博碩士論文 103324051 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:54.159.64.172
姓名 劉思屏(Si-Ping Liu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 微波水熱法製備SiO2@ZnIn2S4奈米粒子及其光催化產氫研究
(Photocatalytic Hydrogen Evolution from SiO2@ZnIn2S4 Nanoparticles Synthesized Using Microwave-assisted Hydrothermal Method)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    至系統瀏覽論文 (2021-8-8以後開放)
摘要(中) 由於全球暖化和極端的天氣條件與二氧化碳在大氣中的含量有所關聯
,而目前的能源供應和使用沒有減少能源相關的溫室氣體排放跡象。因此,只有改變生產和消費路徑可以降低對化石燃料的依賴。所以發展低碳能源技術是至關重要的。許多機構預測,氫能和燃料電池技術的進步可以支持氣候變化和能源安全的目標。特別是可再生能源的氫提供未來低碳能源系統的靈活性和可持續性。
ZnIn2S4(ZIS)是能隙約為2.4電子伏特的可見光觸媒。在之前的研究,我們以微波水熱法製備ZIS奈米粒子。被包覆在ZIS中的金 - 銀納米殼(GS-NS)具有可調整的吸收光波段,利用表面電漿共振增強光催化產氫。然而,ZIS包覆GS-NS的覆蓋範圍和厚度沒有精確地控制。在這項研究中,我們將重點放在製備ZIS包覆二氧化矽核殼奈米粒子與可調整厚度的ZIS殼。控制了核殼粒子,使我們能夠研究結構與性質關係。我們的研究結果表示,在二氧化矽表面上的表面改質促進ZIS的成核,從而導致均勻的包覆。此外,ZIS殼的厚度可容易地使用微波水熱合成調整。因此,本研究找出簡單的方法以產生一個更複雜的結構(GS-NS@dielectric@photocatalyst)優化太陽能產氫。
摘要(英) Up to date, more and more evidences show that global warming and extreme weather conditions are associated with the CO2 level in atmosphere. Current energy supply and use do not be seen to reduce energy-related green-house-gas emission. Therefore, only changes in production and consumption path can decrease the dependence on fossil fuels. Developing low-carbon energy technologies is critical. Many agencies projected that the advances in hydrogen and fuel cell technologies can support climate change and energy security goals. In particular, hydrogen from renewable energies provides flexibility and sustainability for future low-carbon energy systems.

ZnIn2S4 (ZIS) is a visible-light-driven photocatalyst with energy band gap of ~2.4 eV. In our previous work, we developed a microwave-assisted hydrothermal method to generate ZIS particles. The gold-silver nanoshells (GS-NS) with tunable absorption were embedded in ZIS matrix for plasmonic-enhanced photocatalytic hydrogen production. However, the coverage and thickness of ZIS on top of GS-NS were not precisely controlled. In this work, we focused on preparing SiO2@ZIS core-shell nanoparticles with tunable thickness of ZIS shells. Control over the core-shell particles enables us to study structure-property relations. Our experimental findings showed that the surface modification on SiO2 surfaces promoted nucleation of ZIS, leading to a homogeneous coverage. In addition, the thickness of ZIS shell can be easily tuned using microwave-assisted hydrothermal synthesis. Thus, our facile procedure paves the way to generate a more complex structure, GS-NS@dielectric@photocatalyst, for optimization of solar hydrogen
production.
