博碩士論文 103324045 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:18.221.235.209
姓名 尤冠霖(Guan-Lin You)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 探討具有不同間隔長度的陰、陽離子雙子型界面活性劑對於DNA壓實與解壓實之影響
(Compaction and Decompaction of DNA by Cationic and Anionic Gemini Surfactants of Varying Spacer Lengths)
相關論文
★ 雙連續相中孔二氧化鈦光催化以及電子結構之實驗與模擬研究★ 聚合物-奈米粒子複合材料在玻璃轉移溫度下的結構與動力學相關性之實驗與模擬研究
★ 新興糖基雙子型界面活性劑之結構以及其對基因轉染效率之影響★ 自發曲率、金屬離子吸附以及微脂體膜融合效率三者間之相關性探討
★ 脂質組成成分對細胞膜物理性質與生物功能的影響★ 添加具有抗菌潛力的胜肽對磷脂質自組裝結構與彈性性質的影響
★ 分子構型與表面電荷密度對雙子型陰陽離子界面活性劑系統之相行為影響★ 具抗菌潛力之胜肽如何影響脂質膜的彈性性質與結構完整性
★ CoCrFeMnNi 高熵合金 形變行為之探討★ 透過改變磷脂質排列密度減少Amyloid β與膜之間交互作用
★ 對生物膜具活性的胜肽誘導相分離脂質膜產生結構上擾動★ 人類脂肪幹細胞於生醫材料塗佈細胞外間質之純化及分化
★ 發展量測雙層脂質膜的排列密度之實驗技術★ 利用酸鹼度敏感型雙子型界面活性劑製作之基因載體對核內體脂質膜結構之影響
★ 開發預測雙子型界面活性劑之自組裝結構的方法★ 抗肌萎縮蛋白的膜結合錨如何影響其與脂質膜的相互作用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在傳遞DNA至人體細胞核以進行基因治療的過程中,DNA必須被壓實以降低遭受酵素分解或環境影響的機會,而因壓實而縮小之DNA亦較為容易進入至細胞核中。反之,DNA的被解壓實則是基因治療中的另一個必要步驟,以使DNA得以恢復原先之構型,並進行其基因表現之功能。傳統的單鏈型陽離子或陰離子界面活性劑對DNA的壓實與解壓實效果及其作為非病毒型基因載體的可能性經常是許多研究探討的主題。基於此一研究趨勢,本研究發展出一個以雙子型界面活性劑為基礎的新穎DNA壓實/解壓實系統。雙子型界面活性劑是由一條分子鏈將兩個單鏈型界面活性劑結合為一的一類界面活性劑;此一特殊的分子結構,使其比單鏈型界面活性劑具有更好的表面活性,並可藉由對橋接分子鏈的改變調整其分子結構及性質。在本研究中,我們使用了紫外光分光光譜儀、圓二色光譜儀、原子力顯微鏡及小角度X光散射等技術,探討不同的橋接分子鏈長度如何影響雙子型界面活性劑對於DNA壓實與解壓實之效果及其作用的機制。實驗數據顯示,陽離子與陰離子雙子型界面活性劑各自具有使DNA壓實與解壓實之能力,且橋接分子鏈之長度為6個碳數的雙子型界面活性劑對於DNA的壓實與解壓實效果皆較長度為3個碳數之雙子型界面活性劑為佳。我們推測,DNA壓實效果上的差異應與陽離子雙子型界面活性劑分子的離子化程度及其與DNA的複合自組裝結構的不同有關;而在DNA解壓實上的差異,我們則推測與陰離子雙子型界面活性劑的疏水性以及溶液中陰離子雙子型界面活性劑的帶電荷量有關。本研究因此以分子特性及超分子自組裝結構的角度,解釋了雙子型界面活性劑於DNA壓實/解壓實上的作用機制。
摘要(英) For an efficient delivey into the nuclei of human cells, the therapeutic DNAs of a gene therapy need to be compacted to protect them from the enzymatic hydrolysis or external chemical/biochemical stresses; the reduced DNA sizes by compaction also facilitate their delivery to the nuclei. On the other hand, decompaction of the compacted DNAs, which restores the DNAs to their native conformations and re-activates the gene expression, is a prerequisite for an effective gene therapy. Conventional cationic and anionic surfactants are often studied for their respective capabilities to compact and de-compact DNAs, with their potential of being a safe non-virus gene delivery system evaluated. Following this research interst, the present study develops a novel DNA compaction/decompaction system based on gemini surfactants. Gemini surfactants are dimers of two conventional surfactant molecules connected with a spacer. Due to this unique molecular structure, gemini surfactants commonly display superior surface activities than their conventional counterparts, with their molecular structure and material properties tunable via modulating the spacer. Here, we synthesize cationic and anionic gemini surfactants of varying spacer lengths to investigate how and why the change in the molecular structures of the gemini surfactants affects their DNA compaction/decompaction efficacy by using UV-vis spectrophotometer, dynamic light scattering, atomic force microscopy, circular dichroism and small-angle x-ray scattering. The gemini surfactants are proven competent in the DNA compact/decompaction, and the gemini surfactants with the 6-carbon long spacer are observed to display higher DNA compaction/decompaction efficiency than the one with the 3-carbon long spacer. The discrepancy in the DNA compaction efficacy might arise from the differences in the ionization degrees of the cationic gemini surfactants and in the self-assembled structures of the DNA-surfactant complexes. For the DNA decompaction, the difference in hydrophobicity and ionization of the anionic gemini surfactants may potentially lead to the difference in efficacy. The present study therefore explains the mechanisms underlying the DNA compaction/decompaction by gemini surfactants in terms of molecular property and supramolecular structure.
關鍵字(中) ★ 去氧核醣核酸
★ 雙子型界面活性劑
★ 壓實
★ 解壓實
關鍵字(英) ★ DNA
★ gemini surfactant
★ compaction
★ de-compaction
論文目次 中文摘要 .................................................................................................................................... I
英文摘要 ................................................................................................................................. III
誌謝辭 ...................................................................................................................................... V
目錄 ......................................................................................................................................... VI
