博碩士論文 103324040 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:18.225.31.159
姓名 蔡致勤(Chih-Chin Tsai)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 使用不帶電中性核酸探針於矽奈米線場效電晶體檢測去氧核醣核酸與微核醣核酸之研究
(Silicon nanowire field-effect biosensor for DNA and microRNA detection using neutralized-DNA (nDNA) probes)
相關論文
★ 類澱粉胜肽聚集行為之電腦模擬★ 溶解度參數計算及量測於HPLC純化胜肽程序之最佳化研究
★ 利用恆溫滴定微卡計量測蛋白質分子於溶液中之第二維里係數與自我聚集之行為★ 利用SPRi探討中性DNA探針相較於一般DNA探針在低鹽雜交環境下之優勢
★ 矽奈米線場效電晶體多點之核酸檢測研究★ 運用nDNA 修飾引子於PCR及qPCR平台以提升專一性之研究
★ 設計中性DNA引子及探針以提升PCR與qPCR專一性之研究★ 使用中性不帶電去氧核醣核酸探針於矽奈米線場效電晶體檢測微核醣核酸之研究
★ 使用不帶電中性核酸探針於原位雜交技術檢測微核醣核酸之研究★ 設計不帶電中性核酸探針於矽奈米線場效電晶體來改善富含GC鹼基核醣核酸之檢測專一性
★ 合成5’-MeNPOC-2’-deoxynucleoside p-methoxy phosphoramidite以作為應用於原位合成之新穎性中性核苷酸之研究★ 立體紙基外泌體核酸萃取裝置應用於檢測不同微環境下癌細胞所釋放之外泌體與外泌體微小核醣核酸之表現量
★ 利用抗原結合區段之抗體片段探針於矽奈米線場效電晶體來改善抗原檢測濃度極限之研究★ 利用表面電漿共振影像儀驗證最適化之抗非專一性吸附場效電晶體表面於血清環境下之免疫測定
★ 使用混合自組裝單層膜於矽奈米線場效電晶體檢測微小核醣核酸之研究★ 利用核適體作為訊號放大器於矽奈米線場效電晶體免疫感測器對生物標記物進行定量分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在最近幾年,奈米場效電晶體已成為一個在生物醫學與檢測應用上面的強力工具。因為奈米場效電晶體有快速反應時間、高靈敏性、高專一性、體積小、即時偵測等優點。加上由於現行傳統的生物辨識技術如qPCR 及微陣列檢測基因序列,都須要加入螢光分子來標記這些生物分子,而奈米場效電晶體的非標定直接量測就可以避免因螢光標定等所造成之困擾。另外奈米場效電晶體的最低感測極限可以達到fM等級,因此已有相當多的研究團隊想利用此工具應用在感測基因序列上面並且希望藉由此能建立起一種較簡單的方法在重大疾病診斷上。然而這個方法在基因檢測上還是存在幾個難題。主要為溶液的離子強度會影響德拜長度(Debye length) ,並直接來影響奈米場效電晶體的感測。在本研究中我們專注在使用不帶電磷酸甲基化DNA(nDNA)探針來提升場效電晶體對DNA的感測還有探討相關的感測機制。不帶電磷酸甲基化DNA探針與目標核酸序列之間不存在靜電排斥力,因此造成不帶電磷酸甲基化DNA探針與目標核酸序列在低鹽濃度下,比帶電DNA探針容易地雜交形成雙股螺旋結構。我們也會設計部分修飾nDNA的探針來進一步增進奈米場效電晶體的檢測。從感測在不同鹽離子強度下、不同濃度的目標序列下還有非專一性控制組實驗,可以發現部分修飾nDNA的探針不僅能提高感測的靈敏度,還能增加與目標序列彼此之間的專一性。另外我們也會利用nDNA探針來檢測microRNA並探討與檢測DNA之間的不同。最後我們成功地架設奈米場效電晶體微陣列系統來檢測microRNA,並且從同一片晶片檢測不同序列的microRNA,我們可以看到奈米場效電晶體微陣列系統於檢測基因序列的可行性。
摘要(英) In recent years, nanowire field-effect transistor (NWFET) has been a powerful tool for the application of biomedical science, because its fast response time, high sensitivity and specificity, small size, real time detection, etc. And nowadays, conventional technics like qPCR microarray detects gene sequences, they need to add fluorescence to label the biomolecules. However,there is no use of labelling biomolecules in NWFET ,so it doesn’t have the side effect of labelling. In addition, the limit of detection (LOD) of NWFET can reach to femtomolar regime. So researchers want to apply it to gene sequencing and hope to find an easy way to disease diagnosis. While there are still some difficulties in this method, especially for DNA and microRNA detecting. In general, the main factor called Debye length mainly affect the sensing. In this study, we focus on using neutralized DNA (nDNA) probes which is uncharged to improve DNA detecting