博碩士論文 103324037 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:3.145.36.10
姓名 陳昱君(Yu-Jyun Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 人類牙髓幹細胞在直接電刺激其細胞週期與骨分化之關聯性
(The Relationship between Cell Cycle and Osteogenesis of Human Dental Pulp Stem Cells under Direct Electrical Stimulation)
相關論文
★ 利用穿膜胜肽改善帶正電高分子之轉染效率★ 利用導電高分子聚吡咯為基材以電刺激促進幹細胞分化
★ 以電刺激增進骨髓基質細胞骨分化之最佳化探討★ 利用電場控制導電性高分子以進行基因於聚電解質多層膜的組裝
★ 以短鏈胜肽接枝聚乙烯亞胺來進行基因輸送應用之研究★ 電紡絲製備褐藻酸鈉/聚己內酯之奈米複合纖維進行原位轉染
★ 電場對於複合奈米絲進行原位基因傳送之影響★ 利用電場調控聚電解質多層膜的釋放 以應用於基因輸送
★ 發展載藥電紡聚乳酸/多壁奈米碳管/聚乙二醇纖維★ 利用寡聚精胺酸促進去氧寡核苷酸輸送
★ 利用聚己內酯/褐藻酸鈉之複合電紡絲擴增癌症幹細胞★ 以二元體形式之Indolicidin 應用於去氧寡核苷酸之輸送
★ Indolicidin之色胺酸殘基對於轉染效率的影響★ Indolicidin之二聚體形式對輸送去氧寡核?酸的影響
★ 搭建可提供電刺激與機械刺激之生物反應器★ 硬脂基化的Indolicidin作為傳送質體去氧核 酸的非病毒載體
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究分別在一般培養(culture medium, CM)與投入骨分化藥物培養(osteogenesis medium, OM)下,對人類牙髓幹細胞(Human dental pulp stem cells, hDPSC)以直流電進行單次直接電刺激,探討電刺激對幹細胞在其細胞週期與骨分化之關聯性。鈣沉積量與細胞數分析結果顯示通電後分化能力提升至1.5到2倍且細胞數有下調。為了釐清電刺激促進骨分化造成的細胞數下調是否與細胞週期停滯(Cell cycle arrest)有關聯性,分別進行細胞生長曲線(Cell growth curve)及二階細胞週期分析(Two-step cell cycle analysis),發現電刺激組別細胞生長有趨緩,且細胞週期分析顯示CM情況下電刺激組別會造成G2M期細胞比例上升,但OM情況下則是G1期細胞比例上升。以西方墨點法分析細胞週期與訊息傳遞之蛋白質發現,CM情況下p21、p53有上調控,確認細胞週期確實有停滯,Rb之磷酸化比例與Cyclin E1上升,代表細胞加速脫離G1期。以G2/M檢查點Wee1與CDK1磷酸化之提升,和Cyclin A2之上調與Cyclin B1之下調,證實細胞週期被停滯在G2期。在OM情況下,p21亦有明顯提升,且Rb之磷酸化比例與G1期相關Cyclin D1、Cyclin E1、CDK4、CDK6下調,證實細胞在骨分化藥物和電刺激下會造成G1期停滯。而在Smad家族蛋白之結果,發現不論是CM或OM,其Smad3、Smad1/5之磷酸化比例和Smad4之表現量皆有明顯提升,推測直接電刺激藉由加快Smad訊息傳遞造成骨分化能力上調與p21表現增加使細胞週期停滯。
摘要(英) In this study, human dental pulp stem cells, hDPSC, cultured in regular culture medium (CM) or osteogenesis medium (OM) were treated direct current stimulation to discuss the effect of electrical stimulation on cell cycle and osteogenesis. The calcium deposition and cell number assay demonstrated that the mineralization of electrical stimulation treated group was improved 1.5 to 2 folds compared to the control group, however, it also reduced cell amounts. To investigate whether the reduction of cell under electrical stimulation resulted from cell cycle arrest, cell growth curve and two-step cell cycle analysis were performed. The results suggested that cell growth was retarded by electrical stimulation, and cells were arrested at G2/M and G1 when they were cultured in CM and OM, respectively. Therefore, we applied Western blotting to analyze proteins relative to cell cycle and signal transduction. In CM condition, p21 and p53 were up-regulated, suggesting cell cycle was arrested by electrical stimulation. Phosphorylation levels of Rb and Cyclin E were both increased, indicating cells were accelerated to leave from G1. The up-regulation of Cyclin A2 and down-regulation of Cyclin B1 suggested that cells were arrested at G2 stage. Therefore, we further analyzed Wee1 and phosphorylation of CDK1, the regulated protein in the checkpoint between G2 and M stages. The results demonstrated that Wee1 was up-regulated to increase the phosphorylation of CDK1, which eventually caused G2 stage arrest. In the OM condition, p21 was also unregulated. In addition, phosphorylation of Rb as well as the down regulations of Cyclin D1, Cyclin E1, CDK4, and CDK6 all supported that cell treated electrical stimulation in OM were arrested in G1 stage. Finally, the gene regulation of Smad proteins results demonstrated that Smad3 and Smad1/5 were both highly phosphorylated and the Smad4 was also up-regulated. These results indicated that electrical stimulation can accelerate Smad-mediated signal transduction, which not only improved osteogenesis but also up-regulated p21 to arrest cell cycle.
