博碩士論文 103324030 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:54.224.202.184
姓名 林泓頡(Hung-Chieh Lin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 尖針狀鈷矽化物/矽單晶異質奈米線陣列結構之製備及其性質研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究成功利用聚苯乙烯球奈米球微影術(Nanosphere Lithography,NSL)結合金屬催化化學蝕刻法在(100)矽晶圓上成功製備大面積準直規則排列之矽單晶奈米線陣列,此矽晶奈米線陣列的尺寸以及高度可藉由氧氣電漿處理以及濕式蝕刻的時間來妥善調控,完成製備矽晶奈米線後,以無電鍍金屬催化蝕刻法,藉由銀離子的氧化還原反應來修飾矽晶奈米線的樣貌,將平頭矽晶奈米線成功轉變成尖針狀的形貌,並藉由實驗的觀察發現尖針狀的形貌由來是因為疏水性矽晶奈米線頂部的上方以及側壁蝕刻所造成,而後藉由掃描式電子顯微鏡、穿透式電子顯微鏡以及水滴接觸角觀察其尖針化趨勢、形成機制以及尖端變化,並以此成功製備的尖針狀矽晶奈米線以傾斜角鍍膜技術鍍製一層90 nm的鈷金屬於奈米線側壁,進行低溫及高溫長時間的熱退火處理,發現在氮氫氣環境經450℃ 2小時以及650℃~850℃ 4小時的熱退火處理後可獲得鈷金屬原子擴散的尖針狀二矽化鈷/矽異質奈米線結構,此矽化物的區域是呈現(111)鋸齒狀刻面,經過穿透式電子顯微鏡以及選區電子繞射圖譜解析後得知低溫第一矽化物生成相為矽化鈷,但隨著溫度提高使得所生成矽化物均為二矽化鈷。而此研究還針對不同循環蝕刻次數的尖針狀矽晶奈米線以及尖針狀二矽化鈷/矽異質奈米線進行場發射性質量測,探討奈米線尖端曲率以及高深寬比對場發射性質的影響,另外,可假設在奈米線形貌不變的條件下,尖針狀矽晶奈米線以及尖針狀矽/矽化物異質奈米線之場增強因子不會改變,但在矽化反應之後獲得提早啟動的電場以及較低的等效功函數(Effective Work Function),啟動電場也由原來的 1.30 Vum^(-1)提早至約 0.88 Vum^(-1)而等效功函數由 5.0 eV 下降至 3.7 eV 左右。
摘要(英) In this study, we demonstrated that large-area arrays of vertically-aligned single crystalline silicon nanowire were successfully fabricated on (100)Si substrates by using the polystyrene nanosphere lithography combined with the Au-assisted chemical etching process. The diameter and length of these silicon nanowires are adjustable through oxygen plasma treatment and wet etching time. SEM, TEM, SEAD, and contact angle analysis reveal that silicon nanowires that produce on (001)Si substrate have flat ends and their axial orientation is along the [001] direction. The morphology of the silicon nanowires can be converted from flat top to sharp top by metal-catalyzed electroless deposition etching method through the oxidation-reduction of silver. After the process, the silicon nanowires still remain vertically aligned and exhibit a very remarkable tapered geometry. For the Co thin film coated needle-like silicon nanowires samples after annealing at 450℃~850℃ for 2-4hr in N_2/H_2 ambient, needle-like epitaxial CoSi_2/Si heterostructured nanowires were formed. The field emission measurement revealed that the vertical-aligned, needle-like silicon nanowire arrays process excellent field emission properties with low turn-on field, and high β values. The high field enhancement factor can be attributed to high aspect ratio, nanoscale tip and well-controlled spacing between wet etching silicon nanowires. It was also find that the field emission properties of needle-like silicon nanowires were greatly enhanced after the formation of CoSi_2 phase. The turn-on field was reduced 1.30 Vum^(-1) for the needle-like silicon nanowires to around 0.88 Vum^(-1) for the needle-like CoSi_2/Si heterostructured nanowires.