using FET biosensors and study the related mechanism. Neutralized DNA (nDNA) probes which is uncharged can form duplex with target sequence more easily than DNA probes in low salt concentration buffer, because there is less repulse force between the two sequences. We also designed some partially modified nDNA probes to improve our sensing. From the sensing in different ionic strength, different target concentrations sensing and non-specific control tests show that partially modified nDNA probes can not only enhance sensitivity but also improve specificity. In addition, we detect microRNAs using nDNA probes and find the difference between DNAs and microRNAs detecting. Finally, we successfully set up a SiNWFET microarray system to detect microRNAs. And from the experiments of sensing different microRNAs in one chip, we see the feasibility of detecting different microRNAs using SiNWFET microarray system.
關鍵字(中) ★ 奈米場效電晶體
★ 核醣核酸
★ 微核醣核酸
關鍵字(英) ★ Nano-wire Field effect transistor
★ DNA
★ micro-RNA
論文目次 摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 ix
表目錄 xiv
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 論文架構 4
第二章 文獻回顧 7
2.1 生物檢測器量測核酸的發展 7
2.2 矽奈米線場效電晶體運作原理 8
2.3 DNA與microRNA之檢測 13
2.3.1 DNA的結構 13
2.3.2 DNA之檢測於奈米場效電晶體 17
2.3.3 RNA之結構 19
2.3.4 microRNA的介紹 20
2.3.5 microRNA之檢測於奈米場效電晶體 21
2.4 量測核酸之探針種類 23
2.4.1 肽核酸 24
2.4.2 鎖核酸 25
2.4.3 嗎啉基寡核苷酸 27
2.4.4 磷酸甲基化去氧核醣核酸 28
2.5 緩衝溶液鹽離子濃度與Debye–Hückel theory 31
2.5.1 溶液鹽離子濃度對於核酸雜交的影響 31
2.5.2 Debye length與溶液鹽離子濃度的關係 32
2.5.3 鹽濃度與Debye length於場效電晶體量測的影響 34
第三章 實驗藥品、儀器設備與方法 40
3.1 實驗藥品 40
3.2 晶片製造過程 41
3.3 晶片表面化學修飾 43
3.3.1 晶片表面清洗 43
3.3.2 氧電漿處理 43
3.3.3 修飾 APTES (3-Aminopropyltriethoxysilane) 44
3.3.4 修飾Glutaraldehyde 44
3.3.5 核酸探針固定化 44
3.4 X射線光電子能譜學 (XPS) 分析 45
3.5 圓二色光譜儀測定構型 46
3.6 微流道系統 47
3.7 晶片量測系統 48
3.8 量測流程 51
3.9 數據處理 52
3.10 點片機系統 55
3.11 萃取total RNA 57
第四章 結果與討論 59
4.1 溶液中SiNWFET量測曲線 59
4.2 XPS表面分析 60
4.3 部分修飾nDNA以圓二色光譜儀測定構型 61
4.4 鹽離子濃度對於量測DNA的影響 65
4.4.1 比較nDNA 與DNA探針訊號上的差異 65
4.4.2 比較nDNA 與DNA探針訊雜比的差異 71
4.4.3 nDNA-p4與nDNA-p5探針設計 74
4.5 針對DNA樣品濃度的檢測 75
4.5.1 不同探針之間的訊號差別 75
4.5.2 極低DNA樣品濃度的檢測 77
4.6 鹽離子濃度對於量測microRNA的影響 81
4.6.1 不同鹽濃度對於DNA-microRNA雜交上的影響 81
4.6.2 不同探針檢測microRNA的影響 88
4.7 奈米線微陣列晶片檢測microRNA 90
4.7.1 3X3微陣列檢測microRNA 90
4.7.2 同一晶片檢測不同microRNA與濃度檢量線 95
4.7.3 檢測T24 cell total RNA 101
4.7.4 實驗晶片整體良率 102
第五章 結論與未來展望 104
5.1 結論 104
5.2 未來展望 105
第六章 參考文獻 107
參考文獻 1. Curreli, M.Rui, Zhang Ishikawa, F. N.Hsiao-Kang, Chang Cote, R. J.Chongwu, Zhou Thompson, M. E., Real-Time, Label-Free Detection of Biological Entities Using Nanowire-Based FETs. IEEE Transactions on Nanotechnology, 2008. 7(6): p. 651-667.
