博碩士論文 103324048 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.144.233.150
姓名 謝欣宜(Hsin-Yi Hsieh)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 以發泡鎳網作為鋅二次電池陽極集電網之電化學特性分析
(Electrochemical characterization of using Ni foam as anode current collector for Zn-based secondary batteries)
相關論文
★ 硼氫化物-乙二醇醚類溶劑電解液應用於鎂複合電池正極之性質研究★ 離子液體與有機碳酸酯之混合型電解液應用於高電壓LiNi0.5Mn1.5O4正極材料
★ SiO2@AIZS奈米殼層結構合成及其光催化產氫研究★ 利用旋轉塗佈法製備固態電解質應用於鋰離子電池
★ 以不同流場電解液搭配發泡銅網作為鋅空氣電池負極集電網之電化學性質★ 鈰摻雜之固態電解質Li7La3Zr2O12應用於鋰離子電池
★ 奈米結構之Au/MnO2複合陰極觸媒材料★ 使用接枝到表面法製備聚乙二醇高分子刷於自組裝單分子膜改質之矽基材
★ 超音波輔助化學水浴法製備 AgInS2 薄膜之電化學阻抗頻譜分析★ 硫化錫粉體作為鋰離子電池陽極活性材料的效能與穩定性研究
★ IMPS於Ag-In-S半導體薄膜之分析與應用★ LiFePO4和LiNi0.5Mn1.5O4於離子液體電解液中的鋰離子電池電化學特性
★ 微波水熱法製備金屬硫化物粉體及其光化學產氫研究★ 硫化錫-硫化銻作為鋰離子電池負極材料之研究
★ 溶劑熱法製備Cu-In-Zn-S薄膜及其光電化學性質★ 電化學分解水之電極材料製備與效率探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究採用商業發泡鎳網(Ni foam)作為鋅二次電池陽極集電網,主要為藉由其高比表面積之特性,抑制鋅陽極在充放電過程中鋅枝狀晶的形成,同時提升電極單位投影面積下鋅金屬的負載量。實驗採用三極式系統,置於含有飽和氧化鋅(ZnO)之6 M 氫氧化鉀(KOH)水溶液中執行電化學測試,並以鎳箔(Ni foil)作為實驗對照組。
Ni foam於20 mA/cm2、50 mA/cm2、100 mA/cm2的電流密度下進行充放電20圈,皆具有穩定的循環效率。Ni foam於100 mA/cm2的電流密度下充電30分鐘,電極表面維持平坦且無枝狀晶生成,經過50%放電深度(DOD)充放電50圈之後,電極表面亦無明顯枝狀晶殘留。經循環伏安法及定電壓充電測定Ni foam之電化學活性面積約為Ni foil的3.5倍,闡述其多孔結構有助於分散實際單位面積的電流密度,為鋅金屬的沉積提供了更多空間,故能有效抑制在鹼性電解質中鋅枝狀晶的生成。
Ni foam最大可承受無枝狀晶生長電流密度介於110 mA/cm2至120 mA/cm2之間,約為Ni foil的5倍;在Ni foil與Ni foam皆無枝狀晶生長的電流密度下充電,Ni foam的最大負載量約為Ni foil的2倍,說明使用Ni foam作為鋅二次電池負極不僅可容許電池在大電流密度下充放電,單位面積電容量亦能提升為2倍,有利於鋅空氣二次電池在電動車領域的發展。
摘要(英) Zinc is one of the most commonly used materials for batteries ascribed to its abundance, high energy density, well reversibility, and eco-friendliness. Unfortunately, Zn-based secondary batteries typically suffer from short lifetimes due to the dendrite formation during charging process. The inhibition of dendrite growth has been extensively studied. However, most of the strategies were adding additives into electrode or electrolyte, which may decrease the efficiency of batteries. Hence we expect to develop a physical method to prevent dendrite formation. In this work, Ni foam was used as the current collector in an alkaline electrolyte composed of 6 M KOH with saturated ZnO. In a parallel experiment, Ni foil was also used for comparison.