圖目錄 ..................................................................................................................................... IX
表目錄 ................................................................................................................................... XII
化學式與化學名稱對照表 ................................................................................................... XIII
第一章 緒論 .............................................................................................................................. 1
1-1 基因治療.................................................................................................................... 3
1-1-1去氧核糖核酸(deoxyribonucleic acid, DNA) .......................................... 3
1-1-2 DNA在自然界中壓實(compaction)之行為 ........................................... 6
1-1-3 基因治療(gene therapy) .......................................................................... 8
1-2 非病毒型之DNA壓實劑(compaction agent)................................................... 14
1-2-1 多價陽離子(multivalent cations)與多胺(polyamines) .................... 14
1-2-2 陽離子脂質與微脂體(cationic lipids and liposomes) .......................... 18
1-2-3 陽離子界面活性劑(cationic surfactant) ............................................... 22
1-2-4 陽離子雙子型界面活性劑(cationic gemini surfactant) ....................... 28
1-3 陰離子界面活性劑與DNA複合物間的作用 ....................................................... 32
1-4 研究目的與動機...................................................................................................... 34
第二章 實驗 ............................................................................................................................ 35
2-1 實驗材料.................................................................................................................. 35
2-2 實驗藥品.................................................................................................................. 36
2-2 實驗器材.................................................................................................................. 38
2-3 實驗儀器.................................................................................................................. 39
2-4 陽離子雙子型界面活性劑(cationic gemini surfactant)之製備 ........................ 40
2-5 陰離子雙子型界面活性劑(anionic gemini surfactant)之製備 ......................... 43
2-6 DNA與雙子型界面活性劑(gemini surfactant)複合物之製備 ......................... 47
2-6-1 Tris-EDTA 緩衝溶液製備 ......................................................................... 47
2-6-2 DNA與陽離子界面活性劑(cationic gemini surfactant)複合物之製備 ............................................................................................................................... 47
2-6-3 DNA由陰離子雙子型界面活性劑(anionic gemini surfactant)解壓實(decompaction)之製備 ..................................................................................... 48
2-7 分析儀器介紹.......................................................................................................... 50
2-7-1核磁共振光譜(Nuclear Magnetic Resonance Spectroscopy, NMR) ..... 50
2-7-2質譜儀(Mass spectrometry) ................................................................... 54
2-7-3可見光紫外光分光光譜儀(UV-vis spectrophotometer) ....................... 56
2-7-4圓二色光譜儀(Circular dichroism spectroscopy, CD) .......................... 58
2-7-5原子力顯微鏡(Atomic force microscopy, AFM) .................................. 62
2-7-6小角度X光散射(Small-Angle X-ray Scattering) ................................. 65
2-7-7動態光散射儀(Dynamic light scattering, DLS) ..................................... 69
第三章 結果與討論 ................................................................................................................ 70
3-1 DNA與陽離子雙子型界面活性劑間的作用 ......................................................... 70
3-1-1使用UV吸收光譜探討陽離子雙子型界面活性劑對DNA壓實之效果 70
3-1-2使用圓二色光譜儀探討DNA被陽離子雙子型界面活性劑壓實時二級結構之變化 ............................................................................................................... 74
3-1-3使用原子力顯微鏡探討DNA被陽離子雙子型界面活性劑壓實後之形貌 ............................................................................................................................... 76
3-1-4使用小角度X光散射探討DNA被陽離子雙子型界面活性劑壓實後之排列結構 ................................................................................................................... 78
3-1-5使用動態光散射儀探討DNA被陽離子雙子型界面活性劑壓實時複合物大小之變化 ........................................................................................................... 84
3-2 DNA與陰離子雙子型界面活性劑間的作用 ......................................................... 86