2. Li, Z.Chen, Y. Li, X. Kamins, T. I. Nauka, K.Williams, R. S., Sequence-Specific Label-Free DNA Sensors Based on Silicon Nanowires. Nano Letters, 2004. 4(2): p. 245-247.
3. Levicky, R. and A. Horgan, Physicochemical perspectives on DNA microarray and biosensor technologies. Trends Biotechnol, 2005. 23(3): p. 143-9.
4. Sang, S.Wang, Y. Feng, Q.Wei, Y. Ji, J. Zhang, W., Progress of new label-free techniques for biosensors: a review. Crit Rev Biotechnol, 2016. 36(3): p. 465-81.
5. Sassolas, A., B.D. Leca-Bouvier, and L.J. Blum, DNA Biosensors and Microarrays. Chemical Reviews, 2008. 108(1): p. 109-139.
6. Li, D., S. Song, and C. Fan, Target-Responsive Structural Switching for Nucleic Acid-Based Sensors. Accounts of Chemical Research, 2010. 43(5): p. 631-641.
7. Song, Shiping Qin, Yu He, Yao Huang, Qing Fan, Chunhai Chen, Hong-Yuan, Functional nanoprobes for ultrasensitive detection of biomolecules. Chemical Society Reviews, 2010. 39(11): p. 4234-4243.
8. Wang, J., Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosens Bioelectron, 2006. 21(10): p. 1887-92.
9. Burns, Mark A. Johnson, Brian N.Brahmasandra, Sundaresh N. Handique, Kalyan Webster, James R. Krishnan, Madhavi Sammarco, Timothy S.Man, Piu M. Jones, Darren Heldsinger, Dylan Mastrangelo, Carlos H. Burke, David T., An Integrated Nanoliter DNA Analysis Device. Science, 1998. 282(5388): p. 484-487.
10. Niu, S., G. Singh, and R.F. Saraf, Label-less fluorescence-based method to detect hybridization with applications to DNA micro-array. Biosensors and Bioelectronics, 2007. 23(5): p. 714-720.
11. Oh, S.J., et al., Surface modification for DNA and protein microarrays. Omics-a Journal of Integrative Biology, 2006. 10(3): p. 327-343.
12. Samoc, M., A. Samoc, and J.G. Grote, Complex nonlinear refractive index of DNA. Chemical Physics Letters, 2006. 431(1-3): p. 132-134.
13. Demirel, Gökhan Çağlayan, Mustafa O.Garipcan, Bora Pişkin, Erhan, A novel DNA biosensor based on ellipsometry. Surface Science, 2008. 602(4): p. 952-959.
14. Nabok, A. Tsargorodskaya, A. Davis, F. Higson, S. P., The study of genomic DNA adsorption and subsequent interactions using total internal reflection ellipsometry. Biosens Bioelectron, 2007. 23(3): p. 377-83.
15. Feltis, B. N.Sexton, B. A.Glenn, F. L.Best, M. J.Wilkins, M.Davis, T. J., A hand-held surface plasmon resonance biosensor for the detection of ricin and other biological agents. Biosens Bioelectron, 2008. 23(7): p. 1131-6.
16. Homola, J., S.S. Yee, and G. Gauglitz, Surface plasmon resonance sensors: review. Sensors and Actuators B: Chemical, 1999. 54(1–2): p. 3-15.
17. Mavri, J., P. Raspor, and M. Franko, Application of chromogenic reagents in surface plasmon resonance (SPR). Biosens Bioelectron, 2007. 22(6): p. 1163-7.
