博碩士論文 103324053 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.226.245.48
姓名 唐岳凱(Yue-Kai Tang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 Sn/Bi/Zn多層結構形貌及固晶機制研究
(Sn/Bi/Zn multiple layer structure morphology and die-attachment mechanism)
相關論文
★ Au濃度Cu濃度體積效應於Sn-Ag-Cu無鉛銲料與Au/Ni表面處理層反應綜合影響之研究★ 薄型化氮化鎵發光二極體在銅填孔載具的研究
★ 248 nm準分子雷射對鋁薄膜的臨界破壞性質研究★ 無光罩藍寶石基材蝕刻及其在發光二極體之運用研究
★ N-GaN表面之六角錐成長機制及其光學特性分析★ 藍寶石基板表面和內部原子排列影響Pt薄鍍膜之de-wetting行為
★ 藍寶石基板表面原子對蝕刻液分子的屏蔽效應影響圖案生成行為及其應用★ 陽離子、陰離子與陰陽離子共摻雜對於p型氧化錫薄膜之電性之影響研究與陽離子空缺誘導模型建立
★ 自生反應阻障層 Cu-Ni-Sn 化合物 在覆晶式封裝之研究★ 含銅鎳之錫薄膜線之電致遷移研究
★ 微量銅添加於錫銲點對電遷移效應的影響及 鎳金屬墊層在電遷移效應下消耗行為的研究★ 電遷移誘發銅墊層消耗動力學之研究
★ 不同無鉛銲料銦錫'錫銀銅合金與塊材鎳及薄膜鎳之濕潤研究★ 錫鎳覆晶接點之電遷移研究
★ 錫表面處理層之銅含量對錫鬚生長及介面反應之影響★ 覆晶凸塊封裝之兩界面反應交互作用研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-7-10以後開放)
摘要(中) 隨著高功率LED的快速發展,大量的焦耳熱會產生在高功率LED發光層。如果產生的熱無法有效的被消散至環境中,接面溫度會大幅上升,接面溫度的上升會大幅降低LED元件發光效率和生命週期,因此,高功率LED的熱管理變得相當重要。在高功率LED的熱管理中,由於目前固晶所使用的銀膠散熱相當差,因此,LED固晶於散熱基板的材料選用受到很多人的關注。
在這篇論文中,我們利用熱蒸鍍機將Ni/Cu金屬化層鍍在LED背面,並將Sn/Bi/Zn/Bi/Sn焊料層鍍在金屬化層上當作固晶材料。第一部分我們討論不同Sn鍍率對於Sn簇大小的影響。我們認為在高Sn鍍率下,Sn簇表層溫度較高,可以形成更多的液態Sn,表層液態Sn的形成有利於Sn簇間進行合併,並形成更大的Sn簇,最後我們藉由控制不同Sn鍍率形成不同形貌的Sn簇,並且建構Sn簇的成長機制。第二部分我們討論Bi鍍在不同形貌的Sn簇上,鍍Bi的過程中,Sn-Bi共晶相的生成使Sn簇變平整,另外,Bi相對於Sn有較低的表面能,會讓Bi在鍍Bi的過程中於表面析出,此外,由於Sn-Bi共晶相在大的Sn簇上有較高的機率進行合併,大的Bi簇會形成在大的Sn簇上。在鍍完Bi/Zn/Bi於Sn簇上,較大的Bi簇會形成在較大的Sn簇上,且在高Sn鍍率下,Bi簇的平均大小會大於低Sn鍍率的Bi簇。然而,在鍍完最後的Sn層後,Bi由於較低的表面能而於表面析出,然而,較平整的Sn-Bi-Zn共晶層卻會形成在高Sn鍍率的表面上,由於高Sn鍍率下將會形成更多的Sn-Bi-Zn共晶相於表面上,且共晶相會有較好的濕潤性。相反的,由於共晶相的合併,較粗糙的Sn-Bi-Zn共晶層會形成於低Sn鍍率的表面。第三部分我們討論不同表面形貌的Sn-Bi-Zn共晶層對於濕潤性的影響,在較平滑的焊料表面下,會有較小的接觸高度,於兩平行板間的接觸高度愈小會使得濕潤性上升,此外,會有較少的空氣被包覆在Cu金屬層和基板Ag表面之間,接合完後會有較少的孔洞於界面形成,並且會有較高的接合強度。
摘要(英) With the rapid development of high-power light emitting diodes (LEDs), the power applied on LED devices has increased much more than expected. If the heat generated in high-power LED cannot be dissipated efficiently, the lifetime of the device will rapidly decrease. Therefore, thermal management of packages is a critical issue for high-power LEDs. Among the thermal issues for LED packages, their die-attachment onto thermal substrates has attracted a great deal of attention.