3-2-1使用UV吸收光譜探討陰離子雙子型界面活性劑對DNA複合物解壓實之效果 ................................................................................................................... 86
3-2-2使用圓二色光譜儀探討DNA複合物被陰離子雙子型界面活性劑解壓實時二級結構之變化 ............................................................................................... 88
3-2-3使用原子力顯微鏡探討DNA被陰離子雙子型界面活性劑解壓實後之形貌 ........................................................................................................................... 89
3-2-4使用動態光散射儀探討DNA複合物被陰離子雙子型界面活性劑解壓實時複合物大小之變化 ........................................................................................... 90
3-3不同陽離子雙子型界面活性劑之spacer長度與DNA間作用關係 .................... 91
3-3-1 不同spacer長度對於DNA壓實效果之影響 .......................................... 91
3-3-2 DNA的結構變化與沉澱可能之關係 ........................................................ 96
3-3-3 DNA與陽離子雙子型界面活性劑形成之自組裝結構與DNA壓實效果及DNA轉染效率間之關係探討 ......................................................................... 97
3-4不同陰離子雙子型界面活性劑之spacer碳數對於DNA複合物解壓實之影響 ...................................................................................................................................... 103
第四章 結論 .......................................................................................................................... 109
參考文獻 ............................................................................................................................... 111
附錄 ....................................................................................................................................... 121
1. 核磁共振光譜 .......................................................................................................... 122
1-1 1H NMR Spectrum of C16316 ...................................................................... 122
1-2 1H NMR Spectrum of C16616 ...................................................................... 122
1-3 1H NMR Spectrum of A848 .......................................................................... 123
1-4 13C NMR Spectrum of A848 ......................................................................... 123
1-5 1H NMR Spectrum of A868 .......................................................................... 124
1-6 13C NMR Spectrum of A868 ......................................................................... 124
2. 質譜儀數據 .............................................................................................................. 125
2-1 C16316 .......................................................................................................... 125
2-2 C16616 .......................................................................................................... 126
2-3 A848 .............................................................................................................. 127
2-4 A868 .............................................................................................................. 128
3. 紫外光光譜儀數據 .................................................................................................. 129
3-1 C16316對Salmon sperm DNA之壓實作用 ............................................... 129
3-2 C16616對Salmon sperm DNA之壓實作用 ............................................... 131
3-3 A848對DNA-C16316之解壓實作用 ......................................................... 133
3-4 A848對DNA-C16616之解壓實作用 ......................................................... 135
3-5 A868對DNA-C16316之解壓實作用 ......................................................... 137
3-6 A868對DNA-C16616之解壓實作用 ......................................................... 139
4. 圓二色光譜儀數據 .................................................................................................. 142
4-1 C16316對Salmon sperm DNA之壓實作用 ............................................... 142
4-2 C16616對Salmon sperm DNA之壓實作用 ............................................... 145
4-3 A848對DNA-C16316之解壓實作用 ......................................................... 148
4-4 A868對DNA-C16316之解壓實作用 ......................................................... 150
4-5 A848對DNA-C16616之解壓實作用 ......................................................... 152
4-6 A868對DNA-C16616之解壓實作用 ......................................................... 154
5. 小角度X光散射數據 ............................................................................................. 156
5-1 C16316與Lambda DNA之壓實作用 ......................................................... 156
5-2 C16616與Lambda DNA之壓實作用 ......................................................... 157
參考文獻 1. Friedmann, T., A brief history of gene therapy. Nat. Genet. 1992, 2 (2), 93-98.