18. McKendry, R. Zhang, J. Arntz, Y. Strunz, T. Hegner, M. Lang, H. P.Baller, M. K. Certa, U. Meyer, E. Guntherodt, H. J. Gerber, C., Multiple label-free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array. Proc Natl Acad Sci U S A, 2002. 99(15): p. 9783-8.
19. Qavi, A.J. and R.C. Bailey, Multiplexed detection and label-free quantitation of microRNAs using arrays of silicon photonic microring resonators. Angew Chem Int Ed Engl, 2010. 49(27): p. 4608-11.
20. Mestdagh, P. Feys, T. Bernard, N. Guenther, S. Chen, C. Speleman, F. Vandesompele, J., High-throughput stem-loop RT-qPCR miRNA expression profiling using minute amounts of input RNA. Nucleic Acids Res, 2008. 36(21): p. e143.
21. Chen, K.-I., B.-R. Li, and Y.-T. Chen, Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation. Nano Today, 2011. 6(2): p. 131-154.
22. Atalla, M.M., E. Tannenbaum, and E.J. Scheibner, Stabilization of Silicon Surfaces by Thermally Grown Oxides*. Bell System Technical Journal, 1959. 38(3): p. 749-783.
23. Tsai, C. C. Chiang, P. L. Sun, C. J. Lin, T. W. Tsai, M. H. Chang, Y. C. Chen, Y. T., Surface potential variations on a silicon nanowire transistor in biomolecular modification and detection. Nanotechnology, 2011. 22(13): p. 135503.
24. Watson, J. D.a.F. H. C. C., Molecular-Structure of Nucleic-Acids - a Structure for Deoxyribose Nucleic-Acid. . Jama-Journal of the American Medical Association,, 1993. 269(15): p. 1966-1967.
25. Wu, C. C. Ko, F. H. Yang, Y. S. Hsia, D. L.Lee, B. S.Su, T. S., Label-free biosensing of a gene mutation using a silicon nanowire field-effect transistor. Biosens Bioelectron, 2009. 25(4): p. 820-5.
26. Fohrer, J., M. Hennig, and T. Carlomagno, Influence of the 2′-hydroxyl group conformation on the stability of A-form helices in RNA. J Mol Biol, 2006. 356(2): p. 280-7.
27. Olsen, P.H. and V. Ambros, The lin-4 Regulatory RNA Controls Developmental Timing in Caenorhabditis elegans by Blocking LIN-14 Protein Synthesis after the Initiation of Translation. Developmental Biology, 1999. 216(2): p. 671-680.
28. Wang, W. X. Rajeev, B. W. Stromberg, A. J.Ren, N. Tang, G. Huang, Q. Rigoutsos, I. Nelson, P. T., The expression of microRNA miR-107 decreases early in Alzheimer′s disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. J Neurosci, 2008. 28(5): p. 1213-23.
29. Wang, Kai Yuan, Yue Cho, Ji-Hoon McClarty, Sara Baxter, David Galas, David J., Comparing the MicroRNA Spectrum between Serum and Plasma. PLoS ONE, 2012. 7(7): p. e41561.
30. Lu, N. Gao, A. Dai, P. Song, S. Fan, C. Wang, Y. Li, T., CMOS-compatible silicon nanowire field-effect transistors for ultrasensitive and label-free microRNAs sensing. Small, 2014. 10(10): p. 2022-8.
31. Gao, Zhiqiang Agarwal, Ajay Trigg, Alastair D.Singh, Navab Fang, Cheng Tung, Chih-HangFan, Yi Buddharaju, Kavitha D. Kong, Jinming. Label-free and ultrasensitive detection of microrna biomarkers in lung cancer cells based on silicon nanowire FET biosensors. in 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII). 2013.
32. Zhang, G. J. Chua, J. H. Chee, R. E. Agarwal, A.Wong, S. M., Label-free direct detection of MiRNAs with silicon nanowire biosensors. Biosens Bioelectron, 2009. 24(8): p. 2504-8.
33. Denison, C. and T. Kodadek, Small-molecule-based strategies for controlling gene expression. Chemistry & Biology, 1998. 5(6): p. R129-R145.