In this thesis, Sn/Bi/Zn/Bi/Sn solder layers are deposited on the LED/Ni/Cu surface as a die-attached material. In discussion part I, the size of bottom Sn clusters will increase with the Sn deposition rate. The liquid surface layer formed by the high surface temperature will facilitate the coalescence of Sn clusters. Then, different size of Sn clusters could be deposited by controlling the deposition rate of Sn. In discussion part II, Bi was deposited on the surface of Sn clusters. The large Bi clusters would be formed on the large Sn clusters due to coalescence of eutectic droplets. After the deposition of Bi/Zn/Bi on Sn surface, the large Bi clusters would be formed on the surface of high Sn deposition rate. However, a smooth Sn-Bi-Zn eutectic layer was formed on the surface of high Sn deposition rate after the deposition of Sn capping layer due to the formation of large amount of liquid phase and better wettability. On the contrary, a rough surface would be formed by the coalescence of eutectic droplets in the low Sn deposition rate. In discussion part III, the smooth surface with smaller contact height between Cu metallization layer and Ag substrate surface would have higher wetting force on the two plates. Therefore, less of air would be trapped at the bonding interface after the die-bonding process. The die strength of smooth Sn/Bi/Zn/Bi/Sn surface would be higher due to the less formation of void at the bonding interface.
關鍵字(中) ★ 錫鉍鋅銲料
★ 電子束熱蒸鍍
★ LED固晶封裝
★ 表層液態層
★ 濕潤性
★ 表面能
關鍵字(英) ★ Sn-Bi-Zn solder
★ E-gun evaporator
★ LED die-attachment
★ surface liquid layer
★ wettability
★ surface energy
論文目次 Abstract (Chinese) I
Abstract (English) II
Table of contents III
List of figures IV
Chapter 1: Background 1
1.1 The challenge for the high power light emitting diodes (LEDs) 1
1.2 The evalution of LED packaging technology 3
1.3 The commonly used die-attach material 5
Chapter 2: Motivation 12
2.1 The establishment of reliable low-temperature Sn-Bi-Zn bonding 12
Chapter 3: The results of die-attachment by Sn-Bi-Zn thin film solder 16
3.1 Experimental procefure for the LED die-bonding 16
3.2 The results of LED die-bonding 19
Chapter 4: Coalescence mechanism of Sn (Sn-Bi) clusters 21
4.1 Part I: Mechanism of Sn cluster growth 21
Briefly conclusion in prat I 41
4.2 Part II: Growth mechanism of Bi/Zn/Bi/Sn on Sn clusters 42
Briefly conclusion in prat II 66
4.3 Part III: The influence of the morphology of Sn/Bi/Zn/Bi/Sn on wettability 67
Briefly conclusion in prat III 75
Chapter 5: Summary 76
References 78
Appendix 84
參考文獻 [1] A. Christensen, and S. Graham, Applied Thermal Engineering, 29(2-3), 364-371, (2009).
[2] S. L. Chuang, A. Ishibashi, S. Kijima, N. Nakayama, M. Ukita, and S. Taniguchi, IEEE Journal of Quantum Electronics, 33(6), 970-979, (1997).
[3] M. H. Chang, D. Das, P. V. Varde, and M. Pecht, Microelectronics Reliability, 52(5), 762-782, (2012).
[4] N. Narendran, Y. Gu, J. P. Freyssinier, H. Yu, and L. Deng, Journal of Crystal Growth, 268(3-4), 449-456, (2004).
[5] K. Köhler, T. Stephan, A. Perona, J. Wiegert, M. Maier, M. Kunzer, and J. Wagner, Journal of Applied Physics, 97(10), 104914, (2005).
[6] X. A. Cao, S. F. LeBoeuf, and T. E. Stecher, IEEE Electron Device Letters, 27(5), 329-331, (2006).
[7] B. Monemar, Physical Review B, 10(2), 676, (1974).
[8] N. Narendran, and Y. Gu, Journal of Display Technology, 1(1), 167, (2005).
[9] L. Yang, S. Jang, W. Hwang, and M. Shin, Thermochimica Acta, 455(1-2), 95-99, (2007).