關鍵字(中) ★ 聚吡咯
★ 電刺激
★ 牙髓幹細胞
★ 骨分化
★ 細胞週期
關鍵字(英)
論文目次 摘要 I
Abstract III
致謝 IV
目錄 V
表目錄 IX
圖目錄 X
第一章 緒論 1
1.1 研究動機 1
1.2 實驗目的 5
第二章 文獻回顧與理論基礎 6
2.1 組織工程 6
2.2 幹細胞 8
2.2.1 牙髓間質幹細胞 10
2.3 骨分化過程 12
2.3.1 SMAD 蛋白家族 (SMAD protein family) 14
2.4 細胞週期 16
2.4.1 細胞週期素 (Cyclins) 19
2.4.2 細胞週期素依賴性激酶 (Cyclin-dependent kinases, CDKs) 20
2.4.3 p53腫瘤抑制蛋白 (p53 tumor suppressor protein) 23
2.4.4 p21細胞週期素依賴性激酶抑制蛋白 (p21 cyclin-dependent kinase inhibitor protein) 24
2.4.5 Wee1 G2檢查點激酶(Wee1 G2 checkpoint kinase) 26
2.4.6 Rb視網膜母細胞瘤蛋白 (Rb retinoblastoma protein) 27
2.5 物理刺激與細胞週期 28
2.6 細胞週期延滯對細胞生理影響 33
2.6.1 細胞複製之衰老(Replicative senescence) 33
2.6.2 DNA修復 (DNA repair) 34
2.6.3 細胞凋亡 (apoptosis) 35
2.6.4 分化 (Differentiation) 37
2.7 電刺激 37
第三章 實驗材料與方法 41
3.1 實驗藥品 41
3.1.1 導電材料製備藥品 41
3.1.2 細胞培養、骨分化用藥 41
3.1.3 生長曲線定量試劑 42
3.1.4 骨分化定性、定量試劑 43
3.1.5 多光源微量自動細胞分析模組定量試劑 44
3.1.6 蛋白質萃取、定量、定性試劑 44
3.2 實驗儀器 46
3.3 試藥製備與實驗方法 48
3.3.1 Polypyrrole film與電刺激裝置製備 48
3.3.2 細胞繼代培養與冷凍、解凍 49
3.3.3 骨分化培養液配方 (Osteogenesis medium) 51
3.3.4 茜素紅染色定性分析 (Alizarin Red Staining) 52
3.3.5 Calcium-O-Cresophtalein Complexone定量分析 54
3.3.6 MTT 分析 57
3.3.7 Two-step cell cycle 分析 59
3.3.8 蛋白質收樣與定量分析 62
3.3.9 蛋白質膠體電泳(SDS-PAGE) 63
3.3.10 西方墨點分析法 (Western Blot analysis) 67
3.4 實驗架構設計 73
3.4.1 直接電刺激對細胞骨分化的影響 74
3.4.2 直接電刺激對細胞生長速率與細胞週期分布的影響 74
3.4.3 直接電刺激對蛋白質分子機制的影響 76
第四章 結果與討論 77
4.1 直接電刺激對細胞骨分化的影響 77
4.1.1 茜素紅定性分析與鈣離子沉積定量分析骨分化效果 77
4.2 直接電刺激對細胞生長速率與細胞週期分布影響 80
4.2.1 細胞生長速率 80
4.2.2 細胞週期分布 83
4.3 直接電刺激對蛋白質分子機制的影響 88
4.3.1 直接電刺激對p53及p21之影響 88
4.3.2 直接電刺激對Rb磷酸化程度的影響 92
4.3.3 直接電刺激對於G2/M期Cyclins、CDKs與Wee1的影響 95
4.3.4 直接電刺激對於G1期Cyclins與CDKs的影響 98
4.3.5 直接電刺激對於Smad家族蛋白的影響 106
第五章 結論 115
參考資料 119
參考文獻 1. 交通部道路交通安全督導委員會, http://168.motc.gov.tw/TC/Report.aspx.
2. R. Marsell and T.A. Einhorn, The biology of fracture healing. Injury, 2011. 42(6): p. 551-5.
3. L.C. Gerstenfeld, D.M. Cullinane, G.L. Barnes, D.T. Graves, and T.A. Einhorn, Fracture healing as a post-natal developmental process: Molecular, spatial, and temporal aspects of its regulation. Journal of Cellular Biochemistry, 2003. 88(5): p. 873-884.
4. V. Karageorgiou and D. Kaplan, Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, 2005. 26(27): p. 5474-5491.
5. D.W. Hutmacher, Scaffolds in tissue engineering bone and cartilage. Biomaterials, 2000. 21(24): p. 2529-2543.
6. M. Miura, S. Gronthos, M.R. Zhao, B. Lu, L.W. Fisher, P.G. Robey, and S.T. Shi, SHED: Stem cells from human exfoliated deciduous teeth. Proceedings of the National Academy of Sciences of the United States of America, 2003. 100(10): p. 5807-5812.
7. B.M. Seo, M. Miura, S. Gronthos, P.M. Bartold, S. Batouli, J. Brahim, M. Young, P.G. Robey, C.Y. Wang, and S.T. Shi, Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet, 2004. 364(9429): p. 149-155.
8. G.T.J. Huang, W. Sonoyama, Y. Liu, H. Liu, S.L. Wang, and S.T. Shi, The hidden treasure in apical papilla: The potential role in pulp/dentin regeneration and bioroot engineering. Journal of Endodontics, 2008. 34(6): p. 645-651.
9. G. Laino, F. Carinci, A. Graziano, R. d′Aquino, V. Lanza, A. De Rosa, F. Gombos, F. Caruso, L. Guida, R. Rullo, D. Menditti, and G. Papaccio, In vitro bone production using stem cells derived from human dental pulp. Journal of Craniofacial Surgery, 2006. 17(3): p. 511-515.
10. M. Nakashima and A. Akamine, The application of tissue engineering to regeneration of pulp and dentin in endodontics. Journal of Endodontics, 2005. 31(10): p. 711-718.
11. P. Ducy, R. Zhang, V. Geoffroy, A.L. Ridall, and G. Karsenty, Osf2/Cbfa1: A transcriptional activator of osteoblast differentiation. Cell, 1997. 89(5): p. 747-754.
12. G.H. Altman, R.L. Horan, I. Martin, J. Farhadi, P.R. Stark, V. Volloch, J.C. Richmond, G. Vunjak-Novakovic, and D.L. Kaplan, Cell differentiation by mechanical stress. The FASEB Journal, 2002. 16(2): p. 270-2.
13. N. Suzuki, Y. Yoshimura, Y. Deyama, K. Suzuki, and Y. Kitagawa, Mechanical stress directly suppresses osteoclast differentiation in RAW264.7 cells. International Journal of Molecular Medicine, 2008. 21(3): p. 291-296.
14. E.M. Kearney, E. Farrell, P.J. Prendergast, and V.A. Campbell, Tensile Strain as a Regulator of Mesenchymal Stem Cell Osteogenesis. Annals of Biomedical Engineering, 2010. 38(5): p. 1767-1779.
15. F. Padilla, R. Puts, L. Vico, A. Guignandon, and K. Raum, Stimulation of Bone Repair with Ultrasound, in Therapeutic Ultrasound, J.M. Escoffre and A. Bouakaz, Editors. 2016, Springer Int Publishing Ag: Cham. p. 385-427.
16. W.Y. Sim, S.W. Park, S.H. Park, B.H. Min, S.R. Park, and S.S. Yang, A pneumatic micro cell chip for the differentiation of human mesenchymal stem cells under mechanical stimulation. Lab on a Chip, 2007. 7(12): p. 1775-1782.
