博碩士論文 103324052 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.140.185.147
姓名 陳柔樺(Rou-Hua Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 含無毒抗生物劑4,5-二氯-N-辛基-4-異噻唑啉-3-酮 (DCOIT)防污微膠囊之製備
相關論文
★ 快速合成具核殼結構之均ㄧ粒徑次微米球與其表面改質之特性研究★ 高效率染料敏化太陽能電池及製備次模組元件之研究
★ 利用核殼結構次微米球建構具耐溶劑性質及機械性質之光子晶體膜★ 利用次微米球建構具機械性質之光子晶體薄膜
★ 電漿高分子聚合膜對二氧化碳及甲烷氣體之分離性研究★ 同時聚合下製備聚苯乙烯/矽膠高分子混成體
★ 甲基丙烯酸酯系列團聯共聚物為界面活性劑之迷你乳化聚合研究★ 含水溶性藥物之乙基纖維素微膠囊的製備
★ 銅箔基板環氧樹脂含浸液之研究★ 含光敏感單體之甲基丙烯酸酯系列正型光阻之製備
★ 溶膠-凝膠法製備聚甲基丙烯酸甲酯 / 二氧化矽混成體之研究★ 均一粒徑無乳化劑次微米粒子之合成及種子溶脹製備均一粒徑微米級之緻密或交聯結構粒子
★ 溶膠-凝膠法製備環氧樹脂/二氧化矽有機無機混成體★ 溶膠-凝膠法製備相轉移材料微膠囊
★ 親疏水性光阻製備★ 奈米多孔性材料之製備
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究探討以內部相分離法和無乳化劑乳化聚合法製備應用於船體塗層中之防污
微膠囊的可行性,所包覆之核心物質為具有廣泛抗生物特性之4,5-二氯-N-辛基-4-異噻唑啉-3-酮(DCOIT)防污劑。微膠囊必須具備高包覆量、耐溶劑性以及5μm 以下之粒徑。利用熱重損失分析儀(TGA)、可見光紫外光分光光譜儀(UV-vis)、傅立葉轉換紅外線光譜儀(FTIR)、光學顯微鏡(OM)、掃描式電子顯微鏡(SEM)和動態光散射儀(DLS)來進行微膠囊特性分析。內部相分離法以醋酸纖維素(CA)為包覆基材,探討不同均質時間、有機相濃度、有機相對水相比例對微膠囊之表面形貌與粒徑大小影響。結果顯示微膠囊具有分布廣泛的微米級粒徑且表面形貌為不規則球型。使用無乳化劑乳化聚合法製備微膠囊是以甲基丙烯酸甲酯(MMA)與苯乙烯(St)為單體,二乙烯苯(DVB)為交聯劑,將DCOIT 溶於單體中進行聚合反應,以一階段與二階段添加單體的方式製備微膠囊。一階段製備的部分探討DCOIT 和單體添加量對微膠囊的包覆性與耐溶劑性之影響。二階段添加單體的方法可製備出核殼結構的微膠囊,深入探討單體比例、一階段轉化率、停止加熱時間與交聯密度對外觀、包覆量及釋放速率的影響。實驗結果顯示微膠囊皆為均一球型,粒徑範圍為179nm-417nm。第二階段添加防污劑,核心為St 時可達最高包覆量29.1%且具有耐溶劑性,微膠囊皆以零級釋放之模式穩定釋出包覆之防污劑。
摘要(英) In this study, the feasibility of antifouling microcapsules preparation via internal phase separation and soap-free emulsion polymerization was investigated. The biocide, 4,5-dichloro-2n-octyl-3-isothiazolone (DCOIT), with multiple anti-organism characteristic was chosen to be the encapsulation biocide. The microcapsules must have high biocide content, solvent resistance and a particle size less than 5 μ m in order to apply in ship hull coating. Thermogravimetric analysis (TGA), scanning electron microscope (SEM), Fourier-transform
infrared spectrometer (FTIR), optical microscope (OM) and dynamic light scattering (DLS)were used to determine the characterization of microcapsules. Cellulose acetate was used as encapsulation matrix in internal phase separation method.