Electrochemical analysis and scanning electron microscopy (SEM) were utilized to evaluate the performance of Ni foam and Ni foil electrodes. The Ni foam exhibited a superior cycling stability during deep charge-discharge, at current densities of 20, 50, and 100 mA/cm2. It was found that Zn deposited uniformly on Ni foam through the constant current density of 100 mA/cm2, charging for 30 min. Additionally, no dendrite formation was observed after 50 cycles of 50% depth-of-charge. The current-time profile of Ni foam was also more stable than that of Ni foil at constant voltage of -1.7 V, suggesting a significant surface morphology control of Zn deposit using Ni foam.
Through cyclic voltammetry(CV) as well as potentiostatic electrodeposition results showed that Ni foam carried about 3.5 times larger electrochemically active surface area than Ni foil. The maximum dendrite free current density of Ni foam is between 110 mA/cm2 and 120 mA/cm2, which is also about 4-5 times larger than that of Ni foil. In addition, the maximum load of Ni foam is twice of Ni foil under dendrite free current density.
This study has demonstrated that the porous nature of Ni foam can suppress Zn dendrite formation effectively in the alkaline solution. Furthermore, Ni foam carried a higher load of Zn deposits than Ni foil as well as better tolerance under high current density. Accordingly, Ni foam could be a well choice of anode current collector for Zn-based secondary batteries.
關鍵字(中) ★ 鋅空氣電池
★ 陽極
★ 發泡鎳網
★ 枝狀晶
關鍵字(英) ★ Zn-air batteries
★ anode
★ Ni foam
★ dendrite
論文目次 摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 IX
表目錄 XV
第一章 緒論 1
1-1 前言 1
1-2 研究動機 5
第二章 文獻回顧 7
2-1 鋅空氣電池概述 7
2-1-1 鋅空氣電池的發展 7
2-1-2 鋅空氣電池的工作原理 11
2-2 鋅空氣二次電池負極材料 14
2-3 枝狀晶的生成 18
2-4 鋅枝狀晶抑制方法 22
2-4-1 電解液添加劑 22
2-4-2 電極添加劑 29
2-4-3 實驗條件控制 32
2-4-4 物理方法 33
2-5 發泡鎳網在鋅二次電池負極上的應用 36
第三章 實驗方法與步驟 39
3- 1 實驗藥品與器材 39
3-1-1 實驗藥品 39
3-1-2 實驗器材與儀器 40
3-2 實驗步驟 41
3-2-1 電極製備 41
3-2-2 電極材料與電解質 41
3-2-3 流動系統 42
3-3 材料鑑定分析 44
3-3-1 X光繞射儀(X-ray Diffraction, XRD) 44
3-3-2 場發射掃描式電子顯微鏡(Field Emission Scanning Elecron Microscope, FE-SEM) 44
3-4 電化學分析 45
3-4-1循環伏安法(Cyclic Voltammetry, CV) 45
3-4-2 表面形貌分析 45
3-4-2-1 定電壓(Constant Voltage) 45
3-4-2-2 鋅沉積形貌 45
3-4-2-3 50%放電深度(Depth of discharge, DOD) 46
3-4-3 鋅枝狀晶生長臨界電流 47
3-4-3-1 鋅沉積形貌 47
3-4-3-2 循環效率 47
3-4-4 循環穩定性測試 47
3-4-5 鋅負載量極限 48
第四章 實驗結果與討論 49
4-1 材料鑑定分析 49
4-2 循環伏安法 51
4-3 表面形貌分析 55
4-3-1 定電壓 55
4-3-2 鋅沉積形貌 58
4-3-3 50%放電深度 62
4-4 鋅枝狀晶生長臨界電流 64
4-4-1 鋅沉積形貌 64
4-4-2 循環效率 69
4-5 循環穩定性測試 72
4-6 鋅負載量極限 76
第五章 結論與未來展望 82
5-1 結論 82
5-2 未來工作 84
參考文獻 85
附錄 90
參考文獻 [1] E. C. Driver, "In 2016 China could become the largest market for electric vehicles," ed, 2015.
[2] J.-S. Lee, S. Tai Kim, R. Cao, N.-S. Choi, M. Liu, K. T. Lee, et al., "Metal–Air Batteries with High Energy Density: Li–Air versus Zn–Air," Advanced Energy Materials, vol. 1, pp. 34-50, 2011.