[10] V. Lakshminarayanan, and N. Sriraam, In 2014 IEEE International Conference on Electronics, Computing and Communication Technologies, (2014).
[11] W. J. Ready, and L. J. Turbini, Journal of Electronic Materials, 31(11), 1208-1224, (2002).
[12] Y. Li, and C. P. Wong, Materials Science and Engineering: R: Reports, 51(1-3), 1-35, (2006).
[13] F. Tan, X. Qiao, J. Chen, and H. Wang, International Journal of Adhesion and Adhesives, 26(6), 406-413, (2006).
[14] B. H. Liou, C. M. Chen, R. H. Horng, Y. C. Chiang, and D. S Wuu, Microelectronics Reliability, 52(5), 861-865, (2012).
[15] K. Suganuma, S. J. Kim, and K. S. Kim, JOM Journal of the Minerals, Metals and Materials Society, 61(1), 64-71. (2009).
[16] N. A. A. M. Amin, D. A. Shnawah, S. M. Said, M. F. M. Sabri, and H. Arof, Journal of Alloys and Compounds, 599, 114-120, (2014).
[17] P. Babaghorbani, S. M. L. Nai, and M. Gupta, Journal of Alloys and Compounds, 478(1-2), 458-461, (2009).
[18] F. Cheng, H. Nishikawa, and T. Takemoto, Journal of Materials Science, 43(10), 3643-3648, (2008).
[19] R. Kisiel, and Z. Szczepański, Microelectronics Reliability, 49(6), 627-629, (2009).
[20] K. Suganuma, S. Sakamoto, N. Kagami, D. Wakuda, K. S. Kim, and M. Nogi, Microelectronics Reliability, 52(2), 375-380, (2012).
[21] M. N. Nguyen, Hybrids, and Manufacturing Technology, 13(3), 478-483, (1990).
[22] D. A. Shnawah, M. F. M. Sabri, and I. A. Badruddin, Microelectronics Reliability, 52(1), 90-99, (2012).
[23] D. Olsen, and H. Berg, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 2(2), 257-263, (1979).
[24] W. Liu, Y. Wang, Y. Ma, Q. Yu, and Y. Huang, Materials Science and Engineering: A, 651, 626-635, (2016).
[25] S. Pitely, L. Zavalij, S. Zarembo, and E. J. Cotts, Scripta Materialia, 51(7), 745-749, (2004).
[26] C. J. Chen, C. M. Chen, R. H. Horng, D. S. Wuu, and J. S. Hong, Journal of Electronic Materials, 39(12), 2618-2626, (2010).
[27] T. T. Nguyen, D. Yu, and S. B. Park, Journal of Electronic Materials, 40(6), 1409-1415, (2011).
[28] J. Shen, Y. Pu, H. Yin, D. Luo, and J. Chen, Journal of Alloys and Compounds, 614, 63-70, (2014).
[29] Q. K. Zhang, Q. S. Zhu, H. F. Zou, and Z. F. Zhang, Materials Science and Engineering: A, 527(6), 1367-1376, (2010).
[30] F. Hua, Z. Mei, and J. Glazer, In 1998 Proceedings. 48th Electronic Components and Technology Conference, 277-283, (1998).
[31] L. Yin, S. J. Meschter, and T. J. Singler, Acta Materialia, 52(10), 2873-2888, (2004).
[32] G. Zeng, S. McDonald, and K. Nogita, Microelectronics Reliability, 52(7), 1306-1322, (2012).
[33] C. Goncalves, H. Leitao, C. S. Lau, J. C. Teixeira, L. Ribas, S. Teixeira, M. F. Cerqueira, F. Macedo, and D. Soares, Journal of Materials Science: Materials in Electronics, 26(7), 5106-5112, (2015).
[34] K. Zeng, R. Stierman, T. C. Chiu, D. Edwards, K. Ano, and K. N. Tu, Journal of Applied Physics, 97(2), 024508, (2005).
[35] H. W. Miao, and J. G. Duh, Materials Chemistry and Physics, 71(3), 255-271, (2001).
[36] C. B. Lee, S. B. Jung, Y. E. Shin, and C. C. Shur, Materials Transactions, 42(5), 751-755, (2001).
[37] K. S. Kim, K. W. Ryu, C. H. Yu, and J. M. Kim, Microelectronics Reliability, 45(3-4), 647-655. (2005).
[38] J. W. Yoon, and S. B. Jung, Journal of Materials Research, 21(6), 1590-1599. (2006).