The effects of homogeneous time, organic phase concentration and organic phase ratio to morphology and particle size were discussed. The results showed microcapsules with irregular
spherical shape and wide distribution particle size in micrometer scale. In soap-free emulsion polymerization method, MMA and St used as monomer and DVB as cross-linking agent. DCOIT was dissolved in monomer and encapsulated by polymerization. One-stage and two stage monomer adding methods were used to prepare microcapsule. In onestage method, the effects of monomer and DCOIT amount were discussed. In two stage method, the effect of monomer ratio, first stage conversion, stop heat time and crosslink density to microcapsule morphology, solvent resistance, biocide content, and release profile were discussed. The microcapsule had uniform spherical shape and particle size 170-417nm. The
microcapsule with highest biocide content 29.1% and solvent resistance was prepared by using PS as the core material. The microcapsules release profile showed a steady biocide release in a zero order tendency.
關鍵字(中) ★ 防污劑包覆
★ 微膠囊
★ 內部相分離法
★ 無乳化劑乳化聚合
★ 4,5-二氯-N-辛基- 4-異噻唑啉-3-酮
關鍵字(英) ★ biocide encapsulation
★ microcapsule
★ internal phase separation
★ soap-free emulsion polymerization
★ 4,5-dichloro-2n-octyl-3-isothiazolone
論文目次 目錄
摘要…………………………………………………………………………………… i
目錄…………………………………………………………………………………... v
圖目錄………………………………………………………………………………. vii
表目錄……………………………………………………………………………….. ix
第一章 緒論 ................................................. 1
1-1 生物污染與防污劑 ......................................... 1
1-2 微膠囊化技術和方法........................................ 5
1-3 研究動機與目的 ........................................... 9
第二章 實驗 ................................................. 12
2-1 實驗藥品 ................................................ 12
2-2 實驗儀器 ................................................ 13
2-3 實驗方法 ................................................ 15
2-3-1 以相分離法製備防污微膠囊 ............................... 15
2-3-2 以一階段無乳化劑乳化聚合法製備防污微膠囊 ................ 17
2-3-3 以二階段無乳化劑乳化聚合法製備防污微膠囊 ................ 19
2-4 防污微膠囊物性分析 ...................................... 21
2-4-1 傅立葉轉換紅外線光譜儀 (FTIR) ......................... 21
2-4-2 氣相層析質譜分析儀 (GC-MS) ............................ 21
2-4-3 熱重損失分析儀 (TGA) ................................. 21
2-4-4 光學顯微鏡 (OM) ...................................... 21
2-4-5 掃描式電子顯微鏡 (SEM) ............................... 22
2-4-6 穿透式電子顯微鏡 (TEM) ............................... 22
2-4-7 可見光紫外光分光光譜儀 (UV-vis) ....................... 22
2-4-8 動態光散射儀 (DLS) ................................... 22
2-5 防污微膠囊釋放測試 ...................................... 23
2-6 防污劑微膠囊耐溶劑測試 ................................... 24
第三章 結果與討論 ........................................... 25
3-1 防污劑之基本性質 ........................................ 25
3-1-1 防污劑之傅立葉轉換紅外線光譜儀分析 ...................... 26
3-1-2 防污劑之氣相色譜質譜分析 ............................... 27
3-1-3 防污劑之熱損失分析 ..................................... 28
3-1-4 防污劑之可見光紫外光分光光譜分析 ........................ 29
3-2 相分離法製備防污微膠囊.................................... 31
3-2-1 均質時間對微膠囊之影響 ................................. 32
3-2-2 DMF 為有機相溶劑對微膠囊之影響 ......................... 36
3-2-3 DMSO 為有機相溶劑對微膠囊之影響 ........................ 39
3-3 以一階段無乳化劑乳化聚合法製備防污微膠囊 .................. 42
3-4 以二階段無乳化劑乳化聚合法製備防污微膠囊 .................. 48
3-4-1 以MMA 單體合成防污微膠囊 .............................. 49
3-4-2 MMA 和St 單體合成防污微膠囊 ........................... 71
3-4-3 St 單體合成防污微膠囊 ................................. 83
第四章 結論 ................................................. 87
參考文獻 ................................................... 89
參考文獻 1. I. Omae, General Aspects of Natural Products Antifoulants in the Environment, 2006, 5O:227-262.