[3] D. Linden and T. B. Reddy, Handbook Of Batteries, 3 ed.: McGraw-Hill, 2001.
[4] M. Catenacci, E. Verdolini, V. Bosetti, and G. Fiorese, "Going electric: Expert survey on the future of battery technologies for electric vehicles," Energy Policy, vol. 61, pp. 403-413, 2013.
[5] P. Gifford, J. Adams, D. Corrigan, and S. Venkatesan, "Development of advanced nickel/metal hydride batteries for electric and hybrid vehicles," Journal of Power Sources, vol. 80, pp. 157-163, 1999.
[6] X. G. Zhang, "SECONDARY BATTERIES – ZINC SYSTEMS | Zinc Electrodes: Overview A2 - Garche, Jürgen," in Encyclopedia of Electrochemical Power Sources, ed Amsterdam: Elsevier, 2009, pp. 454-468.
[7] O. Haas and J. Van Wesemael, "SECONDARY BATTERIES – METAL-AIR SYSTEMS | Zinc–Air: Electrical Recharge A2 - Garche, Jürgen," in Encyclopedia of Electrochemical Power Sources, ed Amsterdam: Elsevier, 2009, pp. 384-392.
[8] Y. Li and H. Dai, "Recent advances in zinc-air batteries," Chemical Society Reviews, vol. 43, pp. 5257-5275, 2014.
[9] X. G. Zhang, "Fibrous zinc anodes for high power batteries," Journal of Power Sources, vol. 163, pp. 591-597, 2006.
[10] K. Fukami, S. Nakanishi, H. Yamasaki, T. Tada, K. Sonoda, N. Kamikawa, et al., "General Mechanism for the Synchronization of Electrochemical Oscillations and Self-Organized Dendrite Electrodeposition of Metals with Ordered 2D and 3D Microstructures," The Journal of Physical Chemistry C, vol. 111, pp. 1150-1160, 2007.
[11] R. Y. Wang, D. W. Kirk, and G. X. Zhang, "Effects of Deposition Conditions on the Morphology of Zinc Deposits from Alkaline Zincate Solutions," Journal of The Electrochemical Society, vol. 153, pp. C357-C364, 2006.
[12] A. Kuhn and F. Argoul, "Revisited experimental analysis of morphological changes in thin-layer electrodeposition," Journal of Electroanalytical Chemistry, vol. 371, pp. 93-100, 1994.
[13] S. Müller, F. Holzer, and O. Haas, "Optimized zinc electrode for the rechargeable zinc–air battery," Journal of Applied Electrochemistry, vol. 28, pp. 895-898, 1998.
[14] D. M. See and R. E. White, "Temperature and Concentration Dependence of the Specific Conductivity of Concentrated Solutions of Potassium Hydroxide," Journal of Chemical & Engineering Data, vol. 42, pp. 1266-1268, 1997.
[15] J. Kan, H. Xue, and S. Mu, "Effect of inhibitors on Zn-dendrite formation for zinc-polyaniline secondary battery," Journal of Power Sources, vol. 74, pp. 113-116, 1998.
[16] J. M. Wang, L. Zhang, C. Zhang, and J. Q. Zhang, "Effects of bismuth ion and tetrabutylammonium bromide on the dendritic growth of zinc in alkaline zincate solutions," Journal of Power Sources, vol. 102, pp. 139-143, 2001.
[17] C. W. Lee, K. Sathiyanarayanan, S. W. Eom, H. S. Kim, and M. S. Yun, "Novel electrochemical behavior of zinc anodes in zinc/air batteries in the presence of additives," Journal of Power Sources, vol. 159, pp. 1474-1477, 2006.
[18] C. J. Lan, C. Y. Lee, and T. S. Chin, "Tetra-alkyl ammonium hydroxides as inhibitors of Zn dendrite in Zn-based secondary batteries," Electrochimica Acta, vol. 52, pp. 5407-5416, 2007.
[19] M. Liang, H. Zhou, Q. Huang, S. Hu, and W. Li, "Synergistic effect of polyethylene glycol 600 and polysorbate 20 on corrosion inhibition of zinc anode in alkaline batteries," Journal of Applied Electrochemistry, vol. 41, pp. 991-997, 2011.