[39] Y. Sogo, T. Hojo, H. Iwanishi, A. Hirose, K. F. Kobayashi, A. Yamaguch, A. Furusawa, and K. Nishida, Materials Transactions, 45(3), 734-740, (2004).
[40] C. W. Huang, and K. L. Lin, Journal of Materials Research, 19(12), 3560-3568, (2004).
[41] H. R. Kotadia, A. Panneerselvam, M. W. Sugden, H. Steen, M. Green, and S. H. Mannan, IEEE Transactions on Components, Packaging and Manufacturing Technology, 3(10), 1786-1793, (2013).
[42] L. Zhang, J. G. Han, C. W. He, and Y. H. Guo, Journal of Materials Science: Materials in Electronics, 23(11), 1950-1956, (2012).
[43] D. V. Malakhov, X. J. Liu, I. Ohnuma, and K. Ishida, Journal of Phase Equilibria, 21(6), 514, (2000).
[44] X. Gu, and Y. C. Chan, Journal of Electronic Materials, 37(11), 1721-1726, (2008).
[45] T. L. Yang, J. Y. Wu, C. C. Li, S. Yang, and C. R. Kao, Journal of Alloys and Compounds, 647, 681-685, (2015).
[46] H. Okamoto, Desk Handbook: Phase Diagrams for Binary Alloys, ASM international, (2000).
[47] H. Y. Chuang, T. L. Yang, M. S. Kuo, Y. J. Chen, J. J. Yu, C. C. Li, and C. R. Kao, IEEE Transactions on Device and Materials Reliability, 12(2), 233-240, (2012).
[48] S. K. Lin, C. L. Cho, and H. M. Chang, Journal of Electronic Materials, 43(1), 204-211, (2014).
[49] M. Jose-Yacaman, C. Gutierrez-Wing, M. Miki, D. Q. Yang, K. N., Piyakis, and E. Sacher, The Journal of Physical Chemistry B, 109(19), 9703-9711, (2005).
[50] M. Bhatnagar, M. Ranjan, K. Jolley, A. Lloyd, R. Smith, and S. Mukherjee, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 393, 5-12, (2017).
[51] J. H. Yao, K. R. Elder, H. Guo, and M. Grant, Physical Review B, 47(21), 14110, (1993).
[52] H. K. Kim, and K. N. Tu, Physical Review B, 53(23), 16027, (1996).
[53] R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser, and K. K. Kelley, National Standard Reference Data System. (1973).
[54] P. Gordon, and T. Hurtony, In 2015 38th International Spring Seminar on Electronics Technology (ISSE), 315-319, (2015).
[55] D. R. Gaskell, and D. E. Laughlin, Introduction to the Thermodynamics of Materials. CRC press, (2017).
[56] K. J. Hanszen, Zeitschrift für Physik, 157(5), 523-553, (1960).
[57] S. L. Lai, J. Y. Guo, V. Petrova, G. Ramanath, and L. H. Allen, Physical Review Letters, 77(1), 99, (1996).
[58] J. A. Venables, and G. D. T. Spiller, In Surface Mobilities on Solid Materials, 341-404, (1983).
[59] M. Wu, and X. Su, Journal of Materials Science: Materials in Electronics, 26(11), 8425-8431, (2015).
[60] L. Kumari, S. J. Lin, J. H. Lin, Y. R. Ma, P. C. Lee, Y. Liou, Applied Surface Science, 253(14), 5931-5938, (2007).
[61] S. A. Stanley, (2009). Doctoral dissertation, © Steven Antony Stanley.
[62] M. H. Braga, J. Vizdal, A. Kroupa, J. Ferreira, D. Soares, and L. F. Malheiros, Calphad, 31(4), 468-478, (2007).
[63] R. S. Wagner, and W. C. Ellis, Applied Physics Letters, 4(5), 89-90, (1964).
[64] J. Westwater, D. P. Gosain, S. Tomiya, S. Usui, and H. Ruda, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 15(3), 554-557, (1997).
[65] Y. Plevachuk, V. Sklyarchuk, G. Gerbeth, S. Eckert, and R. Novakovic, Surface Science, 605(11-12), 1034-1042, (2011).
[66] Y. Y. Chen, J. G. Duh, and B. S. Chiou, Journal of Materials Science: Materials in Electronics, 11(4), 279-283, (2000).
[67] O. Y. Liashenko, and F. