博碩士論文 103324028 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:54.159.64.172
姓名 許瑞純(Jui-Chun Hsu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 探討以PDMS海綿萃取發酵系統連續生產乙醇之研究
(Improving bio-ethanol production of Saccharomyces cerevisiae by continuous extractive fermentation system using PDMS sponge)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    至系統瀏覽論文 (2018-9-1以後開放)
摘要(中) 全球暖化已經成為目前地球所面臨的最大問題,其中佔很大一部分的原因為石化燃料的大量使用,導致溫室氣體的排放量不斷上升。為了降低人類對於石化燃料的使用率,興起研究可再生的生質燃料。生質燃料中最主要的就是利用酵母菌發酵生產的生質乙醇。
近年來,燃料乙醇用來取代汽油的使用已越來越被重視與廣泛使用。但過去研究指出,S. cerevisiae發酵生產乙醇時,乙醇體積在發酵液中達到¬4 vol %至10 vol%,乙醇就會反過來對菌體生長產生抑制,導致S. cerevisiae無法生產乙醇,甚至死亡。本篇研究所使用的Saccharomyces cerevisiae BCRC 21812之乙醇耐受性為8.87 vol%。
本研究設計一個新的生物反應器-Polydimethylsiloxane (PDMS)海綿連續式萃取發酵系統(continuous extractive fermentation system by PDMS sponge)。PDMS海綿在此處為萃取劑的角色,利用擠壓海綿進行吸附脫附的過程,將發酵液中乙醇濃度降低,避免tolerance發生,進而提升產率及乙醇濃度。PDMS海綿連續式萃取發酵系統可移除水溶液中50%以上的乙醇量。發酵液經過連續十次的萃取,相較於批次系統可提升21.07%的總乙醇量。
摘要(英) Global warming has become the biggest problem currently facing the earth, which accounted for a large part of the reason for the extensive use of fossil fuels. In order to reduce the use of fossil fuels, and began to study other alternative sources of energy, so the rise of renewable biofuels. Biofuel is one of the main use of yeast fermentation production of ethanol.
In recent years, the fuel ethanol replaces gasoline that has been extensively used and attention. Yeast strains of Saccharomyces cerevisiae have been extensively studied for bio-ethanol. Previous studies have indicated that the S. cerevisiae fermentation to produce ethanol, the volume of ethanol in the fermentation broth reached 4 vol% to 10 vol%, ethanol will in turn on cell growth inhibition, leading to S. cerevisiae was unable to produce ethanol, and even death. Saccharomyces cerevisiae BCRC 21812 of ethanol tolerance was 8.87 vol% in this study.
In order to avoid the occurrence of tolerance, a novel bioreactor has been developed, continuous extractive fermentation system by polydimethylsiloxane (PDMS) sponge. PDMS sponge is extracting agent, and the adsorption and desorption of ethanol is extruded by sponge. This system can remove more than 50% of ethanol in ethanol solution. After ten successive extraction, the medium was increased the total amount of ethanol by 21.07% compared to batch.