2. Ginn, S. L.; Alexander, I. E.; Edelstein, M. L.; Abedi, M. R.; Wixon, J., Gene therapy clinical trials worldwide to 2012 an update. J. Gene Med. 2013, 15 (2), 65-77.
3. Xu, Q.; Wang, L.; Xing, F., Synthesis and properties of dissymmetric gemini surfactants. J. Surfactants Deterg. 2011, 14 (1), 85-90.
4. Dias, R. S.; Lindman, B.; Miguel, M. G., Compaction and decompaction of DNA in the presence of catanionic amphiphile mixtures. J. Phys. Chem. B 2002, 106 (48), 12608-12612.
5. Boyer, R. F., Concepts in biochemistry. John Wiley & Sons: New York, 2006.
6. Simonds, S. Video & Material 10: DNA & RNA. https://www.sophia.org/ (accessed April 27, 2016).
7. Ussery, D. W., DNA Structure: A-, B- and Z-DNA Helix Families. John Wiley & Sons: 2002.
8. Benjamin, P. A., Genetics: A Conceptual Approach 2ed.; W. H. Freeman and Company: New York, 2005.
9. Olins, D. E.; Olins, A. L., Chromatin history: our view from the bridge. Nat. Rev. Mol. Cell Biol. 2003, 4 (10), 809-814.
10. Zhou, T.; Llizo, A.; Wang, C.; Xu, G.; Yang, Y., Nanostructure-induced DNA condensation. Nanoscale 2013, 5 (18), 8288-8306.
11. Schlabach, M. R.; Hu, J. K.; Li, M.; Elledge, S. J., Synthetic design of strong promoters. Proc. Natl. Acad. Sci. U.S.A. 2010, 107 (6), 2538-2543.
12. Luo, D.; Saltzman, W. M., Synthetic DNA delivery systems. Nat. Biotechnol. 2000, 18 (1), 33-37.
13. Estevez-Torres, A.; Baigl, D., DNA compaction: fundamentals and applications. Soft Matter 2011, 7 (15), 6746-6756.
14. Niidome, T.; Huang, L., Gene therapy progress and prospects: Nonviral vectors. Gene Ther. 2002, 9 (24), 1647-1652.
15. Robbins, P. D.; Ghivizzani, S. C., Viral vectors for gene therapy. Pharmacol. Ther. 1998, 80 (1), 35-47.
16. Wilson, R. W.; Bloomfield, V. A., Counterion-induced condensation of deoxyribonucleic acid. A light-scattering study. Biochemistry 1979, 18 (11), 2192-2196.
17. Yamasaki, Y.; Yoshikawa, K., Higher Order Structure of DNA Controlled by the Redox State of Fe2+/Fe3+. J. Am. Chem. Soc. 1997, 119 (44), 10573-10578.
18. Arakawa, H.; Ahmad, R.; Naoui, M.; Tajmir-Riahi, H. A., A comparative study of calf thymus DNA binding to Cr(III) and Cr(VI) ions - Evidence for the guanine N-7-chromium-phosphate chelate formation. J. Biol. Chem. 2000, 275 (14), 10150-10153.
19. Kankia, B. I.; Buckin, V.; Bloomfield, V. A., Hexamminecobalt(III)-induced condensation of calf thymus DNA: circular dichroism and hydration measurements. Nucleic Acids Res. 2001, 29 (13), 2795-2801.