關鍵字(中) ★ 金屬催化化學反應
★ 矽晶奈米線
★ 鈷矽化物/矽異質奈米線
★ 場發射性質
★ 水滴接觸角
關鍵字(英)
論文目次 中文摘要 I
英文摘要 II
致謝 III
目錄 IV
第一章 前言及文獻回顧 1
1-1 前言 1
1-2 奈米球微影術結合金屬催化化學蝕刻法製備矽單晶奈米線 4
1-2-1 奈米球的自組裝行為 4
1-2-2 奈米球微影術的應用及發展 5
1-2-3 金屬薄膜催化化學蝕刻法 6
1-3 矽晶基材蝕刻反應 8
1-3-1 鹼性溶液蝕刻矽晶基材 8
1-3-2 金屬無電鍍催化蝕刻矽單晶奈米線 8
1-4 金屬矽化物 9
1-4-1 金屬矽化物之製程與應用 9
1-4-2 鈷薄膜金屬矽化物 11
1-4-3 鈷金屬矽化物奈米線 11
1-5 表面潤濕性質之相關理論 13
1-6 場發射電極元件 13
1-6-1 場發射相關理論 13
1-6-2 矽晶基材應用於場發射效應之研究 15
1-7 研究動機及目標 16

第二章 實驗步驟及儀器設備 18
2-1 實驗步驟 18
2-1-1 矽晶基材使用前處理 18
2-1-2 大面積奈米球模板製備 18
2-1-3 氧氣電漿調控奈米球陣列模板之尺寸 19
2-1-4 電子槍熱蒸鍍金屬薄膜 19
2-1-5 金屬催化化學蝕刻製備矽單晶奈米線陣列 20
2-1-6 金屬催化無電鍍蝕刻修飾矽單晶奈米線陣列 20
2-1-7 尖針狀鈷金屬矽化物奈米線陣列製備 20
2-2 試片分析 21
2-2-1 掃描式電子顯微鏡 21
2-2-2 穿透式電子顯微鏡 22
2-2-3 X光能量散射光譜儀 23
2-2-4 真空場發射性質量測系統 23
2-2-5 影像式水滴接觸角量測儀 24

第三章 結果與討論 25
3-1 單層聚苯乙烯奈米球模板製備 25
3-1-1 大面積單層聚苯乙烯奈米球模板製備 25
3-1-2 經氧氣電漿蝕刻調控單層聚苯乙烯奈米球模板尺寸 25
3-2 金屬催化化學蝕刻法製備準直有序排列之矽單晶奈米線陣列 26
3-3 金屬催化無電鍍蝕刻法製備尖針狀矽單晶奈米線陣列 27
3-4 尖針狀金屬矽化物奈米線製備 30
3-4-1 [100]成長方向尖針狀鈷矽化物奈米線製備 30
3-4-2 穿透式電子顯微鏡分析 32
3-5 場發射性質量測及探討 35
3-5-1 尖針狀矽晶奈米線之場發射性質量測 35
3-5-2 尖針狀鈷矽化物/矽單晶異質奈米線之場發射性質量測 38
3-6 尖針狀矽晶奈米線的水滴接觸角量測與分析 39

第四章 結論與未來展望 40

參考文獻 42

表目錄 52

圖目錄 56
參考文獻 [1]G. E. Moore, "Cramming More Components onto Integrated Circuits," Electronics, 38 (1965) 56-59.
[2]S. Frank, "Graphene transistors," Nature nanotechnology, 5 (2010) 487-496.
[3]C. Zhang, S. William, and Z. Peng, “Octahedral Pt2CuNi uniform alloy nanoparticle catalyst with high activity and promising stability for oxygen reduction reaction," ACS Catalysis, 5 (2015) 2296-2300.
[4]A. B. Chinen, C. M. Guan, J. R. Ferrer, S. N. Barnaby, T. J. Merkel, and C. A. Mirkin, “Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence,” Chemical reviews, 115 (2015) 10530-10574.
[5]Y. Zhang, Q. Chen, A. P. Alivisatos, and M. Salmeron, “Dynamic charge carrier trapping in quantum dot field effect transistors,” Nano letters, 15 (2015) 4657-4663.
[6]K. Zhao, Z. Pan, I. Mora-Seró, E. Cánovas, H. Wang, Y. Song, and X. Zhong, “Boosting power conversion efficiencies of quantum-dot-sensitized solar cells beyond 8% by recombination control,” Journal of the American Chemical Society, 137 (2015) 5602-5609.
[7]Konsta-Gdoutos, S. Maria, S. Metaxa Zoi, and P. Shah Surendra, “Highly dispersed carbon nanotube reinforced cement based materials," Cement and Concrete Research, 40 (2010) 1052-1059.
[8]W. Q. Wu, Y. F. Xu, C. Y. Su, and D. B. Kuang, “Ultra-long anatase TiO 2 nanowire arrays with multi-layered configuration on FTO glass for high-efficiency dye-sensitized solar cells,” Energy & Environmental Science, 7 (2014) 644-649.
[9]N. Guo, W. Hu, L. Liao, S. Yip, J. C. Ho, J. Miao, and X. Chen, “Anomalous and highly efficient InAs nanowire phototransistors based on majority carrier transport at room temperature,” Advanced Materials, 26 (2014) 8203-8209.
[10]S. K. Srivastava, D. Kumar, S. W. Schmitt, K. N. Sood, S. H. Christiansen, and P. K. Singh, “Large area fabrication of vertical silicon nanowire arrays by silver-assisted single-step chemical etching and their formation kinetics,” Nanotechnology, 25 (2014) 175601.
[11]S. H. Huang, S. C. Twan, S. L. Cheng, T. Lee, J. C. Hu, L. T. Chen, and S. W. Lee, “Influence of Al addition on phase transformation and thermal stability of nickel silicides on Si (001),” Journal of Alloys and Compounds, 586 (2014) S362-S367.