17. J.R. Henstock, M. Rotherham, J.B. Rose, and A.J. El Haj, Cyclic hydrostatic pressure stimulates enhanced bone development in the foetal chick femur in vitro. Bone, 2013. 53(2): p. 468-477.
18. C. Ruff, B. Holt, and E. Trinkaus, Who′s afraid of the big bad Wolff?: "Wolff′s law" and bone functional adaptation. American Journal of Physical Anthropology, 2006. 129(4): p. 484-98.
19. H.M. Frost, From Wolff′s law to the Utah paradigm: Insights about bone physiology and its clinical applications. Anatomical Record, 2001. 262(4): p. 398-419.
20. E. Fukada and I. Yasuda, On the Piezoelectric Effect of Bone. Journal of the Physical Society of Japan, 1957. 12(10): p. 1158-1162.
21. A. Rubinacci, J. Black, C.T. Brighton, and Z.B. Friedenberg, Changes in bioelectric potentials on bone associated with direct current stimulation of osteogenesis. Journal of Orthopaedic Research, 1988. 6(3): p. 335-45.
22. The classic: Fundamental aspects of fracture treatment by Iwao Yasuda, reprinted from J. Kyoto Med. Soc., 4:395-406, 1953. Clinical Orthopaedics and Related Research, 1977(124): p. 5-8.
23. J.A. Spadaro, Mechanical and electrical interactions in bone remodeling. Bioelectromagnetics, 1997. 18(3): p. 193-202.
24. C.A. Bassett and R.O. Becker, Generation of electric potentials by bone in response to mechanical stress. Science, 1962. 137(3535): p. 1063-4.
25. C.A. Bassett, R.J. Pawluk, and R.O. Becker, Effects of Electric Currents on Bone in Vivo. Nature, 1964. 204: p. 652-4.
26. P.R.T. Kuzyk and E.H. Schemitsch, The science of electrical stimulation therapy for fracture healing. Indian Journal of Orthopaedics, 2009. 43(2): p. 127-131.
27. I. Yasuda, Electrical callus and callus formation by electret. Clinical Orthopaedics and Related Research, 1977(124): p. 53-6.
28. M.M. Zhai, D. Jing, S.C. Tong, Y. Wu, P. Wang, Z.B. Zeng, G.H. Shen, X. Wang, Q.L. Xu, and E.P. Luo, Pulsed electromagnetic fields promote in vitro osteoblastogenesis through a Wnt/-catenin signaling-associated mechanism. Bioelectromagnetics, 2016. 37(3): p. 152-162.
29. A. Ongaro, A. Pellati, L. Bagheri, C. Fortini, S. Setti, and M. De Mattei, Pulsed Electromagnetic Fields Stimulate Osteogenic Differentiation in Human Bone Marrow and Adipose Tissue Derived Mesenchymal Stem Cells. Bioelectromagnetics, 2014. 35(6): p. 426-436.
30. H.J. Kim, J. Jung, J.H. Park, J.H. Kim, K.N. Ko, and C.W. Kim, Extremely low-frequency electromagnetic fields induce neural differentiation in bone marrow derived mesenchymal stem cells. Experimental Biology and Medicine, 2013. 238(8): p. 923-931.
31. R.A. Gittens, R. Olivares-Navarrete, R. Rettew, R.J. Butera, F.M. Alamgir, B.D. Boyan, and Z. Schwartz, Electrical Polarization of Titanium Surfaces for the Enhancement of Osteoblast Differentiation. Bioelectromagnetics, 2013. 34(8): p. 599-612.
32. H. Park, R. Bhallal, R. Saigal, M. Radisic, N. Watson, R. Langer, and G. Vunjak-Novakovic, Effects of electrical stimulation in C2C12 muscle constructs. Journal of Tissue Engineering and Regenerative Medicine, 2008. 2(5): p. 279-287.
33. M. Mie, T. Endoh, Y. Yanagida, E. Kobatake, and M. Aizawa, Induction of neural differentiation by electrically stimulated gene expression of NeuroD2. Journal of Biotechnology, 2003. 100(3): p. 231-238.
34. E.T. Wang, B. Reid, N. Lois, J.V. Forrester, C.D. McCaig, and M. Zhao, Electrical inhibition of lens epithelial cell proliferation: an additional factor in secondary cataract? Faseb Journal, 2005. 19(3): p. 842-+.
35. M.L. Hernandez-Bule, M.A. Trillo, and A. Ubeda, Molecular Mechanisms Underlying Antiproliferative and Differentiating Responses of Hepatocarcinoma Cells to Subthermal Electric Stimulation. Plos One, 2014. 9(1): p. 9.
36. S.K. Boda, G. Thrivikraman, and B. Basu, Magnetic field assisted stem cell differentiation - role of substrate magnetization in osteogenesis. Journal of Materials Chemistry B, 2015. 3(16): p. 3150-3168.
37. 郭弘偉, 直接電刺激對於人類牙髓幹細胞在骨分化過程中基因調控與分化能力影響之研究. 國立中央大學 化學工程與材料工程研究所學位論文, 2015.
38. M.R. Roh, J.Y. Jung, and K.Y. Chung, Autologous Fat Transplantation for Depressed Linear Scleroderma-Induced Facial Atrophic Scars. Dermatologic Surgery, 2008. 34(12): p. 1659-1665.
39. R.J. Zienowicz and E. Karacaoglu, Implant-based breast reconstruction with allograft. Plastic and Reconstructive Surgery, 2007. 120(2): p. 373-381.
40. T. Ifukube, Artificial organs: recent progress in artificial hearing and vision. Journal of Artificial Organs, 2009. 12(1): p. 8-16.
41. R. Langer and J.P. Vacanti, Tissue Engineering. Science, 1993. 260(5110): p. 920-926.
42. M.P. Lutolf and J.A. Hubbell, Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nature Biotechnology, 2005. 23(1): p. 47-55.
43. P.A. Zuk, M. Zhu, H. Mizuno, J. Huang, J.W. Futrell, A.J. Katz, P. Benhaim, H.P. Lorenz, and M.H. Hedrick, Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Engineering, 2001. 7(2): p. 211-228.
44. C.M. Murphy, F.J. O′Brien, D.G. Little, and A. Schindeler, Cell-Scaffold Interactions In The Bone Tissue Engineering Triad. European Cells & Materials, 2013. 26: p. 120-132.