34. Dervan, P.B., Molecular recognition of DNA by small molecules. Bioorganic & Medicinal Chemistry, 2001. 9(9): p. 2215-2235.
35. Demidov, V.V. and M.D. Frank-Kamenetskii, Two sides of the coin: affinity and specificity of nucleic acid interactions. Trends in Biochemical Sciences, 2004. 29(2): p. 62-71.
36. Obika, Satoshi Nanbu, Daishu Hari, Yoshiyuki Morio, Ken-ichiroIn, Yasuko Ishida, Toshimasa Imanishi, Takeshi, Synthesis of 2′-O,4′-C-methyleneuridine and -cytidine. Novel bicyclic nucleosides having a fixed C3, -endo sugar puckering. Tetrahedron Letters, 1997. 38(50): p. 8735-8738.
37. Bondensgaard, Kent Petersen, Michael Singh, Sanjay K. Rajwanshi, Vivek K. Kumar, Ravindra Wengel, Jesper Jacobsen, Jens Peter, Structural Studies of LNA:RNA Duplexes by NMR: Conformations and Implications for RNase H Activity. Chemistry – A European Journal, 2000. 6(15): p. 2687-2695.
38. Tomac, Sebastian Sarkar, Munna Ratilainen, Tommi Wittung, Pernilla Nielsen, Peter E. Nordén, Bengt Gräslund, Astrid, Ionic Effects on the Stability and Conformation of Peptide Nucleic Acid Complexes. Journal of the American Chemical Society, 1996. 118(24): p. 5544-5552.
39. Koppelhus, U. and P.E. Nielsen, Cellular delivery of peptide nucleic acid (PNA). Advanced Drug Delivery Reviews, 2003. 55(2): p. 267-280.
40. Egholm, Michael Buchardt, Ole Christensen, Leif Behrens, Carsten Freier, Susan M. Driver, David A. Berg, Rolf H. Kim, Seog K. Norden, Bengt Nielsen, Peter E., PNA hybridizes to complementary oligonucleotides obeying the Watson–Crick hydrogen-bonding rules. Nature, 1993. 365(6446): p. 566-568.
41. Cai, Bingjie Wang, Shuting Huang, Le .Ning, Yong Zhang, Zhiyong. Zhang, Guo-Jun, Ultrasensitive Label-Free Detection of PNA–DNA Hybridization by Reduced Graphene Oxide Field-Effect Transistor Biosensor. ACS Nano, 2014. 8(3): p. 2632-2638.
42. Cattani-Scholz, Anna Pedone, Daniel Dubey, Manish Neppl, Stefan Nickel, Bert Feulner, Peter Schwartz, Jeffrey Abstreiter, Gerhard Tornow, Marc, Organophosphonate-Based PNA-Functionalization of Silicon Nanowires for Label-Free DNA Detection. ACS Nano, 2008. 2(8): p. 1653-1660.
43. Gao, Zhiqian Agarwal, Ajay Trigg, Alastair D.Singh, Navab Fang, Cheng Tung, Chih-Hang Fan, Yi Buddharaju, Kavitha D.Kong, Jinming, Silicon Nanowire Arrays for Label-Free Detection of DNA. Analytical Chemistry, 2007. 79(9): p. 3291-3297.
44. Hahm, J.-i. and C.M. Lieber, Direct Ultrasensitive Electrical Detection of DNA and DNA Sequence Variations Using Nanowire Nanosensors. Nano Letters, 2004. 4(1): p. 51-54.
45. Li, Z. Rajendran, B. Kamins, T. I. Li, X. Chen, Y. Williams, R. Stanley, Silicon nanowires for sequence-specific DNA sensing: device fabrication and simulation. Applied Physics A, 2005. 80(6): p. 1257-1263.
46. Zhang, Guo-Jun Chua, Jay Huiyi Chee, Ru-Ern Agarwal, Ajay Wong, She Mein Buddharaju, Kavitha D. Balasubramanian, N., Highly sensitive measurements of PNA-DNA hybridization using oxide-etched silicon nanowire biosensors. Biosensors and Bioelectronics, 2008. 23(11): p. 1701-1707.