[12]W. Lisowski, E. Grzanka, J. W. Sobczak, M. Krawczyk, A. Jablonski, R. Czernecki, and T. Suski, ”XPS method as a useful tool for studies of quantum well epitaxial materials: Chemical composition and thermal stability of InGaN/GaN multilayers,” Journal of Alloys and Compounds, 597 (2014) 181-187.
[13]F. C. Au, K. W. Wong, Y. H. Tang, Y. F. Zhang, I. Bello, and S. T. Lee, “Electron field emission from silicon nanowires,” Applied physics letters, 75 (1999) 1700-1702.
[14]Y. F. Tzeng, H. C. Wu, P. S. Sheng, N. H. Tai, H. T. Chiu, C. Y. Lee, and I. N. Lin, “Stacked silicon nanowires with improved field enhancement factor,” ACS applied materials & interfaces, 2 (2010) 331-334.
[15]Y. F. Tzeng, Y. C. Lee, C. Y. Lee, H. T. Chiu, and I. N. Lin, “Electron field emission properties on UNCD coated Si-nanowires,” Diamond and Related Materials, 17 (2008) 753-757.
[16]J. C. She, S. Z. Deng, N. S. Xu, R. H. Yao, and J. Chen, “Fabrication of vertically aligned Si nanowires and their application in a gated field emission device,” Applied physics letters, 88 (2006) 013112.
[17]J. Y. Kim, J. H. Ahn, D. I. Moon, T. J. Park, S. Y. Lee, and Y. K. Choi, “Multiplex electrical detection of avian influenza and human immunodeficiency virus with an underlap-embedded silicon nanowire field-effect transistor,” Biosensors and Bioelectronics, 55 (2014) 162-167.
[18]J. Goldberger, A. I. Hochbaum, R. Fan, and P. Yang, “Silicon vertically integrated nanowire field effect transistors,” Nano letters, 6 (2006) 973-977.
[19]K. Peng, X. Wang, and S. T. Lee, “Silicon nanowire array photoelectrochemical solar cells,” Applied Physics Letters, 92 (2008) 163103.
[20]J. Y. Jung, H. D. Um, S. W. Jee, K. T. Park, J. H. Bang, J. H. Lee, “Optimal design for antireflective Si nanowire solar cells,” Solar Energy Materials and Solar Cells, 112 (2013) 84-90.
[21]K. Peng, J. Jie, W. Zhang, S. T. Lee, “Silicon nanowires for rechargeable lithium-ion battery anodes,” Applied Physics Letters, 93 (2008) 033105.
[22]C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, and Y. Cui, “High-performance lithium battery anodes using silicon nanowires,” Nature nanotechnology, 3 (2008) 31-35.
[23]J. F. Hsu, B. R. Huang, C. S. Huang, and H. L. Chen, “Silicon nanowires as pH sensor,” Japanese journal of applied physics, 44 (2005) 2626.
[24]X. T. Zhou, J. Q. Hu, C. P. Li, D. D. D. Ma, C. S. Lee, S. T. Lee, “Silicon nanowires as chemical sensors,” Chemical Physics Letters, 369 (2003) 220-224.
[25]K. Q. Peng, X. Wang, S. T. Lee, “Gas sensing properties of single crystalline porous silicon nanowires,” Applied Physics Letters, 95 (2009) 243112.
[26]G. J. Zhang, M. J. Huang, E. T. Liu, and K. V. Desai, “Self-assembled monolayer-assisted silicon nanowire biosensor for detection of protein–DNA interactions in nuclear extracts from breast cancer cell,” Biosensors and Bioelectronics, 26 (2011) 3233-3239.
[27]S. Lee, S. W. Jung, S. Park, J. Ahn, S. J. Hong, H. J. Yoo, and D. I. Cho, “Ultra-high responsivity, silicon nanowire photodetectors for retinal prosthesis,” IEEE, (2012) 1364-1367.
[28]R. S. Wagner, and W. C. Ellis, “Vapor‐liquid‐solid mechanism of single crystal growth,” Applied Physics Letters, 4 (1964) 89-90.
[29]M. Lu, M. K. Li, L. B. Kong, L. B., Guo, H. L. Li, “Silicon quantum-wires arrays synthesized by chemical vapor deposition and its micro-structural properties,” Chemical physics letters, 374 (2003) 542-547.
[30]M. Hetzel, A. Lugstein, C. Zeiner, T. Wójcik, P. Pongratz, and E. Bertagnolli, “Ultra-fast vapour–liquid–solid synthesis of Si nanowires using ion-beam implanted gallium as catalyst,” Nanotechnology, 22 (2011) 395601.
[31]J. Hu, T. W. Odom, and C. M. Lieber, “Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes,” Accounts of chemical research, 32 (199) 435-445.
[32]S. J. Rathi, D. J. Smith, and J. Drucker, “Guided VLS growth of epitaxial lateral Si nanowires,” Na0no letters, 13 (2013) 3878-3883.
[33]Y. H. Park, J. Kim, H. Kim, I. Kim, K. Y. Lee, D. Seo, and W. Kim, “Thermal conductivity of VLS-grown rough Si nanowires with various surface roughnesses and diameters,” Applied Physics A, 104 (2011) 7-14.
