.; Nguyen, L. T.; Prenner, E. J.; Vogel, H. J., Thermodynamics of the interactions of tryptophan-rich cathelicidin antimicrobial peptides with model and natural membranes. Biochim. Biophys. Acta 2008, 1778 (4), 1004-1014.
56. Schibli, D. J.; Epand, R. F.; Vogel, H. J.; Epand, R. M., Tryptophan-rich antimicrobial peptides: comparative properties and membrane interactions. Biochem. Cell Biol. 2002, 80 (5), 667-677
57. Strøm, M. B.; Rekdal, Ø.; Svendsen, J. S., Antimicrobial activity of short arginine‐and tryptophan‐rich peptides. J. Pept. Sci. 2002, 8 (8), 431-437.
58. Schibli, D. J.; Epand, R. F.; Vogel, H. J.; Epand, R. M., Tryptophan-rich antimicrobial peptides: comparative properties and membrane interactions. Biochem. Cell Biol. 2002, 80 (5), 667-677.
59. de Planque, M. R.; Kruijtzer, J. A.; Liskamp, R. M.; Marsh, D.; Greathouse, D. V.; Koeppe, R. E.; de Kruijff, B.; Killian, J. A., Different membrane anchoring positions of tryptophan and lysine in

synthetic transmembrane α-helical peptides. J. Biol. Chem. 1999, 274 (30), 20839-20846.
60. Chan, D. I.; Prenner, E. J.; Vogel, H. J., Tryptophan-and arginine-rich antimicrobial peptides: structures and mechanisms of action. Biochim. Biophys. Acta 2006, 1758 (9), 1184-1202.
61. Dougherty, D. A., Cation-π interactions in chemistry and biology: a new view of benzene, Phe, Tyr, and Trp. Science 1996, 271 (5246), 163-168.
62. Yau, W.-M.; Wimley, W. C.; Gawrisch, K.; White, S. H., The preference of tryptophan for membrane interfaces. Biochemistry 1998, 37 (42), 14713-14718.
63. Aliste, M. P.; MacCallum, J. L.; Tieleman, D. P., Molecular dynamics simulations of pentapeptides at interfaces: salt bridge and cation-π interactions. Biochemistry 2003, 42 (30), 8976-8987.
64. Pan, J.; Tristram-Nagle, S.; Kučerka, N.; Nagle, J. F., Temperature dependence of structure, bending rigidity, and bilayer interactions of dioleoylphosphatidylcholine bilayers. Biophys. J. 2008, 94 (1), 117-124.
65. Markovitch, O.; Agmon, N., Structure and energetics of the hydronium hydration shells. J Phys Chem A 2007, 111 (12), 2253-2256.
66. Dougherty, D. A., The cation− π interaction. Acc. Chem. Res. 2012, 46 (4), 885-893.
67. Reddy, A. S.; Sastry, G. N., Cation [M= H+, Li+, Na+, K+, Ca2+, Mg2+, NH4+, and NMe4+] interactions with the aromatic motifs of

naturally occurring amino acids: a theoretical study. J Phys Chem A 2005, 109 (39), 8893-8903.
68. Lin, Q.; Meyer, E. E.; Tadmor, M.; Israelachvili, J. N.; Kuhl, T. L., Measurement of the long-and short-range hydrophobic attraction between surfactant-coated surfaces. Langmuir 2005, 21 (1), 251-255.
69. Tabor, R. F.; Wu, C.; Grieser, F.; Dagastine, R. R.; Chan, D. Y., Measurement of the hydrophobic force in a soft matter system. J Phys Chem Lett 2013, 4 (22), 3872-3877.
70. Sengupta, D.; Kundu, S., Role of long-and short-range hydrophobic, hydrophilic and charged residues contact network in protein’s structural organization. BMC bioinformatics 2012, 13 (1), 1.
71. Kumar, V.; Dixit, N.; Zhou, L. L.; Fraunhofer, W., Impact of short range hydrophobic interactions and long range electrostatic forces on the aggregation kinetics of a monoclonal antibody and a dual-variable domain immunoglobulin at low and high concentrations. Int J Pharm 2011, 421 (1), 82-93.
72. Strandberg, E.; Killian, J. A., Snorkeling of lysine side chains in transmembrane helices: how easy can it get? FEBS lett. 2003, 544 (1-3), 69-73.
73. Gleason, N. J.; Vostrikov, V. V.; Greathouse, D. V.; Koeppe, R. E., Buried lysine, but not arginine, titrates and alters transmembrane helix tilt. Proc. Natl. Acad. Sci. U.S.A. 2013, 110 (5), 1692-1695.
74. Pirtskhalava, M.; Vishnepolsky, B.; Grigolava, M., Transmembrane and antimicrobial peptides. Hydrophobicity, amphiphilicity and propensity to aggregation. arXiv preprint arXiv:1307.6160 2013.

75. MacCallum, J. L.; Bennett, W. D.; Tieleman, D. P., Partitioning of amino acid side chains into lipid bilayers: results from computer simulations and comparison to experiment. J. Gen. Physiol. 2007, 129 (5), 371-377.
指導教授 陳儀帆(Yi-Fan Chen) 審核日期 2016-8-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明