20. Deng, H.; Bloomfield, V. A., Structural effects of cobalt-amine compounds on DNA condensation. Biophys. J. 1999, 77 (3), 1556-1561.
21. (a) Vijayanathan, V.; Thomas, T.; Shirahata, A.; Thomas, T. J., DNA Condensation by Polyamines: A Laser Light Scattering Study of Structural Effects. Biochemistry 2001, 40 (45), 13644-13651; (b) Baigl, D.; Yoshikawa, K., Dielectric Control of Counterion-Induced Single-Chain Folding Transition of DNA. Biophys. J. 2005, 88 (5), 3486-3493; (c) Thomas, T. J.; Kulkarni, G. D.; Greenfield, N. J.; Shirahata, A.; Thomas, T., Structural specificity effects of trivalent polyamine analogues on the stabilization and conformational plasticity of triplex DNA. Biochem. J. 1996, 319 (2), 591-599; (d) Yoshikawa, Y.; Yoshikawa, K.; Kanbe, T., Formation of a Giant Toroid from Long Duplex DNA. Langmuir 1999, 15 (12), 4085-4088.
22. Kulkarni, C. V., Lipid crystallization: from self-assembly to hierarchical and biological ordering. Nanoscale 2012, 4 (19), 5779-5791.
23. (a) Koltover, I.; Salditt, T.; Safinya, C., Phase diagram, stability, and overcharging of lamellar cationic lipid–DNA self-assembled complexes. Biophys. J. 1999, 77 (2), 915-924; (b) Koltover, I.; Salditt, T.; Rädler, J. O.; Safinya, C. R., An inverted hexagonal phase of cationic liposome-DNA complexes related to DNA release and delivery. Science 1998, 281 (5373), 78-81; (c) Rädler, J. O.; Koltover, I.; Salditt, T.; Safinya, C. R., Structure of DNA-cationic liposome complexes: DNA intercalation in multilamellar membranes in distinct interhelical packing regimes. Science 1997, 275 (5301), 810-814.
24. Safinya, C.; Ewert, K.; Leal, C., Cationic liposome–nucleic acid complexes: liquid crystal phases with applications in gene therapy. Liq. Cryst. 2011, 38 (11-12), 1715-1723.
25. Ewert, K.; Slack, N. L.; Ahmad, A.; Evans, H. M.; Lin, A. J.; Samuel, C. E.; Safinya, C. R., Cationic lipid-DNA complexes for gene therapy: understanding the relationship between complex structure and gene delivery pathways at the molecular level. Curr. Med. Chem. 2004, 11 (2), 133-149.
26. Du, Z.; Munye, M. M.; Tagalakis, A. D.; Manunta, M. D.; Hart, S. L., The role of the helper lipid on the DNA transfection efficiency of lipopolyplex formulations. Sci. Rep. 2014, 4.
27. Hoekstra, D.; Rejman, J.; Wasungu, L.; Shi, F.; Zuhorn, I., Gene delivery by cationic lipids: in and out of an endosome. Biochem. Soc. Trans. 2007, 35 (1), 68-71.
28. Zuhorn, I. S.; Engberts, J. B.; Hoekstra, D., Gene delivery by cationic lipid vectors: overcoming cellular barriers. Eur. Biophys. J. 2007, 36 (4-5), 349-362.
29. Auvray, X.; Petipas, C.; Anthore, R.; Rico, I.; Lattes, A., X-ray diffraction study of mesophases of cetyltrimethylammonium bromide in water, formamide, and glycerol. J. Phys. Chem. 1989, 93 (21), 7458-7464.
30. (a) Grueso, E.; Cerrillos, C.; Hidalgo, J.; Lopez-Cornejo, P., Compaction and decompaction of DNA induced by the cationic surfactant CTAB. Langmuir 2012, 28 (30), 10968-10979; (b) Dias, R. S.; Innerlohinger, J.; Glatter, O.; Miguel, M. G.; Lindman, B., Coil-globule transition of DNA molecules induced by cationic surfactants: a dynamic light scattering study. J. Phys. Chem. B 2005, 109 (20), 10458-10463.