[34]T. W. Ho, F. C. N. Hong, “A reliable method to grow vertically-aligned silicon nanowires by a novel ramp-cooling process,” Applied Surface Science, 258 (2012) 7989-7996.
[35]H. F. Yan, Y. J. Xing, Q. L. Hang, D. P. Yu, Y. P. Wang, J. Xu, S. Q. Feng, “Growth of amorphous silicon nanowires via a solid–liquid–solid mechanism,” Chemical Physics Letters, 323 (2000) 224-228.
[36]D. P. Yu, Y. J. Xing, Q. L. Hang, H. F. Yan, J. Xu, Z. H. Xi, and S. Q. Feng, “Controlled growth of oriented amorphous silicon nanowires via a solid–liquid–solid (SLS) mechanism,” Physica E: Low-dimensional Systems and Nanostructures, 9 (2001) 305-309.
[37]Y. Yao, F. Li, and S. T. Lee, “Oriented silicon nanowires on silicon substrates from oxide-assisted growth and gold catalysts,” Chemical physics letters, 406 (2005) 381-385.
[38]S. D. Hutagalung, K. A. Yaacob, and A. F. A. Aziz, “Oxide-assisted growth of silicon nanowires by carbothermal evaporation,” Applied Surface Science, 254 (2007) 633-637.
[39]R. Q. Zhang, Y. Lifshitz, S. T. Lee, “Oxide‐Assisted Growth of Semiconducting Nanowires. Advanced Materials,” 15 (2003) 635-640.
[40]S. Merzsch, F. Steib, H. S. Wasisto, A. Stranz, P. Hinze, T. Weimann, and A. Waag, “Production of vertical nanowire resonators by cryogenic-ICP–DRIE,” Microsystem technologies, 20 (2014) 759-767.
[41]J. Nakamura, K. Higuchi, and K. Maenaka, “Vertical Si nanowire with ultra-high-aspect-ratio by combined top-down processing technique.Microsystem technologies,” 19 (2013) 433-438.
[42]V. A. Sivakov, G. Bronstrup, B. Pecz, A. Berger, G. Z. Radnoczi, M. Krause, and S. H. Christiansen, “Realization of vertical and zigzag single crystalline silicon nanowire architectures,” The Journal of Physical Chemistry C, 114 (2010) 3798-3803.
[43]S. L. Wu, T. Zhang, R. T. Zheng, G. A. Cheng, “Facile morphological control of single-crystalline silicon nanowires,” Applied Surface Science, 258 (2012) 9792-9799.
[44]A. H. Chiou, T. C. Chien, C. K. Su, J. F. Lin, and C. Y. Hsu, “The effect of differently sized Ag catalysts on the fabrication of a silicon nanowire array using Ag-assisted electroless etching,” Current Applied Physics, 13 (2013)717-724.
[45]F. Bai, M. Li, D. Song, H. Yu, B. Jiang, and Y. Li, “One-step synthesis of lightly doped porous silicon nanowires in HF/AgNO 3/H 2 O 2 solution at room temperature,” Journal of Solid State Chemistry, 196 (2012) 596-600.
[46]M. L. Zhang, K. Q. Peng, X. Fan, J. S. Jie, R. Q. Zhang, S. T. Lee, N. B. Wong, “Preparation of large-area uniform silicon nanowires arrays through metal-assisted chemical etching,” The Journal of Physical Chemistry C, 112 (2008) 4444-4450.
[47]S. L. Cheng, C. H. Chung, and H. C. Lee, “A study of the synthesis, characterization, and kinetics of vertical silicon nanowire arrays on (001) Si substrates” Journal of the Electrochemical Society, 155 (2008) D711-D714.
[48]B. Ozdemir, M. Kulakci, R. Turan, and H. E. Unalan, “Effect of electroless etching parameters on the growth and reflection properties of silicon nanowires” Nanotechnology, 22 (2011) 155606.
[49]Z. Huang, X. Zhang, M. Reiche, L. Liu, W. Lee, T. Shimizu, and U. Gösele, “Extended arrays of vertically aligned sub-10 nm diameter [100] Si nanowires by metal-assisted chemical etching” Nano letters, 8 (2008) 3046-3051.
[50]K. Peng, M. Zhang, A. Lu, N. B. Wong, R. Zhang, and S. T. Lee, “Ordered silicon nanowire arrays via nanosphere lithography and metal-induced etching” Applied physics letters, 90 (2007) 163123.
[51]T. Moon, L. Chen, S. Choi, C. Kim, and W. Lu, “Efficient Si Nanowire Array Transfer via Bi‐Layer Structure Formation Through Metal‐Assisted Chemical Etching” Advanced Functional Materials, 24 (2014) 1949-1955.
[52]Z. Huang, N. Geyer, P. Werner, J. De Boor, and U. Gösele, “Metal‐assisted chemical etching of silicon: a review,” Advanced materials, 23 (2011) 285-308.