2. M. Andersson Trojer, L. Nordstierna, J. Bergek, H. Blanck, K. HolmbergandM. Nyden, Use of microcapsules as controlled release devices for coatings, Adv. Colloid Interface Sci. 2015, 222:18-43.
3. A. Turner, Marine pollution from antifouling paint particles, Mar. Pollut. Bull. 2010, 60:159-71.
4. N. Y. A. MOK, Microencapsulation for controlling biocide release from protective coatings, 2010.
5. M. Marcheselli, C. RustichelliandM. Mauri, Novel antifouling agent zinc pyrithione: determination, acute toxicity, and bioaccumulation in marine mussels (Mytilus galloprovincialis), Environ. Toxicol. Chem. 2010, 29:2583-92.
6. E. Jorgensen, "Ecotoxicology." 2010.
7. J. Lenwood W. Hall, Jeffery M. Giddings, Keith R. Solomon, Richard Balcomb, An Ecological Risk Assessment for the Use of Irgarol 1051 as an Algaecide for Antifoulant Paints, Critical Reviews in Toxicology 1999, 29:367-437.
8. I. Dahllöf, "Analysis, fate and toxicity of zinc-and copper pyrithione in the marine environment." Nordic Council of Ministers, 2005.
9. T. M. Williams, The mechanism of action of isothiazolone biocides, PowerPlant Chemistry 2007, 9:14.
10. The Dow Chemical Company, Product Safety Assessment 4,5-Dichloro-2-octyl-4 isothiazolin-3-one (DCOIT). I2012.
11. J. Seidel, Antifouling 101. I2012.
12. I. Crystal IS, Biofilm & Biofouling Control,
http://www.cisuvc.com/applications/environmental sensing/biofilm-biofouling.
13. K. Swapan, "Functional coatings by polymer microencapsulation." Belgium: Wiley-VCH, 2006.
14. L. I. Kazakova, L. I. Shabarchina, S. Anastasova, A. M. Pavlov, P. Vadgama, A. G. SkirtachandG. B. Sukhorukov, Chemosensors and biosensors based on polyelectrolyte microcapsules containing fluorescent dyes and enzymes, Anal. Bioanal. Chem. 2013, 405:1559-68.
15. G. Nelson, Application of microencapsulation in textiles, International Journal of Pharmaceutics 2002, 242:55-62.
16. K. Son, D. I. YooandY. Shin, Fixation of vitamin E microcapsules on dyed cotton fabrics, Chemical Engineering Journal 2014, 239:284-289.
17. B. Peña, C. Panisello, G. Aresté, R. Garcia-VallsandT. Gumí, Preparation and characterization of polysulfone microcapsules for perfume release, Chemical Engineering Journal 2012, 179:394-403.
18. 李浚瑀, 以懸浮聚合法製備潤滑油微膠囊材料, 國立中央大學化學工程與材料工程學系碩士論文, 2010.
19. P. J. Dowding, B. V. R. AtkinandP. Bouillot, Oil Core-Polymer Shell Microcapsules Prepared by Internal Phase Separation from Emulsion Droplets. I. Characterization and Release Rates for Microcapsules with Polystyrene Shells, Langmuir 2004, 20:11374-11379.
20. A. Kondo, "Microcapsule process and technology." 1979.
21. M. Andersson Trojer, L. Nordstierna, M. Nordin, M. NydenandK. Holmberg, Encapsulation of actives for sustained release, Phys Chem Chem Phys 2013, 15:17727-41.
22. 熊家正, 乳化添加非溶劑法製備乙基纖維素微膠囊之研究, 國立中央大學化學工程系碩士論文, 1994.
23. A. LoxleyandB. Vincent, Preparation of Poly(methylmethacrylate) Microcapsules with Liquid Cores, J. Colloid Interface Sci. 1998, 208:49-62.
24. H. N. YowandA. F. Routh, Formation of liquid core polymer shell microcapsules, Soft Matter 2006, 2:940.
25. F. ChuanjieandZ. Xiaodong, Preparation and barrier properties of the microcapsules added nanoclays in the wall, Polymers for Advanced Technologies 2009, 20:934-939.
26. C. Suryanarayana, K. C. RaoandD. Kumar, Preparation and characterization of microcapsules containing linseed oil and its use in self-healing coatings, Progress in Organic Coatings 2008, 63:72-78.