關鍵字(中) ★ 光觸媒
★ 產氫
★ 核殼結構
關鍵字(英) ★ photocatalyst
★ hydrogen evolution
★ core-shell structure
論文目次 目錄
第一章、 緒論 1
1-1前言 1
1-2光觸媒的發展 4
1-3研究動機 7
第二章、文獻回顧 8
2-1光觸媒材料 8
2-2光觸媒分解水產氫 12
2-4微波水熱法製備光觸媒 18
2-5核(SiO2)/殼結構製備 21
2-6表面改質 23
2-7表面電漿共振效應 25
2-8 光觸媒與表面電漿共振效應 31
2-9 二氧化矽奈米粒子 39
第三章、實驗方法 41
3-1實驗藥品 41
3-2分析儀器與實驗儀器 44
3-3實驗步驟 46
3-3-1 微波水熱法合成ZnIn2S4 46
3-3-2溶膠-凝膠法製備二氧化矽膠體 46
3-3-3表面改質 46
3-3-4 核/殼(二氧化矽/ZIS)結構合成(微波水熱法) 47
3-3-5 固態溶液粉體產氫速率量測 47
3-3-6 奈米殼結構 (Nanoshell, Ag@Au@SnO2)製備 49
3-3-7 核/殼(Ag@Au@SiO2/ZnIn2S4)結構合成(微波反應) 51
第四章、實驗結果與討論 52
4-1溶膠-凝膠法製備二氧化矽膠體 52
4-2微波水熱法製備ZnIn2S4 55
4-2-1粉體結構&特性 55
4-3核/殼(core/shell)結構光觸媒 59
4-3-1核/殼結構表面改質 59
4-3-2成核密度 63
4-3-3 ZnIn2S4光觸媒前驅物濃度 65
4-3-4沉積次數 67
4-3-5產氫量測 72
4-4以乙醇為反應溶液製備核/殼(二氧化矽/ZIS)結構 75
第五章、結論與未來展望 78
附錄 80
產氫量測實驗介紹 80
排水集氣法 80
Online GC 81
排水集氣法與online GC 之產氫量測比較 84
核/殼(Ag@Au@SnO2/ZIS)結構產氫量測 85
 奈米殼結構(Nanoshell,Ag@Au@SiO2, Ag@Au@SnO2)性質與結構分析 85
Ag@Au@SiO2 NPs 85
Ag@Au@SnO2 Nanorattles 91
參考文獻 95
參考文獻 1. 經濟部能源局, 中華民國104年能源統計手冊. 中華民國104年能源統計手冊, 民國105年: p. 10.
2. Bull, Stanley R., Renewable Energy Today and Tomorrow. Proceedings of The IEEE, 2001. 89(8): p. 1216-1226.
3. Crabtree, G. W., M. S. Dresselhaus and M. V. Buchanan, The hydrogen economy. Phys. Today, 2004. 47(12): p. 39-44.
4. 吳怡萱, 再生能源概論. 五南, 2008.
5. Heinzel, Brian C. H. Steele and Angelika, Materials for fuel-cell technologies. Nature, 2001. 414(6861): p. 345-352.
6. Fujishima, A. and K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 1972. 286(5772): p. 474-476.
7. Franck Tessier, ascal Maillard, Yungi Lee,Ce´line Bleugat and Kazunari Domen, Zinc Germanium Oxynitride: Influence of the Preparation Method on the Photocatalytic Properties for Overall Water Splitting. J. Phys. Chem. C, 2009. 113(19): p. 8526–8531.
8. Domen, Kazuhiko Maeda and Kazunari, New Non-Oxide Photocatalysts Designed for Overall Water Splitting under Visible Light. J. Phys. Chem. C, 2007. 111(22): p. 7851-7861.
9. Kudo, A., H. Kato and I. Tsuji, Strategies for the development of visible-light-driven photocatalysts for water splitting. Chem. Lett., 2004. 33(12): p. 1534-1539.
10. Kudo, Akihiko, Recent progress in the development of visible light-driven powdered photocatalysts forwater splitting. Int. J. Hydrogen Energy, 2007. 32: p. 2673-2678.
11. Grätzel, Michael, Photoelectrochemical cells. Nature, 2001. 414: p. 338-344.
12. Issei Tsuji, Hideki Kato, Hisayoshi Kobayashi and Akihiko Kudo, Photocatalytic H2 Evolution Reaction from Aqueous Solutions over Band Structure-Controlled (AgIn)Zn2(1- )S2 Solid Solution Photocatalysts with Visible-Light Response and Their Surface Nanostructures. J. Am. Chem. Soc., 2004. 126(13406-13413).
13. Issei Tsuji, Hideki Kato, Hisayoshi Kobayashi and Akihiko Kudo, Photocatalytic H2 Evolution under Visible-Light Irradiation over Band-Structure-Controlled (CuIn)xZn2(1-x)S2 Solid Solutions. J. Phys. Chem. B 2005. 109(15): p. 7323-7329.
14. Yongjuan Chen, Shunwei Hu, Wenjun Liu, Xueyuan Chen, Ling Wu, Xuxu Wang, Ping Liua and Zhaohui Li, Controlled syntheses of cubic and hexagonal ZnIn2S4 nanostructures with different visible-light photocatalytic performance. Dalton Transactions, 2011. 40: p. 2607-2613.
15. Tian Xi Wang, Shao Hong Xu and Feng Xia Yang, ZnIn2S4 nanopowder as an efficient visible light-driven photocatalyst in the reduction of aqueous Cr(VI). Mater. Lett., 2012. 83: p. 46-48.