31. (a) Mel′nikov, S. M.; Sergeyev, V. G.; Yoshikawa, K., Discrete coil-globule transition of large DNA induced by cationic surfactant. J. Am. Chem. Soc. 1995, 117 (9), 2401-2408; (b) Mel′nikova, Y. S.; Lindman, B., pH-controlled DNA condensation in the presence of dodecyldimethylamine oxide. Langmuir 2000, 16 (14), 5871-5878; (c) González-Pérez, A.; Dias, R. S.; Nylander, T.; Lindman, B., Cyclodextrin− Surfactant Complex: A New Route in DNA Decompaction. Biomacromolecules 2008, 9 (3), 772-775.
32. (a) Miguel, M. G.; Pais, A. A.; Dias, R. S.; Rosa, M.; Lindman, B., DNA–cationic amphiphile interactions. Colloids Surf. Physicochem. Eng. Aspects 2003, 228 (1), 43-55; (b) Mezei, A.; Pons, R.; Morán, M. C., The nanostructure of surfactant–DNA complexes with different arrangements. Colloids Surf. B. Biointerfaces 2013, 111, 663-671.
33. Rudiuk, S.; Yoshikawa, K.; Baigl, D., Enhancement of DNA compaction by negatively charged nanoparticles: Effect of nanoparticle size and surfactant chain length. J. Colloid Interface Sci. 2012, 368 (1), 372-377.
34. Sergeyev, V. G.; Mikhailenko, S. V.; Pyshkina, O. A.; Yaminsky, I. V.; Yoshikawa, K., How does alcohol dissolve the complex of DNA with a cationic surfactant? J. Am. Chem. Soc. 1999, 121 (9), 1780-1785.
35. Hsu, W.-L.; Chen, H.-L.; Liou, W.; Lin, H.-K.; Liu, W.-L., Mesomorphic complexes of DNA with the mixtures of a cationic surfactant and a neutral lipid. Langmuir 2005, 21 (21), 9426-9431.
36. Espert, A.; Klitzing, R. v.; Poulin, P.; Colin, A.; Zana, R.; Langevin, D., Behavior of soap films stabilized by a cationic dimeric surfactant. Langmuir 1998, 14 (15), 4251-4260.
37. Zana, R.; Benrraou, M.; Rueff, R., Alkanediyl-. alpha.,. omega.-bis (dimethylalkylammonium bromide) surfactants. 1. Effect of the spacer chain length on the critical micelle concentration and micelle ionization degree. Langmuir 1991, 7 (6), 1072-1075.
38. Badea, I.; Verrall, R.; Baca‐Estrada, M.; Tikoo, S.; Rosenberg, A.; Kumar, P.; Foldvari, M., In vivo cutaneous interferon‐γ gene delivery using novel dicationic (gemini) surfactant–plasmid complexes. J. Gene Med. 2005, 7 (9), 1200-1214.
39. Dash, P. R.; Toncheva, V.; Schacht, E.; Seymour, L. W., Synthetic polymers for vectorial delivery of DNA: characterisation of polymer-DNA complexes by photon correlation spectroscopy and stability to nuclease degradation and disruption by polyanions in vitro. J. Controlled Release 1997, 48 (2-3), 269-276.
40. Cao, M.; Deng, M.; Wang, X.-L.; Wang, Y., Decompaction of cationic gemini surfactant-induced DNA condensates by β-cyclodextrin or anionic surfactant. J. Phys. Chem. B 2008, 112 (43), 13648-13654.
41. Raghavan, S. R.; Fritz, G.; Kaler, E. W., Wormlike micelles formed by synergistic self-assembly in mixtures of anionic and cationic surfactants. Langmuir 2002, 18 (10), 3797-3803.
42. Yeh, Y.-Q.; Chen, B.-C.; Lin, H.-P.; Tang, C.-Y., Synthesis of hollow silica spheres with mesostructured shell using cationic-anionic-neutral block copolymer ternary surfactants. Langmuir 2006, 22 (1), 6-9.