47. Zhang, Guo-Jun Zhang, Li Huang, Min Joon Luo, Zhan Hong Henry Tay, Guang Kai Ignatius Lim, Eu-Jin Andy Kang, Tae Goo Chen, Yu, Silicon nanowire biosensor for highly sensitive and rapid detection of Dengue virus. Sensors and Actuators B: Chemical, 2010. 146(1): p. 138-144.
48. Koshkin, A.A., et al., LNA (locked nucleic acid): an RNA mimic forming exceedingly stable LNA: LNA duplexes. Journal of the American Chemical Society,, 1998. 120(50): p. 13252-13253.
49. Summerton, J. and D. Weller, Morpholino Antisense Oligomers: Design, Preparation, and Properties. Antisense and Nucleic Acid Drug Development, 1997. 7(3): p. 187-195.
50. Summerton, J., Morpholino antisense oligomers: the case for an RNase H-independent structural type. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, 1999. 1489(1): p. 141-158.
51. Zhang, Guo-Jun Luo, Zhan Hong Henry Huang, Min Joon Tay, Guang Kai Ignatius Lim, Eu-Jin Andy, Morpholino-functionalized silicon nanowire biosensor for sequence-specific label-free detection of DNA. Biosensors and Bioelectronics, 2010. 25(11): p. 2447-2453.
52. Koole, Leo H. Moody, Harold M. Broeders, Niek L. H. L. Quaedflieg, Peter J. L. M. Kuijpers, Will H. A. Van Genderen, Marcel H. P. Coenen, Annie J. J. M. Van der Wal, Sjoerd Buck, Henk M., Synthesis of phosphate-methylated DNA fragments using 9-fluorenylmethoxycarbonyl as transient base protecting group. The Journal of Organic Chemistry, 1989. 54(7): p. 1657-1664.
53. W.H.A.Kuijpers, J.H., L.H.Koole and C.A.A.van Boecke, Synthesis of well-defined phosphate-methylated DNA fragments: the application of potassium carbonate in methanol as deprotecting reagent. Nucleic acids research, 1990. 18(17): p. 5197-5205.
54. van Genderen, M.H.P., L.H. Koole, and H.M. Buck, Hybridization of phosphate-methylated DNA and natural oligonucleotides. Implications for protein-induced DNA duplex destabilization. Recueil des Travaux Chimiques des Pays-Bas, 1989. 108(1): p. 28-35.
55. Coenen, A. J. J. M. Henckens, L. H. G. Mengerink, Y. van der Wal, Sj Quaedflieg, P. J. L. M. Koole, L. H. Meijer, E. M., Optimization of the separation of the Rp and Sp diastereomers of phosphate-methylated DNA and RNA dinucleotides. Journal of Chromatography A, 1992. 596(1): p. 59-66.
56. Miller, P.S., et al., Syntheses and properties of adenine and thymine nucleoside alkyl phosphotriesters, the neutral analogs of dinucleoside monophosphates. . Journal of the American Chemical Society,, 1971. 93(24): p. 6657.
57. Miller, P.S., L.T. Braiterman, and P.O.P. Ts′o, Effects of a trinucleotide ethyl phosphotriester, Gmp(Et)Gmp(Et)U, on mammalian cells in culture. Biochemistry, 1977. 16(9): p. 1988-1996.
58. Koole, L.H.a.H.M.B., Enhanced stability of a Watson & Crick DNA duplex structure by methylation of the phosphate groups in one strand. in Proc. K. Ned. Acad. Wet., 1987.
59. Buck, H.M., A conformational B-Z DNA study monitored with phosphatemethylated DNA as a model for epigenetic dynamics focused on 5-(hydroxy)methylcytosine. Journal of Biophysical Chemistry, 2013. Vol.04No.02: p. 10.
60. L. Mu Y. Chang S. D. Sawtelle M. Wipf X. Duan M. A. Reed, Silicon Nanowire Field-Effect Transistors—A Versatile Class of Potentiometric Nanobiosensors. IEEE Access, 2015. 3: p. 287-302.
61. SCHILDKRAUT, C., Dependence of the Melting Temperature of DNA on Salt Concentration. BIOPOLY MERS, 1965. 3: p. 195-208.
62. Debye-length-Multi-scale modeling and simulation of field-effect nano-biosensors-Wolfgang Pauli Institute (WPI) Vienna 2008.