45. T. Watabe and K. Miyazono, Roles of TGF-beta family signaling in stem cell renewal and differentiation. Cell Research, 2009. 19(1): p. 103-115.
46. EuroStemCell, http://archive.eurostemcell.org/Outreach/outreach_about_stem_cells.htm.
47. J.A. Thomson, J. Itskovitz-Eldor, S.S. Shapiro, M.A. Waknitz, J.J. Swiergiel, V.S. Marshall, and J.M. Jones, Embryonic stem cell lines derived from human blastocysts. Science, 1998. 282(5391): p. 1145-1147.
48. M.F. Pittenger, A.M. Mackay, S.C. Beck, R.K. Jaiswal, R. Douglas, J.D. Mosca, M.A. Moorman, D.W. Simonetti, S. Craig, and D.R. Marshak, Multilineage potential of adult human mesenchymal stem cells. Science, 1999. 284(5411): p. 143-147.
49. S. Aggarwal and M.F. Pittenger, Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 2005. 105(4): p. 1815-1822.
50. StemCell, http://informationonstemcellsweebly.weebly.com/types-of-stem-cells.html.
51. B.E. Petersen, W.C. Bowen, K.D. Patrene, W.M. Mars, A.K. Sullivan, N. Murase, S.S. Boggs, J.S. Greenberger, and J.P. Goff, Bone marrow as a potential source of hepatic oval cells. Science, 1999. 284(5417): p. 1168-1170.
52. A. Erices, P. Conget, and J.J. Minguell, Mesenchymal progenitor cells in human umbilical cord blood. British Journal of Haematology, 2000. 109(1): p. 235-242.
53. S. Kern, H. Eichler, J. Stoeve, H. Kluter, and K. Bieback, Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells, 2006. 24(5): p. 1294-1301.
54. P.A. Zuk, M. Zhu, P. Ashjian, D.A. De Ugarte, J.I. Huang, H. Mizuno, Z.C. Alfonso, J.K. Fraser, P. Benhaim, and M.H. Hedrick, Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell, 2002. 13(12): p. 4279-4295.
55. I.C. Gay, S. Chen, and M. MacDougall, Isolation and characterization of multipotent human periodontal ligament stem cells. Orthodontics & Craniofacial Research, 2007. 10(3): p. 149-160.
56. A.J. Sloan and A.J. Smith, Stem cells and the dental pulp: potential roles in dentine regeneration and repair. Oral Diseases, 2007. 13(2): p. 151-157.
57. S. Gronthos, J. Brahim, W. Li, L.W. Fisher, N. Cherman, A. Boyde, P. DenBesten, P.G. Robey, and S. Shi, Stem cell properties of human dental pulp stem cells. Journal of Dental Research, 2002. 81(8): p. 531-535.
58. S. Gronthos, M. Mankani, J. Brahim, P.G. Robey, and S. Shi, Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2000. 97(25): p. 13625-13630.
59. A. Bakopoulou, G. Leyhausen, J. Yolk, A. Tsiftsoglou, P. Garefis, P. Koidis, and W. Geurtsen, Comparative analysis of in vitro osteo/odontogenic differentiation potential of human dental pulp stem cells (DPSCs) and stem cells from the apical papilla (SCAP). Archives of Oral Biology, 2011. 56(7): p. 709-721.
60. G.T.J. Huang, S. Gronthos, and S. Shi, Mesenchymal Stem Cells Derived from Dental Tissues vs. Those from Other Sources: Their Biology and Role in Regenerative Medicine. Journal of Dental Research, 2009. 88(9): p. 792-806.
61. G. Laino, R. d′Aquino, A. Graziano, V. Lanza, F. Carinci, F. Naro, G. Pirozzi, and G. Papaccio, A new population of human adult dental pulp stem cells: A useful source of living autologous fibrous bone tissue (LAB). Journal of Bone and Mineral Research, 2005. 20(8): p. 1394-1402.
62. M. Nakashima and A.H. Reddi, The application of bone morphogenetic proteins to dental tissue engineering. Nature Biotechnology, 2003. 21(9): p. 1025-1032.
63. R.S. Prescott, R. Alsanea, M.I. Tayad, B.R. Johnson, C.S. Wenckus, J. Hao, A.S. John, and A. George, In vivo generation of dental pulp-like tissue by using dental pulp stem cells, dentin matrix protein 1 transplantation in mice. Journal of Endodontics, 2008. 34(4): p. 421-426.
64. S.P. Bruder, N. Jaiswal, N.S. Ricalton, J.D. Mosca, K.H. Kraus, and S. Kadiyala, Mesenchymal stem cells in osteobiology and applied bone regeneration. Clinical Orthopaedics and Related Research, 1998(355): p. S247-S256.
65. G.S. Stein, J.B. Lian, J.L. Stein, A.J. VanWijnen, and M. Montecino, Transcriptional control of osteoblast growth and differentiation. Physiological Reviews, 1996. 76(2): p. 593-629.
66. R. Derynck, Y. Zhang, and X.-H. Feng, Transcriptional Activators of TGF-β Responses: Smads. Cell, 1998. 95(6): p. 737-740.
67. J. Massague, J. Seoane, and D. Wotton, Smad transcription factors. Genes & Development, 2005. 19(23): p. 2783-810.
68. J.-W. Wu, M. Hu, J. Chai, J. Seoane, M. Huse, C. Li, D.J. Rigotti, S. Kyin, T.W. Muir, R. Fairman, J. Massagué, and Y. Shi, Crystal Structure of a Phosphorylated Smad2. Molecular Cell, 2001. 8(6): p. 1277-1289.
69. Y. Shi, A. Hata, R.S. Lo, J. Massague, and N.P. Pavletich, A structural basis for mutational inactivation of the tumour suppressor Smad4. Nature, 1997. 388(6637): p. 87-93.
70. F. Itoh, H. Asao, K. Sugamura, C.H. Heldin, P. ten Dijke, and S. Itoh, Promoting bone morphogenetic protein signaling through negative regulation of inhibitory Smads. The EMBO Journal, 2001. 20(15): p. 4132-42.
71. G.Q. Chen, C.X. Deng, and Y.P. Li, TGF-beta and BMP Signaling in Osteoblast Differentiation and Bone Formation. International Journal of Biological Sciences, 2012. 8(2): p. 272-288.
72. K. Pardali, A. Kurisaki, A. Moren, P. ten Dijke, D. Kardassis, and A. Moustakas, Role of smad proteins and transcription factor Sp1 in p21(Wafl/Cip1) regulation by transforming growth factor-beta. Journal of Biological Chemistry, 2000. 275(38): p. 29244-29256.