43. Zana, R.; Benrraou, M.; Rueff, R., Alkanediyl-.alpha.,.omega.-bis(dimethylalkylammonium bromide) surfactants. 1. Effect of the spacer chain length on the critical micelle concentration and micelle ionization degree. Langmuir 1991, 7 (6), 1072-1075.
44. Sorenson, G. P.; Coppage, K. L.; Mahanthappa, M. K., Unusually stable aqueous lyotropic gyroid phases from gemini dicarboxylate surfactants. J. Am. Chem. Soc. 2011, 133 (38), 14928-14931.
45. Cavanagh, J.; Fairbrother, W. J.; Palmer III, A. G.; Skelton, N. J., Protein NMR spectroscopy: principles and practice. Academic Press: 1995.
46. Dagan, S.; Amirav, A., Electron impact mass spectrometry of alkanes in supersonic molecular beams. J. Am. Soc. Mass Spectrom. 1995, 6 (2), 120-131.
47. Barber, M.; Bordoli, R. S.; Elliott, G. J.; Sedgwick, R. D.; Tyler, A. N., Fast atom bombardment mass spectrometry. Anal. Chem. 1982, 54 (4), 645A-657A.
48. Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M., Electrospray ionization for mass spectrometry of large biomolecules. Science 1989, 246 (4926), 64-71.
49. Hillenkamp, F.; Karas, M.; Beavis, R. C.; Chait, B. T., Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry of Biopolymers. Anal. Chem. 1991, 63 (24), 1193A-1203A.
50. Broadhurst, D.; Goodacre, R.; Jones, A.; Rowland, J. J.; Kell, D. B., Genetic algorithms as a method for variable selection in multiple linear regression and partial least squares regression, with applications to pyrolysis mass spectrometry. Anal. Chim. Acta 1997, 348 (1), 71-86.
51. Jonsson, G. P.; Hedin, A. B.; Hakansson, P. L.; Sundqvist, B. U. R.; Saeve, B. G. S.; Nielsen, P. F.; Roepstorff, P.; Johansson, K. E.; Kamensky, I.; Lindberg, M. S. L., Plasma desorption mass spectrometry of peptides and proteins adsorbed on nitrocellulose. Anal. Chem. 1986, 58 (6), 1084-1087.
52. Benninghoven, A.; Sichtermann, W. K., Detection, identification, and structural investigation of biologically important compounds by secondary ion mass spectrometry. Anal. Chem. 1978, 50 (8), 1180-1184.
53. Choi, B. K.; Hercules, D. M.; Zhang, T.; Gusev, A. I., Comparison of quadrupole, time-of-flight, and Fourier transform mass analyzers for LC-MS applications. LC GC North America 2001, 19 (5), 514-524.
54. Lees, J. G.; Miles, A. J.; Wien, F.; Wallace, B., A reference database for circular dichroism spectroscopy covering fold and secondary structure space. Bioinformatics 2006, 22 (16), 1955-1962.
55. Kypr, J.; Kejnovská, I.; Renčiuk, D.; Vorlíčková, M., Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Res. 2009, 37 (6), 1713-1725.
56. Roos, W. H.; Wuite, G. J., Nanoindentation studies reveal material properties of viruses. Adv. Mater. 2009, 21 (10‐11), 1187-1192.
57. AFM probe. http://www.nanosensors.com/ (accessed May 30, 2016).
58. 鄭有舜, X-光小角度散射在軟物質研究上的應用. 物理雙月刊 2004, 26 (2), 416-424.
59. Harper, P. E.; Mannock, D. A.; Lewis, R. N.; McElhaney, R. N.; Gruner, S. M., X-Ray diffraction structures of some phosphatidylethanolamine lamellar and inverted hexagonal phases*. Biophys. J. 2001, 81 (5), 2693-2706.
60. Carlstedt, J.; Lundberg, D.; Dias, R. S.; Lindman, B. r., Condensation and decondensation of DNA by cationic surfactant, spermine, or cationic surfactant–cyclodextrin mixtures: Macroscopic phase behavior, aggregate properties, and dissolution mechanisms. Langmuir 2012, 28 (21), 7976-7989.