[53]B. P. Azeredo, J. Sadhu, J. Ma, K. Jacobs, J. Kim, K. Lee, and P. Ferreira, “Silicon nanowires with controlled sidewall profile and roughness fabricated by thin-film dewetting and metal-assisted chemical etching,” Nanotechnology, 24 (2013) 225305.
[54]Z. Huang, H. Fang, and J. Zhu, “Fabrication of silicon nanowire arrays with controlled diameter, length, and density,” Advanced materials, 19 (2007)744-748.
[55]S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. Dai, “Self-oriented regular arrays of carbon nanotubes and their field emission properties,” Science, 283 (1999) 512-514.
[56]W. A. De Heer, A. Chatelain, and D. Ugarte, “A carbon nanotube field-emission electron source,” Science, 270 (1995) 1179-1180.
[57]W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, and J. M. Kim, “Fully sealed, high-brightness carbon-nanotube field-emission display,” Applied physics letters, 75 (1999) 3129-3131.
[58]S. Neupane, M. Lastres, M. Chiarella, W. Li, Q. Su, and G. Du, “Synthesis and field emission properties of vertically aligned carbon nanotube arrays on copper,” Carbon, 50 (2012) 2641-2650.
[59]Y. Yang, G. Meng, X. Liu, L. Zhang, Z. Hu, C. He, Y. Hu, “Aligned SiC porous nanowire arrays with excellent field emission properties converted from si nanowires on silicon wafer,” The Journal of Physical Chemistry C, 112 (2008) 20126-20130.
[60]Y. J. Hung, S. L. Lee, L. C. Beng, H. C. Chang, Y. J. Huang, K. Y. Lee, and Y. S. Huang, “Relaxing the electrostatic screening effect by patterning vertically-aligned silicon nanowire arrays into bundles for field emission application,” Thin Solid Films, 556 (2014) 146-154.
[61]G. M. Whitesides, J. P. Mathias, C. T. Seto, “Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures,” (No. TR-45) (1991) HARVARD UNIV CAMBRIDGE MA DEPT OF CHEMISTRY.
[62]M. C. Daniel, and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chemical reviews, 104 (2004) 293-346.
[63]F. Caruso, H. Lichtenfeld, M. Giersig, and H. Möhwald, “Electrostatic self-assembly of silica nanoparticle-polyelectrolyte multilayers on polystyrene latex particles,” Journal of the American Chemical Society, 120 (1998) 8523-8524.
[64]D. J. Kirby, B. D. Smith, C. D. Keating, “Microwell‐Directed Self‐Assembly of Vertical Nanowire Arrays,” Particle & Particle Systems Characterization, 31 (2014) 492-499.
[65]Y. Xia, B. Gates, Y. Yin, and Y. Lu, “Monodispersed colloidal spheres: old materials with new applications,” Advanced Materials, 12 (2000) 693-713.
[66]Y. Xia, B. Gates, Y. Yin, Y. Lu, “Monodispersed colloidal spheres: old materials with new applications,” Advanced Materials, 12 (2000) 693-713.
[67]R. Micheletto, H. Fukuda, and M. Ohtsu, “A simple method for the production of a two-dimensional, ordered array of small latex particles,” Langmuir, 11 (1995) 3333-3336.
[68]J. Rybczynski, U. Ebels, M. Giersig, “Large-scale, 2D arrays of magnetic nanoparticles,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 219 (2003) 1-6.
[69]H. Li, J. Low, K. S. Brown, N. Wu, “Large-area well-ordered nanodot array pattern fabricated with self-assembled nanosphere template,” IEEE Sensors Journal, 8 (2008) 880-884.
[70]J. C. Hulteen, and R. P. Van Duyne, “Nanosphere lithography: a materials general fabrication process for periodic particle array surfaces,” Journal of Vacuum Science & Technology A, 13 (1995) 1553-1558.
[71]A. S. Dimitrov, and K. Nagayama, “Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces,” Langmuir, 12 (1996) 1303-1311.
[72]A. V. Whitney, B. D. Myers, and R. P. Van Duyne, “Sub-100 nm triangular nanopores fabricated with the reactive ion etching variant of nanosphere lithography and angle-resolved nanosphere lithography,” Nano Letters, 4 (2004) 1507-1511.
[73]E. Garnett, P. Yang, “Light trapping in silicon nanowire solar cells,” Nano letters, 10 (2010) 1082-1087.
[74]S. L. Cheng, S. W. Lu, S. L. Wong, C. C. Chang, and H. Chen, “Fabrication of 2D ordered arrays of cobalt silicide nanodots on (001) Si substrates,” Journal of crystal growth, 300 (2007) 473-477.
[75]K. Q. Peng, Y. J. Yan, S. P. Gao, J. Zhu, “Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry,” Advanced Materials, 14 (2002) 1164.
[76]K. Peng, Y. Yan, S. Gao, J. Zhu, “Dendrite‐Assisted Growth of Silicon Nanowires in Electroless Metal Deposition,” Advanced Functional Materials, 13 (2003) 127-132.