73. A. Moustakas, K. Pardali, A. Gaal, and C.H. Heldin, Mechanisms of TGF-beta signaling in regulation of cell growth and differentiation. Immunology Letters, 2002. 82(1-2): p. 85-91.
74. C.J. Sherr, Cancer cell cycles. Science, 1996. 274(5293): p. 1672-1677.
75. I. Wilmut, A.E. Schnieke, J. McWhir, A.J. Kind, and K.H.S. Campbell, Viable offspring derived from fetal and adult mammalian cells. Nature, 1997. 385(6619): p. 810-813.
76. C. Norbury and P. Nurse, Animal-Cell Cycles And Their Control. Annual Review of Biochemistry, 1992. 61: p. 441-470.
77. S.O. Marx, T. Jayaraman, L.O. Go, and A.R. Marks, Rapamycin-Fkbp Inhibits Cell-Cycle Regulators Of Proliferation In Vascular Smooth-Muscle Cells. Circulation Research, 1995. 76(3): p. 412-417.
78. C.S. Potten and M. Loeffler, Stem-Cells - Attributes, Cycles, Spirals, Pitfalls And Uncertainties - Lessons For And From The Crypt. Development, 1990. 110(4): p. 1001-1020.
79. S.J. Shiff, L. Qiao, L.L. Tsai, and B. Rigas, Sulindac Sulfide, An Aspirin-Like Compound, Inhibits Proliferation, Causes Cell-Cycle Quiescence, And Induces Apoptosis In Ht-29 Colon Adenocarcinoma Cells. Journal of Clinical Investigation, 1995. 96(1): p. 491-503.
80. BD, http://www.bdbiosciences.com/tw/research/apoptosis/analysis/index.jsp.
81. Z.M. Bu and D.J.E. Callaway, Proteins Move! Protein Dynamics And Long-Range Allostery In Cell Signaling. Advances in Protein Chemistry and Structural Biology: Protein Structure and Diseases, Vol 83, 2011. 83: p. 163-221.
82. D. Hanahan and R.A. Weinberg, The hallmarks of cancer. Cell, 2000. 100(1): p. 57-70.
83. T. Matsumoto, Y. Sowa, N. Ohtani-Fujita, T. Tamaki, T. Takenaka, K. Kuribayashi, and T. Sakai, p53-independent induction of WAF1/Cip1 is correlated with osteoblastic differentiation by vitamin D-3. Cancer Letters, 1998. 129(1): p. 61-68.
84. L. Qin, X. Li, J.K. Ko, and N.C. Partridge, Parathyroid hormone uses multiple mechanisms to arrest the cell cycle progression of osteoblastic cells from G(1) to S phase. Journal of Biological Chemistry, 2005. 280(4): p. 3104-3111.
85. I.A. San Martin, N. Varela, M. Gaete, K. Villegas, M. Osorio, J.C. Tapia, M. Antonelli, E.E. Mancilla, B.P. Pereira, S.S. Nathan, J.B. Lian, J.L. Stein, G.S. Stein, A.J. Van Wijnen, and M. Galindo, Impaired Cell Cycle Regulation of the Osteoblast-Related Heterodimeric Transcription Factor Runx2-Cbf beta in Osteosarcoma Cells. Journal of Cellular Physiology, 2009. 221(3): p. 560-571.
86. T. Evans, E.T. Rosenthal, J. Youngblom, D. Distel, and T. Hunt, Cyclin: A protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell, 1983. 33(2): p. 389-396.
87. CNX, https://www.boundless.com/biology/textbooks/boundless-biology-textbook/cell-reproduction-10/control-of-the-cell-cycle-89/regulator-molecules-of-the-cell-cycle-399-11626/images/fig-ch10_03_02/.
88. L.H. Hartwell and M.B. Kastan, Cell-Cycle Control And Cancer. Science, 1994. 266(5192): p. 1821-1828.
89. M. Serrano, G.J. Hannon, and D. Beach, A New Regulatory Motif In Cell-Cycle Control Causing Specific-Inhibition Of Cyclin-D/Cdk4. Nature, 1993. 366(6456): p. 704-707.
90. A. Koff, A. Giordano, D. Desai, K. Yamashita, J.W. Harper, S. Elledge, T. Nishimoto, D.O. Morgan, B.R. Franza, and J.M. Roberts, Formation And Activation Of A Cyclin E-Cdk2 Complex During The G(1)-Phase Of The Human Cell-Cycle. Science, 1992. 257(5077): p. 1689-1694.
91. M. Pagano, R. Pepperkok, F. Verde, W. Ansorge, and G. Draetta, Cyclin-A Is Required At 2 Points In The Human Cell-Cycle. Embo Journal, 1992. 11(3): p. 961-971.
92. J. Pines and T. Hunter, Human Cyclin-A And Cyclin-B1 Are Differentially Located In The Cell And Undergo Cell-Cycle Dependent Nuclear Transport. Journal of Cell Biology, 1991. 115(1): p. 1-17.
93. R. Suryadinata, M. Sadowski, and B. Sarcevic, Control of cell cycle progression by phosphorylation of cyclin-dependent kinase (CDK) substrates. Bioscience Reports, 2010. 30(4): p. 243-255.
94. M. Hollstein, D. Sidransky, B. Vogelstein, and C.C. Harris, P53 Mutations In Human Cancers. Science, 1991. 253(5015): p. 49-53.
95. Y.J. Cho, S. Gorina, P.D. Jeffrey, and N.P. Pavletich, Crystal-Structure Of A P53 Tumor-Suppressor Dna Complex - Understanding Tumorigenic Mutations. Science, 1994. 265(5170): p. 346-355.
96. W.S. Eldeiry, T. Tokino, V.E. Velculescu, D.B. Levy, R. Parsons, J.M. Trent, D. Lin, W.E. Mercer, K.W. Kinzler, and B. Vogelstein, Waf1, A Potential Mediator Of P53 Tumor Suppression. Cell, 1993. 75(4): p. 817-825.
97. Meduniwien, http://www.meduniwien.ac.at/surgery-research/p53/about.htm.
98. W.R. Taylor and G.R. Stark, Regulation of the G2/M transition by p53. Oncogene, 2001. 20(15): p. 1803-1815.
99. H. Toyoshima and T. Hunter, P27, A Novel Inhibitor Of G1 Cyclin-Cdk Protein-Kinase Activity, Is Related To P21. Cell, 1994. 78(1): p. 67-74.