[20] C. Mele and B. Bozzini, "Spectroelectrochemical investigation of the anodic and cathodic behaviour of zinc in 5.3 M KOH," Journal of Applied Electrochemistry, vol. 45, pp. 43-50, 2015.
[21] L. E. Morón, A. Méndez, J. C. Ballesteros, R. Antaño-López, G. Orozco, Y. Meas, et al., "Zn Electrodeposition from an Acidic Chloride Bath Containing Polyethyleneglycol (Mw 200) and Benzylideneacetone as Additives," Journal of The Electrochemical Society, vol. 158, pp. D435-D444, 2011.
[22] R. K. Ghavami and Z. Rafiei, "Performance improvements of alkaline batteries by studying the effects of different kinds of surfactant and different derivatives of benzene on the electrochemical properties of electrolytic zinc," Journal of Power Sources, vol. 162, pp. 893-899, 2006.
[23] R. K. Ghavami, Z. Rafiei, and S. M. Tabatabaei, "Effects of cationic CTAB and anionic SDBS surfactants on the performance of Zn–MnO2 alkaline batteries," Journal of Power Sources, vol. 164, pp. 934-946, 2007.
[24] T. J. Simons, A. A. J. Torriero, P. C. Howlett, D. R. MacFarlane, and M. Forsyth, "High current density, efficient cycling of Zn2+ in 1-ethyl-3-methylimidazolium dicyanamide ionic liquid: The effect of Zn2+ salt and water concentration," Electrochemistry Communications, vol. 18, pp. 119-122, 2012.
[25] M. Xu, D. G. Ivey, W. Qu, and Z. Xie, "Study of the mechanism for electrodeposition of dendrite-free zinc in an alkaline electrolyte modified with 1-ethyl-3-methylimidazolium dicyanamide," Journal of Power Sources, vol. 274, pp. 1249-1253, 2015.
[26] J. McBreen and E. Gannon, "The Effect of Additives on Current Distribution in Pasted Zinc Electrodes," Journal of The Electrochemical Society, vol. 130, pp. 1980-1982, 1983.
[27] J. McBreen and E. Gannon, "Bismuth oxide as an additive in pasted zinc electrodes," Journal of Power Sources, vol. 15, pp. 169-177, 1985.
[28] C. Zhang, J. M. Wang, L. Zhang, J. Q. Zhang, and C. N. Cao, "Study of the performance of secondary alkaline pasted zinc electrodes," Journal of Applied Electrochemistry, vol. 31, pp. 1049-1054, 2001.
[29] L. Binder and W. Odar, "Experimental survey of rechargeable alkaline zinc electrodes," Journal of Power Sources, vol. 13, pp. 9-21, 1984.
[30] D. Zeng, Z. Yang, S. Wang, X. Ni, D. Ai, and Q. Zhang, "Preparation and electrochemical performance of In-doped ZnO as anode material for Ni–Zn secondary cells," Electrochimica Acta, vol. 56, pp. 4075-4080, 2011.
[31] S.-H. Lee, C.-W. Yi, and K. Kim, "Characteristics and Electrochemical Performance of the TiO2-Coated ZnO Anode for Ni−Zn Secondary Batteries," The Journal of Physical Chemistry C, vol. 115, pp. 2572-2577, 2011.
[32] J. Vatsalarani, D. C. Trivedi, K. Ragavendran, and P. C. Warrier, "Effect of Polyaniline Coating on “Shape Change” Phenomenon of Porous Zinc Electrode," Journal of The Electrochemical Society, vol. 152, pp. A1974-A1978, 2005.
[33] J. Vatsalarani, S. Geetha, D. C. Trivedi, and P. C. Warrier, "Stabilization of zinc electrodes with a conducting polymer," Journal of Power Sources, vol. 158, pp. 1484-1489, 2006.
[34] J. Huang, Z. Yang, X. Xie, Z. Feng, and Z. Zhang, "Preparation of cribriform sheet-like carbon-coated zinc oxide with improved electrochemical performance," Journal of Power Sources, vol. 289, pp. 8-16, 2015.