關鍵字(中) ★ 乙醇
★ Saccharomyces cerevisiae
★ PDMS
關鍵字(英)
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
表目錄 VIIII
圖目錄 X
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 2
第二章 文獻回顧 4
2.1 再生能源 4
2.1.1 再生能源之介紹 4
2.1.2 生質能之發展 5
2.2 生質乙醇 7
2.2.1 生質乙醇之介紹 7
2.2.2 生質乙醇發展與現況 8
2.2.3 生質乙醇之研究重點 11
2.3 酵母菌(Saccharomyces cerevisiae) 15
2.3.1. 酵母菌之基本介紹 15
2.3.2. 酵母菌之生殖方式 16
2.3.3. 酵母菌之代謝作用 17
2.3.4. 酵母菌之生長條件 19
2.3.5. 酵母菌之抑制因子 19
2.4 萃取發酵 20
2.4.1 萃取發酵之介紹 20
2.4.2 萃取方法之介紹及發展 20
2.4.3 萃取發酵之應用 22
2.5 聚二甲基矽氧烷海綿 26
2.5.1 聚二甲基矽氧烷之介紹 26
2.5.2 聚二甲基矽氧烷海綿之介紹及應用 28
第三章 實驗規劃、材料與方法 30
3.1 實驗規劃 30
3.2 實驗材料、設備與裝置 32
3.2.1 實驗菌株 32
3.2.2 實驗藥品 32
3.2.3 實驗儀器與設備 33
3.2.4 數據使用參數設定 36
3.2.5 實驗裝置 37
3.3 實驗方法 40
3.3.1 菌種保存 40
3.3.2 培養基組成 41
3.3.3 Saccharomyces cerevisiae生長因素之探討 43
3.3.4 Saccharomyces cerevisiae發酵系統之建立 44
3.3.5 PDMS海綿製備 45
3.3.6 PDMS海綿對於菌體之毒性測試 46
3.3.7 PDMS海綿連續式萃取發酵系統的應用 46
3.4 分析方法 49
3.4.1 細胞乾重及細胞密度對光學密度之檢量線 49
3.4.2 葡萄糖殘量測定 50
3.4.3 乙醇濃度分析 52
第四章 實驗結果與討論 54
4.1 批次發酵生產乙醇 54
4.1.1 厭氧發酵-碳源濃度對Saccharomyces cerevisiae發酵動力曲線之影響 54
4.1.2 厭氧發酵-Saccharomyces cerevisiae之乙醇耐受性測試 ………………………………………………………...57
4.1.3 好氧發酵-通氣量對Saccharomyces cerevisiae發酵動力曲線之影響 59
4.2 兩階段式發酵 62
4.2.1 好氧與厭氧發酵方式之比較 62
4.2.2 好氧時間長度之選擇 64
4.2.3 發酵方式不同對Saccharomyces cerevisiae發酵之影響 ………………………………………………………..66
4.3 PDMS海綿連續式萃取發酵系統 68
4.3.1 PDMS海綿毒性測試 68
4.3.2 連續式萃取發酵系統之測試 70
4.3.3 萃取在饋料發酵之影響 71
4.3.4 萃取後添加饋料條件之選擇 74
4.3.5 起始萃取時機的選擇 78
第五章 結論與建議 83
5.1 結論 83
5.2 建議 84
第六章 參考文獻 86
參考文獻 [1] 廖春梅, “生質酒精之經濟效益分析,” 台灣銀行季刊.
[2] J. Hansen, R. Ruedy, M. Sato and K. Lo, "Global surface temperature change," Rev. Geophys., vol. 48, 2010.
[3] 台灣電力公司, 2015.
[4] “2007 年能源科技研究發展白皮書,” 2007.
[5] T. Radich, "Increasing ethanol use has reduced the average energy content of retail," Energy Information Administration, 2014.
[6] 林祐生、李文乾, “生質能源-生質酒精,” 科學發展, 編號 443, 2009.
[7] 國家發展委員會, “我國生質酒精發展策略,” 2007.
[8] 左峻德, “推動車輛使用酒精汽油替代燃料可,” 行政院環保署, 2006.
[9] 洪永杰、許博爾, “纖維素轉換生質酒精技術專利檢索與分析報告,” 元智大學最佳化實驗室, 2005.
[10] A. M, K. R.C and S. A, "Fermentation of xylose," J., vol. 17, p. 20–23, 1996.
[11] V. U. N, "Ethanol toxicity and ethanol tolerance in," Ann Rep Ferment Process, p. 11–58, 1985.
[12] S. P. SALGUEIRO, ,. I. SA CORREIA and J. M. NOVAIS, "Ethanol inducedleakage in Saccharomyces cerevisiae: kinetics and relationship to yeast ethanol tolerance and alcohol fermentation productivity.," Appl Environ Microbiol, vol. 54, p. 903–909, 1988.