100. A. Moustakas and D. Kardassis, Regulation of the human p21/WAF1/Cip1 promoter in hepatic cells by functional interactions between Sp1 and Smad family members. Proceedings of the National Academy of Sciences of the United States of America, 1998. 95(12): p. 6733-6738.
101. U.o. Crete, http://biochemistry.med.uoc.gr/pages/kardasis_research.html?name=Content&pa=showpage&pid=5.
102. C. Denicourt and S.F. Dowdy, Another twist in the transforming growth factor beta-induced cell-cycle arrest chronicle. Proceedings of the National Academy of Sciences of the United States of America, 2003. 100(26): p. 15290-1.
103. G.J. Denhaese, N. Walworth, A.M. Carr, and K.L. Gould, The Wee1 Protein-Kinase Regulates T14 Phosphorylation Of Fission Yeast Cdc2. Molecular Biology of the Cell, 1995. 6(4): p. 371-385.
104. Wikipedia, https://en.wikipedia.org/wiki/Wee1.
105. A. Murphree and W. Benedict, Retinoblastoma: clues to human oncogenesis. Science, 1984. 223(4640): p. 1028-1033.
106. C.J. Sherr and J.M. Roberts, Inhibitors of mammalian G1 cyclin-dependent kinases. Genes & Development, 1995. 9(10): p. 1149-1163.
107. M. Malumbres and M. Barbacid, To cycle or not to cycle: a critical decision in cancer. Nature Reviews Cancer, 2001. 1(3): p. 222-31.
108. E.S. Knudsen and K.E. Knudsen, Retinoblastoma tumor suppressor: Where cancer meets the cell cycle. Experimental Biology and Medicine, 2006. 231(7): p. 1271-1281.
109. H.K. Jeon, S.U. Choi, and N.P. Jung, Association of the ERK1/2 and p38 kinase pathways with nitric oxide-induced apoptosis and cell cycle arrest in colon cancer cells. Cell Biology and Toxicology, 2005. 21(2): p. 115-125.
110. S.N. Kim, Y.H. Ahn, S.G. Kim, S.D. Park, S.C.C. Yoon, and S.H. Hong, 8-Cl-cAMP induces cell cycle-specific apoptosis ln human cancer cells. International Journal of Cancer, 2001. 93(1): p. 33-41.
111. K.Q. Yan, C. Zhang, J.B. Feng, L.F. Hou, L. Yan, Z.L. Zhou, Z.X. Liu, C. Liu, Y.D. Fan, B.Z. Zheng, and Z.H. Xu, Induction of G1 cell cycle arrest and apoptosis by berberine in bladder cancer cells. European Journal of Pharmacology, 2011. 661(1-3): p. 1-7.
112. C. Tolis, G.J. Peters, C.G. Ferreira, H.M. Pinedo, and G. Giaccone, Cell cycle disturbances and apoptosis induced by topotecan and gemcitabine on human lung cancer cell lines. European Journal of Cancer, 1999. 35(5): p. 796-807.
113. Y. Amoh, L.N. Li, K. Katsuoka, and R.M. Hoffman, Chemotherapy targets the hair-follicle vascular network but not the stem cells. Journal of Investigative Dermatology, 2007. 127(1): p. 11-15.
114. M. Olcum and E. Ozcivici, Daily application of low magnitude mechanical stimulus inhibits the growth of MDA-MB-231 breast cancer cells in vitro. Cancer Cell International, 2014. 14: p. 8.
115. W. Luo, W. Xiong, J. Zhou, Z. Fang, W.J. Chen, Y.B. Fan, and F. Li, Laminar shear stress delivers cell cycle arrest and anti-apoptosis to mesenchymal stem cells. Acta Biochimica Et Biophysica Sinica, 2011. 43(3): p. 210-216.
116. J.E. Kalns and E.H. Piepmeier, Exposure to hyperbaric oxygen induces cell cycle perturbation in prostate cancer cells. In Vitro Cellular & Developmental Biology-Animal, 1999. 35(2): p. 98-101.
117. M. Matsumoto, T. Yamaguchi, Y. Fukumaki, R. Yasunaga, and S. Terada, High pressure induces G2 arrest in murine erythroleukemia cells. Journal of Biochemistry, 1998. 123(1): p. 87-93.
118. B.G. Gabrielli, J.M. Clark, A.K. McCormack, and K.A.O. Ellem, Ultraviolet light-induced G2 phase cell cycle checkpoint blocks cdc25-dependent progression into mitosis. Oncogene, 1997. 15(7): p. 749-758.
119. W.J. Zhong, W.H. Sit, J.M.F. Wan, and A.C.H. Yu, Sonoporation Induces Apoptosis And Cell Cycle Arrest In Human Promyelocytic Leukemia Cells. Ultrasound in Medicine and Biology, 2011. 37(12): p. 2149-2159.
120. D. Atallah, V. Marsaud, C. Radanyi, M. Kornprobst, R. Rouzier, D. Elias, and J.M. Renoir, Thermal enhancement of oxaliplatin-induced inhibition of cell proliferation and cell cycle progression in human carcinoma cell lines. International Journal of Hyperthermia, 2004. 20(4): p. 405-419.
121. J. Campisi and F.D. di Fagagna, Cellular senescence: when bad things happen to good cells. Nature Reviews Molecular Cell Biology, 2007. 8(9): p. 729-740.
122. M. Valko, D. Leibfritz, J. Moncol, M.T.D. Cronin, M. Mazur, and J. Telser, Free radicals and antioxidants in normal physiological functions and human disease. International Journal of Biochemistry & Cell Biology, 2007. 39(1): p. 44-84.
123. R.S. Sohal and R. Weindruch, Oxidative stress, caloric restriction, and aging. Science, 1996. 273(5271): p. 59-63.
124. J. Brugarolas, C. Chandrasekaran, J.I. Gordon, D. Beach, T. Jacks, and G.J. Hannon, Radiation-Induced Cell-Cycle Arrest Compromised By P21 Deficiency. Nature, 1995. 377(6549): p. 552-557.
125. C.A. Schmitt, J.S. Fridman, M. Yang, S. Lee, E. Baranov, R.M. Hoffman, and S.W. Lowe, A senescence program controlled by p53 and p16(INK4a) contributes to the outcome of cancer therapy. Cell, 2002. 109(3): p. 335-346.
126. A. Sancar, L.A. Lindsey-Boltz, K. Unsal-Kacmaz, and S. Linn, Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annual Review of Biochemistry, 2004. 73: p. 39-85.