[77]S. K. Srivastava, D. Kumar, S. W. Schmitt, K. N. Sood, S. H. Christiansen, P. K. Singh, “Large area fabrication of vertical silicon nanowire arrays by silver-assisted single-step chemical etching and their formation kinetics,” Nanotechnology, 25 (2014) 175601.
[78]H. Fang, Y. Wu, J. Zhao, J. Zhu, “Silver catalysis in the fabrication of silicon nanowire arrays,” Nanotechnology, 17 (2006) 3768.
[79]Z. Huang, X. Zhang, M. Reiche, L. Liu, W. Lee, T. Shimizu, and U. Gösele, “Extended arrays of vertically aligned sub-10 nm diameter [100] Si nanowires by metal-assisted chemical etching,” Nano letters, 8 (2008) 3046-3051.
[80]N. Geyer, B. Fuhrmann, H. S. Leipner, P. Werner, “Ag-mediated charge transport during metal-assisted chemical etching of silicon nanowires,” ACS applied materials & interfaces, 5 (2013) 4302-4308.
[81]D. H. Lee, Y. Kim, G. S. Doerk, I. Laboriante, and R. Maboudian, “Strategies for controlling Si nanowire formation during Au-assisted electroless etching,” Journal of Materials Chemistry, 21 (2011) 10359-10363.
[82]Z. Huang, H. Fang, and J. Zhu, “Fabrication of silicon nanowire arrays with controlled diameter, length, and density,” Advanced materials, 19 (2007) 744-748.
[83]K. Peng, M. Zhang, A. Lu, N. B. Wong, R. Zhang, and S. T. Lee, “Ordered silicon nanowire arrays via nanosphere lithography and metal-induced etching,” Applied physics letters, 90 (2007) 163123.
[84]S. L. Cheng, C. Y. Chen, and S. W. Lee, “Kinetic investigation of the electrochemical synthesis of vertically-aligned periodic arrays of silicon nanorods on (001) Si substrate,” Thin Solid Films, 518 (2010) S190-S195.
[85]X. Li, K. Liang, B. K. Tay, and E. H. Teo, “Morphology-tunable assembly of periodically aligned Si nanowire and radial pn junction arrays for solar cell applications,” Applied Surface Science, 258 (2012) 6169-6176.
[86]S. Sridharan, N. Bhat, and K. N. Bhat, “Silicon surface texturing with a combination of potassium hydroxide and tetra-methyl ammonium hydroxide etching,” Applied Physics Letters, 102 (2013) 021604.
[87]J. Y. Jung, Z. Guo, S. W. Jee, H. D. Um, K. T. Park, and J. H. Lee, “A strong antireflective solar cell prepared by tapering silicon nanowires,” Optics express, 18 (2010) A286-A292.
[88]H. F. Hsu, J. Y. Wang, and Y. H. Wu, “KOH Etching for Tuning Diameter of Si Nanowire Arrays and Their Field Emission Characteristics,” Journal of The Electrochemical Society, 161 (2014) H53-H56.
[89]S. Lv, Z. Li, S. Su, L. Lin, Z. Zhang, and W. Miao, “Tunable field emission properties of well-aligned silicon nanowires with controlled aspect ratio and proximity,” RSC advace 4 (2014) 31729-31734.
[90]S. Lv, Z. Li, J. Liao, Z. Zhang, and W. Miao, “Well-aligned NiSi/Si heterostructured nanowire arrays as field emitters,” Journal of Vacuum Science & Technology B, 33 (2015) 02B101.
[91]J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano letters, 9 (2008) 279-282.
[92]H. Lin, H. Y. Cheung, F. Xiu, F. Wang, S. Yip, N. Han, and C. Y. Wong, “Developing controllable anisotropic wet etching to achieve silicon nanorods, nanopencils and nanocones for efficient photon trapping,” Journal of Materials Chemistry A, 1 (2013) 9942-9946.
[93]H. Iwai, T. Ohguro, and S. I. Ohmi, “NiSi salicide technology for scaled CMOS,” Microelectronic Engineering, 60 (2002) 157-169.
[94]T. O. H. R. U. Mochizuki, T. A. K. A. Y. A. Tsujimaru, M. A. S. A. H. I. R. O. Kashiwagi, and Y. O. S. H. I. O. Nishi, “Film properties of MoSi2 and their application to self-aligned MoSi2 gate MOSFET,” IEEE Journal of Solid-State Circuits, 15 (1980) 496-500.
[95]J. B. Lasky, J. S. Nakos, O. J. Cain, and P. J. Geiss, “Comparison of transformation to low-resistivity phase and agglomeration of TiSi2 and CoSi2,” IEEE Transactions on Electron Devices, 38 (1991) 262-269.
[96]L. W. Cheng, H. M. Lo, S. L. Cheng, L. J. Chen, and C. J. Tsai, “Effects of stress on the formation and growth of nickel silicides in Ni thin films on (001) Si,” Materials Science and Engineering: A, 409 (2005) 217-222.