63. Stern, Eric Wagner, Robin Sigworth, Fred J. Breaker, Ronald Fahmy, Tarek M. Reed, Mark A., Importance of the Debye Screening Length on Nanowire Field Effect Transistor Sensors. Nano Letters, 2007. 7(11): p. 3405-3409.
64. Elnathan, R. Kwiat, M. Pevzner, A.Engel, Y.Burstein, L.Khatchtourints, A.Lichtenstein, A.Kantaev, R.Patolsky, F., Biorecognition Layer Engineering: Overcoming Screening Limitations of Nanowire-Based FET Devices. Nano Letters, 2012. 12(10): p. 5245-5254.
65. Stern, Eric Vacic, Aleksandar Rajan, Nitin K. Criscione, Jason M. Park, Jason Ilic, Bojan R. Mooney, David J. Reed, Mark A. Fahmy, Tarek M., Label-free biomarker detection from whole blood. Nat Nano, 2010. 5(2): p. 138-142.
66. Zheng, Gengfeng Patolsky, Fernando Cui, Yi Wang, Wayne U. Lieber, Charles M., Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotech, 2005. 23(10): p. 1294-1301.
67. Uslu, F. Ingebrandt, S. Mayer, D. Bocker-Meffert, S. Odenthal, M. Offenhausser, A., Labelfree fully electronic nucleic acid detection system based on a field-effect transistor device. Biosensors and Bioelectronics, 2004. 19(12): p. 1723-1731.
68. Poghossian, A. Cherstvy, A. Ingebrandt, S. Offenhäusser, A. Schöning, M. J., Possibilities and limitations of label-free detection of DNA hybridization with field-effect-based devices. Sensors and Actuators B: Chemical, 2005. 111-112: p. 470-480.
69. 國立交通大學楊裕雄教授實驗室.
70. Kelly, S.M., T.J. Jess, and N.C. Price, How to study proteins by circular dichroism. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 2005. 1751(2): p. 119-139.
71. Gray, D.M., R.L. Ratliff, and M.R. Vaughan, [19] Circular dichroism spectroscopy of DNA, in Methods in Enzymology. 1992, Academic Press. p. 389-406.
72. Lin, Kuo-Chih, Wey, Ming-Tsai, Kan, Lou-Sing, Shiuan, David, Characterization of the Interactions of Lysozyme with DNA by Surface Plasmon Resonance and Circular Dichroism Spectroscopy. Applied Biochemistry and Biotechnology, 2009. 158(3): p. 631-641.
73. Hyung-Kyu, L. and J.G. Fossum, Threshold voltage of thin-film Silicon-on-insulator (SOI) MOSFET′s. IEEE Transactions on Electron Devices, 1983. 30(10): p. 1244-1251.
74. Ortiz-Conde, A., Garcı́a Sánchez, F. J., Liou, J. J., Cerdeira, A., Estrada, M., Yue, Y., A review of recent MOSFET threshold voltage extraction methods. Microelectronics Reliability, 2002. 42(4–5): p. 583-596.
75. Liu, B.D., Y.K. Su, and S.C. Chen, Ion-sensitive field-effect transistor with silicon nitride gate for pH sensing. International Journal of Electronics, 1989. 67(1): p. 59-63.
76. Egginger, Martin, Bauer, Siegfried, Schwödiauer, Reinhard, Neugebauer, Helmut, Sariciftci, Niyazi Serdar, Current versus gate voltage hysteresis in organic field effect transistors. Monatshefte für Chemie - Chemical Monthly, 2009. 140(7): p. 735-750.
77. Natsume, T., Ishikawa, Y., Dedachi, K., Tsukamoto, T., Kurita, N., Hybridization energies of double strands composed of DNA, RNA, PNA and LNA. Chem Phys Lett, 2007. 434(1-3): p. 133-138.
78. Christopher G. Janson M.D., M.J.D.M.D., Sc.D. , Peptide Nucleic Acids, Morpholinos and Related Antisense Biomolecules. Medical Intelligence Unit 2006.
79. http://ghtf.biochem.uci.edu/content/illumina-guidelines.
指導教授 陳文逸(Wen-Yih Chen) 審核日期 2016-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明