127. W. Droge, Free radicals in the physiological control of cell function. Physiological Reviews, 2002. 82(1): p. 47-95.
128. K. Rass and J. Reichrath, UV damage and DNA repair in malignant melanoma and nonmelanoma skin cancer. Sunlight, Vitamin D and Skin Cancer, 2008. 624: p. 162-178.
129. S.S. Hecht, Tobacco smoke carcinogens and lung cancer. Journal of the National Cancer Institute, 1999. 91(14): p. 1194-1210.
130. J.G. Gong, A. Costanzo, H.Q. Yang, G. Melino, W.G. Kaelin, M. Levrero, and J.Y.J. Wang, The tyrosine kinase c-Abl regulates p73 in apoptotic response to cisplatin-induced DNA damage. Nature, 1999. 399(6738): p. 806-809.
131. D. Hanahan and R.A. Weinberg, Hallmarks of Cancer: The Next Generation. Cell, 2011. 144(5): p. 646-674.
132. A. Ashkenazi and V.M. Dixit, Death receptors: Signaling and modulation. Science, 1998. 281(5381): p. 1305-1308.
133. A. Ashkenazi, Directing cancer cells to self-destruct with pro-apoptotic receptor agonists. Nature Reviews Drug Discovery, 2008. 7(12): p. 1001-1012.
134. M.R. Bennett, T.D. Littlewood, S.M. Schwartz, and P.L. Weissberg, Increased sensitivity of human vascular smooth muscle cells from atherosclerotic plaques to p53-mediated apoptosis. Circulation Research, 1997. 81(4): p. 591-599.
135. J.P. Miller, N. Yeh, A. Vidal, and A. Koff, Interweaving the cell cycle machinery with cell differentiation. Cell Cycle, 2007. 6(23): p. 2932-2938.
136. T.K. Myers, S.E. Andreuzza, and D.S. Franklin, p18 (INK4c) and p27(KIP1) are required for cell cycle arrest of differentiated myotubes. Experimental Cell Research, 2004. 300(2): p. 365-378.
137. N. Schrantz, G.E. Beney, M.T. Auffredou, M.F. Bourgeade, G. Leca, and A. Vazquez, The expression of p18(INK4) and p27(kip1) cyclin-dependent kinase inhibitors is regulated differently during human B cell differentiation. Journal of Immunology, 2000. 165(8): p. 4346-4352.
138. L. Li, G.P. Zhang, Y. Zhang, J. Tan, H. Huang, B.Q. Huang, and J. Lu, Sodium butyrate-induced upregulation of p18(INK4C) gene affects K562 cell G(0)/G(1) arrest and differentiation. Molecular and Cellular Biochemistry, 2008. 319(1-2): p. 9-15.
139. H. Wiesmann, M. Hartig, U. Stratmann, U. Meyer, and U. Joos, Electrical stimulation influences mineral formation of osteoblast-like cells in vitro. Biochim Biophys Acta, 2001. 1538(1): p. 28-37.
140. M.T. Tsai, W.J. Li, R.S. Tuan, and W.H. Chang, Modulation of osteogenesis in human mesenchymal stem cells by specific pulsed electromagnetic field stimulation. Journal of Orthopaedic Research, 2009. 27(9): p. 1169-74.
141. G. Shi, M. Rouabhia, S. Meng, and Z. Zhang, Electrical stimulation enhances viability of human cutaneous fibroblasts on conductive biodegradable substrates. Journal of Biomedical Materials Research Part A, 2008. 84(4): p. 1026-37.
142. M. Fini, G. Giavaresi, A. Carpi, A. Nicolini, S. Setti, and R. Giardino, Effects of pulsed electromagnetic fields on articular hyaline cartilage: review of experimental and clinical studies. Biomedicine & Pharmacotherapy, 2005. 59(7): p. 388-394.
143. G.X. Shi, Z. Zhang, and M. Rouabhia, The regulation of cell functions electrically using biodegradable polypyrrole-polylactide conductors. Biomaterials, 2008. 29(28): p. 3792-3798.
144. I.A. Paun, F. Stokker-Cheregi, C.R. Luculescu, A.M. Acasandrei, V. Ion, M. Zamfirescu, C.C. Mustaciosu, M. Mihailescu, and M. Dinescu, Electrically stimulated osteogenesis on Ti-PPy/PLGA constructs prepared by laser-assisted processes. Materials Science & Engineering C-Materials for Biological Applications, 2015. 55: p. 61-69.
145. W.W. Hu, Y.T. Hsu, Y.C. Cheng, C. Li, R.C. Ruaan, C.C. Chien, C.A. Chung, and C.W. Tsao, Electrical stimulation to promote osteogenesis using conductive polypyrrole films. Materials Science & Engineering C-Materials for Biological Applications, 2014. 37: p. 28-36.
146. BioTek, http://www.biotek.com/resources/articles/quontification-cell-viability-epoch.html.
147. R.D. Jackson, A.Z. LaCroix, M. Gass, R.B. Wallace, J. Robbins, C.E. Lewis, T. Bassford, S.A.A. Beresford, H.R. Black, P. Blanchette, D.E. Bonds, R.L. Brunner, R.G. Brzyski, B. Caan, J.A. Cauley, R.T. Chlebowski, S.R. Cummings, I. Granek, J. Hays, G. Heiss, S.L. Hendrix, B.V. Howard, J. Hsia, F.A. Hubbell, K.C. Johnson, H. Judd, J.M. Kotchen, L.H. Kuller, R.D. Langer, N.L. Lasser, M.C. Limacher, S. Ludlam, J.E. Manson, K.L. Margolis, J. McGowan, J.K. Ockene, M.J. O′Sullivan, L. Phillips, R.L. Prentice, G.E. Sarto, M.L. Stefanick, L. Van Horn, J. Wactawski-Wende, E. Whitlock, G.L. Anderson, A.R. Assaf, D. Barad, and I. Womens Hlth Initiative, Calcium plus vitamin D supplementation and the risk of fractures. New England Journal of Medicine, 2006. 354(7): p. 669-683.
148. H. Petite, V. Viateau, W. Bensaid, A. Meunier, C. de Pollak, M. Bourguignon, K. Oudina, L. Sedel, and G. Guillemin, Tissue-engineered bone regeneration. Nature Biotechnology, 2000. 18(9): p. 959-963.
149. J.L. Li, F. Zhang, and J.Y. Chen, An integrated proteomics analysis of bone tissues in response to mechanical stimulation. Bmc Systems Biology, 2011. 5: p. 14.