[13] R. MF and S.-C. I, "Intracellular acidification does not account for inhibition of Saccharomyces cerevisiae growth in the presence of ethanol.," FEMS Microbiol Lett, vol. 135, p. 271–274, 1996.

[14] T. MC, R. LR, M. NP, L. AB and S.-C. I, "Genome-wide identification of Saccharomyces cerevisiae genes required for maximal tolerance to ethanol.," Appl Environ Microbiol, vol. 75, p. 5761–5772, 2009.
[15] P. d. Oliva Neto, M. A. Ferreira and F. Yokoya, "Screening for yeast with antibacterial properties from an ethanol distillery," Bioresource Technology, vol. 92, p. 1–6, 2004.
[16] A. Castro and I. Roberto, "Effect of nutrient supplementation on ethanol production in different strategies of saccharification and fermentation from acid pretreated rice straw.," Biomass Bioenergy, vol. 78, p. 156–163, 2015.
[17] 黃浩宸, “探討可控式包埋 Saccharomyces cerevisiae 對於乙醇醱酵之影響,” 2011.
[18] C.-G. Liu, N. Wang, Y.-H. Lin and F.-W. Bai, "Very high gravity ethanol fermentation by flocculating yeast under redox potential-controlled conditions.," Biotechnology for Biofuels, vol. 5, pp. 1-7, 2012.
[19] 劉仲康, “神奇的酵母菌,” 科學月刊, 1997.
[20] I. Herskowitz, "Life cycle of the budding yeast Saccharomyces cerevisiae.," Microbiol Rev., vol. 52, p. 536–55, 1988.
[21] M. M and L. ZL, "Mechanisms of ethanol tolerance in Saccharomyces cerevisiae.," Appl Microbiol Biotechnol., vol. 87, pp. 829-45, 2010.
[22] M. E. Lima-Costa, C. Tavares, S. Raposo, B. Rodrigues and J. M, "Kinetics of sugars consumption and ethanol inhibition in carob pulp fermentation by Saccharomyces cerevisiae in batch and fed-batch cultures.," ournal of Industrial Microbiology & Biotechnology, vol. 39, pp. 789-797, 2012.
[23] A. J. Daugulis, D. B. Axford and P. J. McLellan, "The economics of ethanol production by extractive fermentation," vol. 69, p. 488–497, 1991.


[24] S. Paul and P. Paulo, "Extractive Batch Fermentation with CO2 Stripping for Ethanol Production in a Bubble Column Bioreactor: Experimental and Modeling Department of Chemical Engineering," Brazil Energy Fuels, vol. 12, p. 7552–7559, 2014.
[25] 周仕凱、許梅捐, “新能源-生物產丁醇,” 科學發展, 433期, pp. 26-31, 2009.
[26] J. Seader and E. Henley, Separation Process Principles (2nd ed.), 2006.
[27] J. Bravo, "Design steam strippers for water treatment," Chemical Engineering Progress, vol. 90, p. 56–63, 1994.
[28] G. Hamburg, "Thermal Process Engineering: Liquid-liquid extraction and solid-liquid extraction," 2014.
[29] R. J. Wakeman, Extraction Liquid-Solid, 2000.
[30] R. J. Wakeman, Extraction, Liquid-Solid, 2000.
[31] M. J. Wells, "Essential guides to method development in solid-phase extraction," Encyclopedia of Separation Science, vol. 10, p. 4636–4643, 2000.
[32] M. Hugh and M. A, "Supercritical Fluid Extraction - Principles and Practice. Butterworth Heinemann series in chemical engineering (2nd ed.)," Butterworth Heinemann., 1994.
[33] T. and L. T, "Supercritical Fluid Extraction. Techniques in analytical chemistry.," 1996.
[34] J. L. S. Sonego, D. A. Lemos, G. Y. Rodriguez, A. J. G. Cruz and A. C. Badino, "Extractive Batch Fermentation with CO2 Stripping for Ethanol Production in a Bubble Column Bioreactor: Experimental and Modeling," Department of Chemical Engineering, vol. 28, p. 7552–7559, 2014.