16. Hu, Xianluo, Yu, Jimmy C., Gong, Jingming and Li, Quan, Rapid Mass Production of Hierarchically Porous ZnIn2S4 Submicrospheres via a Microwave-Solvothermal Process. Crystal Growth & Design, 2007. 7(12): p. 2444-2448.
17. Shaohua Shen, Jie Chen, Xixi Wang, Liang Zhao and Liejin Guo, Microwave-assisted hydrothermal synthesis of transition-metal doped ZnIn2S4 and its photocatalytic activity for hydrogen evolution under visible light. J. Power Sources, 2011. 196: p. 10112–10119.
18. Zhixin Chen, Danzhen Li, Wenjuan Zhang, Chun Chen, Wenjuan Li, Meng Sun, Yunhui He and Xianzhi Fu, Low-Temperature and Template-Free Synthesis of ZnIn2S4 Microspheres. Inorg. Chem., 2008. 47: p. 9766-9772.
19. Shaohua Shen, Liang Zhao and Liejin Guo, Cetyltrimethylammoniumbromide (CTAB)- assisted hydrothermal synthesis of ZnIn2S4 as an efficient visible-light-driven photocatalyst for hydrogen production. Int. J. Hydrogen Energy, 2008. 33: p. 4501–4510.
20. Jie Shen, Jiantao Zai, Yanping Yuan and Xuefeng Qian, 3D hierarchical ZnIn2S4: The preparation and photocatalytic properties on water splitting. international journal of hydrogen energy, 2012. 37: p. 16986-16993.
21. Shaohua Shen, Liang Zhao and Liejin Guo, ZnmIn2S3+m (m[1-5, integer): A new series of visible- light-driven photocatalysts for splitting water to hydrogen. Int. J. Hydrogen Energy, 2010. 35: p. 10148-10154.
22. Ying-Jie Zhu, and Feng Chen, Microwave-Assisted Preparation of Inorganic Nanostructures inLiquid Phase. Chem. Rev., 2014. 114: p. 6462−6555.
23. D.P Serranoa, M.A Uguinab, R Sanza, E Castillob, A Rodrı́guezb and P Sánchezc, Synthesis and crystallization mechanism of zeolite TS-2 by microwave and conventional heating. Microporous Mesoporous Mater., 2004. 69: p. 197–208.
24. Luigi Carbonea, and P. Davide Cozzoli, Colloidal heterostructured nanocrystals: Synthesis and growth mechanisms. Nano Today, 2010. 5: p. 449-493.
25. Zhenda Lu, Chuanbo Gao, Qiao Zhang, Miaofang Chi, Jane Y. Howe and Yadong Yin, Direct Assembly of Hydrophobic Nanoparticles to Multifunctional Structures. Nano Lett., 2011. 11: p. 3404–3412.
26. Kim E. Sapsford, W. Russ Algar, Lorenzo Berti ,Kelly Boeneman Gemmill, Brendan J. Casey,Eunkeu Oh, Michael H. Stewart and Igor L. Medintz, Functionalizing Nanoparticles with Biological Molecules: Developing Chemistries that Facilitate Nanotechnology. Chem. Rev., 2013. 113: p. 1904-2047.
27. Jianbing Wu, Lixia Ling, Junbao Xie, Guozhang Ma and Baojun Wang, , Surface modification of nanosilica with 3-mercaptopropyl trimethoxysilane: Experimental and theoretical study on the surface interaction. Chem. Phys. Lett., 2014. 591: p. 227-232.
28. Narayanan, Kalyani Gude and Radha, Synthesis and Characterization of Colloidal-Supported Metal Nanoparticles as Potential Intermediate Nanocatalysts. J. Phys. Chem. C, 2010. 114: p. 6356–6362.
29. Kang, Kwang-Sun, The Cause of Highly Efficient Lead Removal with Silica Spheres Modifying the Surface by a Base Catalyst. Ind. Eng. Chem. Res., 2012. 51: p. 4101-4104.
30. Link, S. and M. A. El-Sayed, Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles. J. Phys. Chem. B, 1999. 103(21): p. 4212-4217.
31. Fumitaka Mafuné, Jun-ya Kohno , Yoshihiro Takeda and Tamotsu Kondow, Formation and Size Control of Silver Nanoparticles by Laser Ablation in Aqueous Solution. J. Phys. Chem. B, 2000. 104(39): p. 9111-9117.