[35] J. Huang, Z. Yang, B. Yang, R. Wang, and T. Wang, "Ultrasound assisted polymerization for synthesis of ZnO/Polypyrrole composites for zinc/nickel rechargeable battery," Journal of Power Sources, vol. 271, pp. 143-151, 2014.
[36] Z.-h. Yang, J.-p. Liao, S.-w. Wang, S.-q. Wang, and J. Hu, "Effects of dispersant on performance of Ni-Zn batteries," Journal of Central South University of Technology, vol. 17, pp. 930-935, 2010.
[37] K. Miyazaki, Y. S. Lee, T. Fukutsuka, and T. Abe, "Suppression of Dendrite Formation of Zinc Electrodes by the Modification of Anion-Exchange Ionomer," Electrochemistry, vol. 80, pp. 725-727, 2012.
[38] Y. Ito, M. Nyce, R. Plivelich, M. Klein, D. Steingart, and S. Banerjee, "Zinc morphology in zinc–nickel flow assisted batteries and impact on performance," Journal of Power Sources, vol. 196, pp. 2340-2345, 2011.
[39] Y. Ito, X. Wei, D. Desai, D. Steingart, and S. Banerjee, "An indicator of zinc morphology transition in flowing alkaline electrolyte," Journal of Power Sources, vol. 211, pp. 119-128, 2012.
[40] J. W. Gallaway, D. Desai, A. Gaikwad, C. Corredor, S. Banerjee, and D. Steingart, "A Lateral Microfluidic Cell for Imaging Electrodeposited Zinc near the Shorting Condition," Journal of The Electrochemical Society, vol. 157, pp. A1279-A1286, 2010.
[41] A. Gavrilović-Wohlmuther, A. Laskos, C. Zelger, B. Gollas, and A. H. Whitehead, "Effects of Electrolyte Concentration, Temperature, Flow Velocity and Current Density on Zn Deposit Morphology," Journal of Energy and Power Engineering, vol. 9, pp. 1019-1028, 2015.
[42] R. Koda, K. Fukami, T. Sakka, and Y. H. Ogata, "A Physical Mechanism for Suppression of Zinc Dendrites Caused by High Efficiency of the Electrodeposition within Confined Nanopores," ECS Electrochemistry Letters, vol. 2, pp. D9-D11, 2013.
[43] J. F. Parker, C. N. Chervin, E. S. Nelson, D. R. Rolison, and J. W. Long, "Wiring zinc in three dimensions re-writes battery performance-dendrite-free cycling," Energy & Environmental Science, vol. 7, pp. 1117-1124, 2014.
[44] J. F. Parker, E. S. Nelson, M. D. Wattendorf, C. N. Chervin, J. W. Long, and D. R. Rolison, "Retaining the 3D Framework of Zinc Sponge Anodes upon Deep Discharge in Zn–Air Cells," ACS Applied Materials & Interfaces, vol. 6, pp. 19471-19476, 2014.
[45] Y. Cheng, H. Zhang, Q. Lai, X. Li, D. Shi, and L. Zhang, "A high power density single flow zinc–nickel battery with three-dimensional porous negative electrode," Journal of Power Sources, vol. 241, pp. 196-202, 2013.
[46] Y. Cheng, H. Zhang, Q. Lai, X. Li, Q. Zheng, X. Xi, et al., "Effect of temperature on the performances and in situ polarization analysis of zinc–nickel single flow batteries," Journal of Power Sources, vol. 249, pp. 435-439, 2014.
[47] Y. Cheng, Q. Lai, X. Li, X. Xi, Q. Zheng, C. Ding, et al., "Zinc-nickel single flow batteries with improved cycling stability by eliminating zinc accumulation on the negative electrode," Electrochimica Acta, vol. 145, pp. 109-115, 2014.
[48] Y. Cheng, X. Xi, D. Li, X. Li, Q. Lai, and H. Zhang, "Performance and potential problems of high power density zinc-nickel single flow batteries," RSC Advances, vol. 5, pp. 1772-1776, 2015.
指導教授 李岱洲(Tai-Chou Lee) 審核日期 2016-8-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明