27. J. M. Asua, Miniemulsion polymerization, Progress in polymer science 2002, 27:1283-1346.
28. F. J. Schork, Y. Luo, W. Smulders, J. P. Russum, A. ButtéandK. Fontenot, Miniemulsion Polymerization, 2005, 175:129-255.
29. 陳韻婷, 製備次微米級均一粒徑之染料球, 國立中央大學化學工程與材料工程學系碩士論文, 2007.
30. 黃士芳, 以正十八烷製備相轉移材料微膠囊, 國立中央大學化學工程與材料工程學系碩士論文, 2009.
31. R. Bodmeier, J. WangandH. Bhagwatwar, Process and formulation variables in the preparation of wax microparticles by a melt dispersion technique. I. Oil-in-water technique for water-insoluble drugs, Journal of microencapsulation 1992, 9:89-98.
32. A. Gharsallaoui, G. Roudaut, O. Chambin, A. VoilleyandR. Saurel, Applications of spraydrying in microencapsulation of food ingredients: An overview, Food Research International 2007, 40:1107-1121.
33. L. Nordstierna, A. A. Abdalla, M. Masuda, G. SkarnemarkandM. Nydén, Molecular release from painted surfaces: Free and encapsulated biocides, Progress in Organic Coatings 2010, 69:45-48.
34. L. Nordstierna, A. A. Abdalla, M. NordinandM. Nydén, Comparison of release behaviour from microcapsules and microspheres, Progress in Organic Coatings 2010, 69:49-51.
35. Å . A. T. Backhaus, Marine Paint Final Report 2003–2011, 2012.
36. F. Maia, A. P. Silva, S. Fernandes, A. Cunha, A. Almeida, J. Tedim, M. L. ZheludkevichandM. G. S. Ferreira, Incorporation of biocides in nanocapsules for protective coatings used in maritime applications, Chemical Engineering Journal 2015, 270:150-157.
37. Y. Le, P. Hou, J. WangandJ.-F. Chen, Controlled release active antimicrobial corrosion coatings with Ag/SiO2 core–shell nanoparticles, Materials Chemistry and Physics 2010, 120:351-355.
38. D. M. Yebra, S. Kiil, C. E. WeinellandK. Dam-Johansen, Effects of marine microbial biofilms on the biocide release rate from antifouling paints—A model-based analysis, Progress in Organic Coatings 2006, 57:56-66.
39. S. G. M. S. TORZA, Three-Phase Interactions In Shear and Electrical Fields, J. Colloid Interface Sci. 1970, 33:67-83.
40. S. S. Shukla Parshuram Gajanan Microcapsules containing biocide and preparation thereof by solvent evaporation technique, (2006) US 8722071 B2.
41. J. Bergeka, M. A. Trojer, A. Moka, L. Nordstierna, Controlled release of microencapsulated 2-n-octyl-4-isothiazolin-3-one from coatings: Effect of microscopicand macroscopic pores, Colloids and Surfaces A: Physicochem. Eng. Aspects 2014, 458:155-167.
42. A. R. Bachtsi, C. J. Boutris, C. Kiparisside, Production of Oil-Containing Crosslinked Poly(vinyl alcohol) Microcapsules by Phase Separation: Effect of Process Parameters on the Capsule Size Distribution, Journal of Applied Polymer Science 1996, 60:9-20.
43. J. R. Wimmer, ANALYZING AND PREDICTING UNDERWATER HULL COATING SYSTEM WEAR, NAVAL POSTGRADUATE SCHOOL, 1997.
44. M. Zhang, E. CabaneandJ. Claverie, Transparent antifouling coatings via nanoencapsulation of a biocide, Journal of Applied Polymer Science 2007, 105:3826-3833.
45. P. Crank, The mathematics of diffusion, 2nd edn Oxford Univ Press. Oxford: 1975.
46. X. Zhai, M. Myamina, J. Duan, B. Hou, Microbial corrosion resistance of galvanized coatings with 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one as a biocidal ingredient in electrolytes, Corrosion Science 2013, 72:99-107.
47. K. V. Thomas, K. H. Langford, "Ecotoxicology of Antifouling Biocides." 2009.
指導教授 陳暉(Hui Chen) 審核日期 2016-6-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明