61. (a) Uhríková, D.; Zajac, I.; Dubničková, M.; Pisárčik, M.; Funari, S. S.; Rapp, G.; Balgavý, P., Interaction of gemini surfactants butane-1, 4-diyl-bis (alkyldimethylammonium bromide) with DNA. Colloids Surf. B. Biointerfaces 2005, 42 (1), 59-68; (b) Zhao, X.; Shang, Y.; Hu, J.; Liu, H.; Hu, Y., Biophysical characterization of complexation of DNA with oppositely charged Gemini surfactant 12-3-12. Biophys. Chem. 2008, 138 (3), 144-149.
62. Evdokimov, Y. M.; Platonov, A.; Tikhonenko, A.; Varshavsky, Y. M., A compact form of double‐stranded DNA in solution. FEBS Lett. 1972, 23 (2), 180-184.
63. Ramos, J. É. B.; de Vries, R.; Ruggiero Neto, J., DNA ψ-condensation and reentrant decondensation: effect of the PEG degree of polymerization. J. Phys. Chem. B 2005, 109 (49), 23661-23665.
64. Perales, J. C.; Grossmann, G. A.; Molas, M.; Liu, G.; Ferkol, T.; Harpst, J.; Oda, H.; Hanson, R. W., Biochemical and functional characterization of DNA complexes capable of targeting genes to hepatocytes via the asialoglycoprotein receptor. J. Biol. Chem. 1997, 272 (11), 7398-7407.
65. Keller, D.; Bustamante, C., Theory of the interaction of light with large inhomogeneous molecular aggregates. II. Psi‐type circular dichroism. J. Chem. Phys. 1986, 84 (6), 2972-2980.
66. Hwang, J.; Son, M.; Oh, J.; Ahn, D.; Hong, S.; Kim, H.; Hwang, S., Transport study of lambda DNA molecules. J. Korean. Phys. Soc. 2007, 50 (3), 902-904.
67. Sorenson, G. P.; Mahanthappa, M. K., Unexpected role of linker position on ammonium gemini surfactant lyotropic gyroid phase stability. Soft matter 2016, 12 (8), 2408-2415.
68. Leal, C.; Wadsö, L.; Olofsson, G.; Miguel, M.; Wennerström, H., The hydration of a DNA-amphiphile complex. J. Phys. Chem. B 2004, 108 (9), 3044-3050.
69. Karlsson, L.; van Eijk, M. C.; Söderman, O., Compaction of DNA by gemini surfactants: effects of surfactant architecture. J. Colloid Interface Sci. 2002, 252 (2), 290-296.
70. Chen, X.; Wang, J.; Shen, N.; Luo, Y.; Li, L.; Liu, M.; Thomas, R. K., Gemini surfactant/DNA complex monolayers at the air-water interface: Effect of surfactant structure on the assembly, stability, and topography of monolayers. Langmuir 2002, 18 (16), 6222-6228.
71. Zana, R., Dimeric (gemini) surfactants: effect of the spacer group on the association behavior in aqueous solution. J. Colloid Interface Sci. 2002, 248 (2), 203-220.
72. Rosenzweig, H. S.; Rakhmanova, V. A.; MacDonald, R. C., Diquaternary ammonium compounds as transfection agents. Bioconj. Chem. 2001, 12 (2), 258-263.
73. Wang, L.; Koynova, R.; Parikh, H.; MacDonald, R. C., Transfection activity of binary mixtures of cationic O-substituted phosphatidylcholine derivatives: the hydrophobic core strongly modulates physical properties and DNA delivery efficacy. Biophys. J. 2006, 91 (10), 3692-3706.
74. Tresset, G., The multiple faces of self-assembled lipidic systems. BMC Biophysics 2009, 2 (1), 3.
75. Fernandes, R. M.; Marques, E. F.; Silva, B. F.; Wang, Y., Micellization behavior of a catanionic surfactant with high solubility mismatch: Composition, temperature, and salt effects. J. Mol. Liq. 2010, 157 (2), 113-118.
76. Su, H. M. Self-assembling Behavior of a Gemini Surfactant-based Catanionic System: Effect of Molecular Configuration and Surface Charge Density. Master Thesis, National Central University, 2016.
指導教授 陳儀帆(Yi-Fan Chen) 審核日期 2016-8-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明