[97]S. L. Cheng, S. W. Lu, C. H. Li, Y. C. Chang, C. K. Huang, and H. Chen, “Fabrication of periodic nickel silicide nanodot arrays using nanosphere lithography,” Thin solid films, 494 (2006) 307-310.
[98]H. F. Hsu, H. Y. Chan, T. H. Chen, H. Y. Wu, S. L. Cheng, and F. B. Wu, “Epitaxial growth of uniform NiSi2 layers with atomically flat silicide/Si interface by solid-phase reaction in Ni–P/Si (100) systems,” Applied Surface Science, 257 (2011) 7422-7426.
[99]J. Lu, X. Gao, S. L. Zhang, and L. Hultman, “Crystallization of NiSi x in a Body-Centered Cubic Structure during Solid-State Reaction between an Ultrathin Ni Film and Si (001) Substrate at 150–350° C,” Crystal Growth & Design, 13 (2013) 1801-1806.
[100]D. Connétable, and O. Thomas, “First-principles study of nickel-silicides ordered phases,” Journal of Alloys and Compounds, 509 (2011) 2639-2644.
[101]S. L. Cheng, S. W. Lu, S. L. Wong, C. C. Chang, H. Chen, “Fabrication of 2D ordered arrays of cobalt silicide nanodots on (001) Si substrates,” Journal of crystal growth, 300 (2007) 473-477.
[102]S. L. Cheng, S. L. Wong, S. W. Lu, H. Chen, “Large-area Co-silicide nanodot arrays produced by colloidal nanosphere lithography and thermal annealing,” Ultramicroscopy, 108 (2008) 1200-1204.
[103]B. L. Ong, W. Ong, Y. L. Foo, J. Pan, E. S. Tok, “Growth dynamics of low-dimensional CoSi 2 nanostructures revisited: Influence of interface structure and growth temperature,” Surface Science, 606 (2012) 1649-1669.
[104]J. C. Mahato, D. Das, R. R. Juluri, R. Batabyal, A. Roy, P. V. Satyam, and B. N. Dev, “Nanodot to nanowire: A strain-driven shape transition in self-organized endotaxial CoSi2 on Si (100),” Applied Physics Letters, 100 (2012) 263117.
[105]S. P. Murarka, “Silicide thin films and their applications in microelectronics,” Intermetallics, 3 (1995) 173-186.
[106]J. M. Gallego, R. Miranda, S. Molodtsov, C. Laubschat, G. Kaindl, “Growth of cobalt and cobalt disilicide on Si (100),” Surface science, 239 (1990) 203-212.
[107]Y. H. Liang, S. Y. Yu, C. L. Hsin, C. W. Huang, W. W. Wu, “Growth of single-crystalline cobalt silicide nanowires with excellent physical properties,” Journal of Applied Physics, 110 (2011) 074302.
[108]C. M. Lu, H. F. Hsu, K. C. Lu, “Growth of single-crystalline cobalt silicide nanowires and their field emission property,” Nanoscale research letters, 8 (2013) 1.
[109]W. L. Chiu, C. H. Chiu, J. Y. Chen, C. W. Huang, Y. T. Huang, K. C. Lu, W. W. Wu, “Single-crystalline δ-Ni2Si nanowires with excellent physical properties,” Nanoscale research letters, 8 (2013) 1-5.
[110]J. Y. Lin, H. M. Hsu, K. C. Lu, “Growth of single-crystalline nickel silicide nanowires with excellent physical properties,” CrystEngComm, 17 (2015) 1911-1916.
[111]H. F. Hsu, P. C. Tsai, and K. C. Lu, “Single-crystalline chromium silicide nanowires and their physical properties,” Nanoscale research letters, 10 (2015) 1-8.
[112]H. F. Hsu, C. H. Tseng, and T. H. Chen, “Formation of Epitaxial NiSi2 Nanowires on Si (100) Surface by Atomic Force Microscope Nanolithography,” Journal of nanoscience and nanotechnology, 10 (2010) 4533-4537.
[113]S. Lee, J. Yoon, B. Koo, D. H. Shin, J. H. Koo, C. J. Lee, T. Lee, “Formation of vertically aligned cobalt silicide nanowire arrays through a solid-state reaction,” IEEE Transactions on Nanotechnology, 12 (2013) 704-711.
[114]C. Y. Liu, W. S. Li, L. W. Chu, M. Y. Lu, C. J. Tsai, and L. J. Chen, “An ordered Si nanowire with NiSi2 tip arrays as excellent field emitters,” Nanotechnology, 22 (2010) 055603.
[115]S. Lv, Z. Li, J. Liao, Z. Zhang, and W. Miao, “Well-aligned NiSi/Si heterostructured nanowire arrays as field emitters,” Journal of Vacuum Science & Technology B, 33 (2015) 02B101.
[116]R. N. Wenzel, “SURFACE ROUGHNESS AND CONTACT ANGLE,” J. Phys Chem. 53 (1949) 1466-1467.
[117]J. E. Lennard-Jones, “Cohesion,” Proceedings of the Physical Society, 43 (1931) 461.