[35] F. Kollerup and A. J. Daugulis, "Ethanol production by extractive fermentation – solvent identification and prototype development," The Canadian Journal of Chemical Engineering, vol. 64, p. 598–606, 1986.
[36] M. Matsumura and H. Märkl, "Application of solvent extraction to ethanol fermentation," Applied Microbiology and Biotechnology, vol. 20, pp. 371-377, 1984.

[37] M. M and G. G, "Ethanol production by extractive fermentation.," Biotechnol Bioeng, vol. 24, pp. 1565-79, 1982.
[38] Y. He, B. M. David, K. T. Leung, S. N. Liss and B.-Q. Liao, "Recent advances in membrane technologies for biorefining and bioenergy production," Biotechnology Advances, p. 817–858, 2012.
[39] C. C., "Membrane processes in biotechnology: an overview.," Biotechnol Adv, vol. 24, p. 482–92, 2006.
[40] K. A, C. T, D. J and E. SJ, "Gaseous dimethyl sulphide removal in a membrane biofilm reactor: effect of methanol on reactor perfor mance.," Bioresour Technol, p. 8955–9, 2010.
[41] N. R., "Membrane biofilm reactors for water and waste water treatment.," p. 23–5, 2005.
[42] I. DS, T. DP, C. SN, M. AS and R. CR, "Ethanol production by Saccharomyces cerevisiae immobilized in hollow-fiber membrane bioreactors.," Appl Environ Microbiol, vol. 46, p. 264–78, 1983.
[43] G. WJ, K. MR, L. RGJM and L. KCAM, "Ethanol production in an integrated fermentation/membrane system.," Process simulations and economics., p. 189–201, 1993.
[44] S. Y and M. C, "Control of ethanol production and monitoring of membrane performance by mass-spectrometric gas analysis in the coupled fermentation–pervaporation of whey permeate.," Appl Microbiol Biotechnol, vol. 40, p. 470–6, 1993.
[45] W. Y, X. Z, H. W and Z. Y, "Mass transfer in pervaporation of active fermentation broth with a composite PDMS membrane.," Sep Purif Technol, vol. 42, p. 47–53, 2005.
[46] S. Y, C. S, F. A, K.-K. E, L. C and N. M, "Continuous ethanol production by immobilized yeast reactor coupled with membrane pervaporation unit.," Biotechnol Bioeng, vol. 38, p. 869–76, 1991.
[47] G. M., "The assessment of microorganism growth in the membrane distillation system.," Desalination, vol. 142, p. 79–88, 2002.
[48] I.-G. MA and J. G, "Factors affectingflux and ethanol separation performance in vacuum membrane distillation (VMD).," J Membr Sci, vol. 214, p. 113–30, 2003.


[49] 陳炤彰, “次微米陽極氧化鋁孔洞製作光學元件之研究,” 中國機械工程學會第二十五屆全國學術研討會論文集, 2008.
[50] M. J, Polymer Data Handbook, Oxford Univ. Press, 1999.
[51] 曾. 林. 陳逸杰, “新式 PDMS 光波導之製作及其於表面電漿共振量測之應用,” 中國機械工程學會第二十四屆全國學術研討會論文集, 2007.
[52] 黃明宏, “聚二甲基矽氧烷應用於可撓液晶顯示器的研究,” 2009.
[53] S.-J. Choi, T.-H. Kwon, H. Im, D.-I. Moon, D. J. Baek, M.-L. Seol, J. P. Duarte and Y.-K. Choi, "A Polydimethylsiloxane (PDMS) Sponge for the Selective Absorption of Oil from Water," ACS Applied Materials & Interfaces, vol. 3, p. 4552–4556, 2011.
指導教授 徐敬衡(Chin-Hang Shu) 審核日期 2016-8-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明