150. T.A. Matsui, Y. Sowa, H. Murata, K. Takagi, R. Nakanishi, S. Aoki, M. Yoshikawa, M. Kobayashi, T. Sakabe, T. Kubo, and T. Sakai, The plant alkaloid cryptolepine induces p21(WAF1/C1P1) and cell cycle arrest in a human osteosarcoma cell line. International Journal of Oncology, 2007. 31(4): p. 915-922.
151. K.F. Macleod, N. Sherry, G. Hannon, D. Beach, T. Tokino, K. Kinzler, B. Vogelstein, and T. Jacks, P53-Dependent And Independent Expression Of P21 During Cell-Growth, Differentiation, And Dna-Damage. Genes & Development, 1995. 9(8): p. 935-944.
152. J. Zezula, P. Casaccia-Bonnefil, S.A. Ezhevsky, D.J. Osterhout, J.M. Levine, S.F. Dowdy, M.V. Chao, and A. Koff, p21cip1 is required for the differentiation of oligodendrocytes independently of cell cycle withdrawal. EMBO Rep, 2001. 2(1): p. 27-34.
153. W. Poluha, D.K. Poluha, B. Chang, N.E. Crosbie, C.M. Schonhoff, D.L. Kilpatrick, and A.H. Ross, The cyclin-dependent kinase inhibitor p21 (WAF1) is required for survival of differentiating neuroblastoma cells. Mol Cell Biol, 1996. 16(4): p. 1335-41.
154. T. Maeda, M.T. Chong, R.A. Espino, P.P. Chua, J.Q. Cao, E.G. Chomey, L. Luong, and V.A. Tron, Role of p21(Waf-1) in regulating the G1 and G2/M checkpoints in ultraviolet-irradiated keratinocytes. Journal of Investigative Dermatology, 2002. 119(2): p. 513-521.
155. V.A. Blomen and J. Boonstra, Cell fate determination during G1 phase progression. Cellular and Molecular Life Sciences, 2007. 64(23): p. 3084-3104.
156. R.A. Weinberg, The Retinoblastoma Protein And Cell-Cycle Control. Cell, 1995. 81(3): p. 323-330.
157. R.S. DiPaola, To arrest or not to G(2)-M Cell-cycle arrest : commentary re: A. K. Tyagi et al., Silibinin strongly synergizes human prostate carcinoma DU145 cells to doxorubicin-induced growth inhibition, G(2)-M arrest, and apoptosis. Clin. cancer res., 8: 3512-3519, 2002. Clinical Cancer Research, 2002. 8(11): p. 3311-4.
158. R. Minami, K. Muta, T. Umemura, S. Motomura, Y. Abe, J. Nishimura, and H. Nawata, p16(INK4a) induces differentiation and apoptosis in erythroid lineage cells. Experimental Hematology, 2003. 31(5): p. 355-362.
159. V. Bryja, J. Pachernik, J. Vondracek, K. Soucek, L. Cajanek, V. Horvath, Z. Holubcova, P. Dvorak, and A. Hampl, Lineage specific composition of cyclin D-CDK4/CDK6-p27 complexes reveals distinct functions of CDK4, CDK6 and individual D-type cyclins in differentiating cells of embryonic origin. Cell Proliferation, 2008. 41(6): p. 875-893.
160. M.J. Grossel and P.W. Hinds, Beyond the cell cycle: A new role for cdk6 in differentiation. Journal of Cellular Biochemistry, 2006. 97(3): p. 485-493.
161. M. Meyerson and E. Harlow, Identification Of G(1) Kinase-Activity For Cdk6, A Novel Cyclin-D Partner. Mol Cell Biol, 1994. 14(3): p. 2077-2086.
162. D.L. Jones, R.M. Alani, and K. Munger, The human papillomavirus E7 oncoprotein can uncouple cellular differentiation and proliferation in human keratinocytes by abrogating p21(Cip1)-mediated inhibition of cdk2. Genes & Development, 1997. 11(16): p. 2101-2111.
163. F.F. Hsieh, L.A. Barnett, W.F. Green, K. Freedman, I. Matushansky, A.I. Skoultchi, and L.L. Kelley, Cell cycle exit during terminal erythroid differentiation is associated with accumulation of p27(Kip1) and inactivation of cdk2 kinase. Blood, 2000. 96(8): p. 2746-2754.
164. T. Matsui, T. Kinoshita, T. Hirano, T. Yokota, and A. Miyajima, STAT3 down-regulates the expression of cyclin D during liver development. Journal of Biological Chemistry, 2002. 277(39): p. 36167-36173.
165. G.H. Stein, L.F. Drullinger, A. Soulard, and V. Dulic, Differential roles for cyclin-dependent kinase inhibitors p21 and p16 in the mechanisms of senescence and differentiation in human fibroblasts. Mol Cell Biol, 1999. 19(3): p. 2109-2117.
166. H. Ochiai, Y. Yamamoto, A. Yokoyama, H. Yamashita, K. Matsuzaka, S. Abe, and T. Azuma, Dual Nature of TGF-beta 1 in Osteoblastic Differentiation of Human Periodontal Ligament Cells. Journal of Hard Tissue Biology, 2010. 19(3): p. 187-194.
167. V. Yadav, S. Sultana, J. Yadav, and N. Saini, Gatifloxacin induces S and G2-phase cell cycle arrest in pancreatic cancer cells via p21/p27/p53. Plos One, 2012. 7(10): p. e47796.
168. J. Kopf, A. Petersen, G.N. Duda, and P. Knaus, BMP2 and mechanical loading cooperatively regulate immediate early signalling events in the BMP pathway. Bmc Biology, 2012. 10: p. 12.
169. X.H. Tan, T.J. Weng, J.H. Zhang, J. Wang, W.L. Li, H.F. Wan, Y. Lan, X. Cheng, N. Hou, H.H. Liu, J. Ding, F.Y. Lin, R.F. Yang, X. Gao, D. Chen, and X. Yang, Smad4 is required for maintaining normal murine postnatal bone homeostasis. Journal of Cell Science, 2007. 120(13): p. 2162-2170.
170. Y. Yu, J.P. Bliss, W.J.A. Bruce, and W.R. Walsh, Bone morphogenetic proteins and Smad expression in ovine tendon-bone healing. Arthroscopy-the Journal of Arthroscopic and Related Surgery, 2007. 23(2): p. 205-210.
指導教授 胡威文 審核日期 2016-8-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明