[118]A. B. D. CASSIE, “CONTACT ANGLES,” Discuss. Faraday Soc. 3 (1948) 11-16.
[119]R. H. FOWLER, L. NORDHEIM, “Electron Emission in Intense Electric Fields,” Royal Society of London, A119 (1928) 173-181
[120]F. Zhao, G. A. Cheng, R. T. Zheng, D. D. Zhao, S. L. Wu, and J. H. Deng, “Field emission enhancement of Au-Si nano-particle-decorated silicon nanowires,” Nanoscale research letters, 6 (2011) 1-5.
[121]H. S. Uh, and S. S. Park, “Investigation of various metal silicide field emitters and their application to field emission display,” Journal of The Electrochemical Society, 150 (2003) H12-H16.
[122]H. C. Wu, H. Y. Tsai, H. T. Chiu, and C. Y. Lee, “Silicon rice-straw array emitters and their superior electron field emission,” ACS applied materials & interfaces, 2 (2010) 3285-3288.
[123]W. Li, J. Zhou, X. G. Zhang, J. Xu, L. Xu, W. Zhao, K. Chen, “Field emission from a periodic amorphous silicon pillar array fabricated by modified nanosphere lithography,” Nanotechnology, 19 (2008) 135308.
[124]H. Y. Hsieh, S. H. Huang, K. F. Liao, S. K. Su, C. H. Lai, L. J. Chen, “High-density ordered triangular Si nanopillars with sharp tips and varied slopes: one-step fabrication and excellent field emission properties,” Nanotechnology, 18 (2007) 505305.
[125]L. Xu, W. Li, J. Xu, J. Zhou, L. Wu, X. G. Zhang, K. Chen, “Morphology control and electron field emission properties of high-ordered Si nanoarrays fabricated by modified nanosphere lithography,” Applied Surface Science, 255 (2009) 5414-5417.
[126]H. F. Hsu, J. Y. Wang, Y. H. Wu, “KOH Etching for Tuning Diameter of Si Nanowire Arrays and Their Field Emission Characteristics,” Journal of The Electrochemical Society, 161 (2014) H53-H56.
[127]S. Lv, Z. Li, S. Su, L. Lin, Z. Zhang, and W. Miao, “Tunable field emission properties of well-aligned silicon nanowires with controlled aspect ratio and proximity,” RSC advace 4 (2014) 31729.
[128]Y. F. Tzeng, Y. C. Lee, C. Y. Lee, H. T. Chiu, and I. N. Lin, “Electron field emission properties on UNCD coated Si-nanowires,” Diamond and Related Materials, 17 (2008) 753-757.
[129]M. Ahmad, K. Rasool, M. A. Rafiq, and M. M. Hasan, “Enhanced and persistent photoconductivity in vertical silicon nanowires and ZnS nanoparticles hybrid devices,” Applied Physics Letters, 101 (2012) 223103.
[130]S. L. Wu, J. H. Deng, T. Zhang, R. T. Zheng, and G. A. Cheng, “Tunable synthesis of carbon nanosheet/silicon nanowire hybrids for field emission applications,” Diamond and Related Materials, 26 (2012) 83-88.
[131]R. R. Devarapalli, R. V. Kashid, A. B. Deshmukh, P. Sharma, M. R. Das, M. A. More, and M. V. Shelke, “High efficiency electron field emission from protruded graphene oxide nanosheets supported on sharp silicon nanowires,” Journal of Materials Chemistry C, 1 (2013) 5040-5046.
[132]Y. M. Chang, P. H. Kao, H. M. Tai, H. W. Wang, C. M. Lin, H. Y. Lee, and J. Y. Juang, “Enhanced field emission characteristics in metal-coated Si-nanocones,” Physical Chemistry Chemical Physics, 15 (2013) 10761-10766.
[133]C. F. Chuang, S. L. Cheng, “Fabrication and properties of well-ordered arrays of single-crystalline NiSi2 nanowires and epitaxial NiSi2/Si heterostructures,” Nano Research, 7 (2014) 1592-1603.
[134]T. C. Cheng, P. Y. Chen, and S. Y. Wu, “Paradox of low field enhancement factor for field emission nanodiodes in relation to quantum screening effects,” Nanoscale research letters, 7 (2012) 1.
[135]M. Hussain, H. Fahad, and R. Qaisi, “Contact engineering for nano‐scale CMOS,” physica status solidi (a), 209 (2012) 1954-1959.
[136]S. W. Lee, B. L. Wu, and H. T. Chang, “Fabrication of Nanometer-Scale Si Field Emitters Using Self-Assembled Ge Nanomasks,” Journal of The Electrochemical Society, 157 (2010) H174-H177.
[137]C. Mu, Y. Yu, W. Liao, X. Zhao, D. Xu, X. Chen, and D. Yu, “Controlling growth and field emission properties of silicon nanotube arrays by multistep template replication and chemical vapor deposition,” Applied Physics Letters, 87 (2005) 113104.
指導教授 鄭紹良(Shao-Liang Cheng) 審核日期 2016-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明