32. El-Sayed, Susie Eustis and Mostafa A., Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev., 2006. 35: p. 209-217.
33. Kottmann, J. P., O. J. Martin, D. R. Smith and S. Schultz, Plasmon resonances of silver nanowires with a nonregular cross section. Phys. Rev. B, 2001. 64(23): p. 235402.
34. Maier, S. A. and H. A. Atwater, Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures. J. Appl. Phys., 2005. 98(1): p. 011101.
35. Wei, Alexander, Plasmonic Nanomaterials, in Nanoparticles: Building Blocks for Nanotechnology, Rotello, V., Editor. 2004, Springer US: Boston, MA. p. 173-200.
36. Zayats, Anatoly V., Smolyaninov, Igor I. and Maradudin, Alexei A., Nano-optics of surface plasmon polaritons. Physics Reports, 2005. 408(3): p. 131-314.
37. Raether, H., Springer tracts in modern physics. Vol. 111. 1988: Springer Verlag.
38. Barnes, W. L., A. Dereux and T. W. Ebbesen, Surface plasmon subwavelength optics. Nature, 2003. 424(6950): p. 824-830.
39. Kelly, K. L., E. Coronado, L. L. Zhao and G. C. Schatz, The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B, 2003. 107(3): p. 668-677.
40. Mock, J., M. Barbic, D. Smith, D. Schultz and S. Schultz, Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J. Chem. Phys., 2002. 116(15): p. 6755-6759.
41. Varadee Vongsavat, Brandon M. Vittur, William W. Bryan, Jun-Hyun Kim and T. Randall Lee, Ultrasmall Hollow GoldSilver Nanoshells with Extinctions Strongly Red-Shifted to the Near-Infrared. ACS Appl. Mater. Interfaces, 2011. 3: p. 3616–3624.
42. Cushing, Scott K., Li, Jiangtian, Meng, Fanke, Senty, Tess R., Suri, Savan, Zhi, Mingjia, Li, Ming, Bristow, Alan D. and Wu, Nianqiang, Photocatalytic Activity Enhanced by Plasmonic Resonant Energy Transfer from Metal to Semiconductor. J. Am. Chem. Soc., 2012. 134(36): p. 15033-15041.
43. Jie Chen, Chung-Li Dong, Yuanchang Du,Daming Zhao and Shaohua Shen Nanogap Engineered Plasmon-Enhancement in Photocatalytic Solar Hydrogen Conversion. Adv. Mater. Interfaces, 2015. 2(14): p. 1500280.
44. Misra, Mrinmoy, Gupta, Raju Kumar, Paul, A. K. and Singla, Madanlal, Influence of gold core concentration on visible photocatalytic activity of gold–zinc sulfide core–shell nanoparticle. Journal of Power Sources, 2015. 294: p. 580-587.
45. Chien-Hung Li , Min-Chih Li, Si-Ping Liu,Andrew C. Jamison, Dahye Lee, T. Randall Lee and Tai-Chou Lee, Plasmonically Enhanced Photocatalytic Hydrogen Production from Water: The Critical Role of Tunable Surface Plasmon Resonance from Gold–Silver Nanoshells. ACS Appl. Mater. Interface, 2016. 8(14): p. 9152-9161.
46. Fink, Werner Stöber and Arthur, Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci., 1968. 26(2): p. 62-69.
47. Giesche, Herbert, Synthesis of monodispersed silica powders II. Controlled growth reaction and continuous production process. J. Eur. Ceram. Soc., 1994. 14(3): p. 205-214.
48. J. Schmitt, G. Decher and W. Dressick, Metal nanoparticle/polymer superlattice films: Fabrication and control of layer structure. J. Adv. Mater., 1997. 9: p. 61-65.
49. L. Andrew Lyon, David J. Pena and Michael J. Natan, Surface Plasmon Resonance of Au Colloid-Modified Au Films: Particle Size Dependence. J. Phys. Chem. B, 1999. 103(28): p. 5826–5831.
50. West, Larry L. Hench and Jon K., The sol-gel process. Chem. Rev., 1990. 90(1): p. 33-72.
51. Vittorio Luca , Samitha Djajanti and Russell F. Howe, Structural and Electronic Properties of Sol−Gel Titanium Oxides Studied by X-ray Absorption Spectroscopy. J. Phys. Chem. B, 1998. 102(52): p. 10650–10657.
指導教授 李岱洲(Tai-Chou Lee) 審核日期 2016-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明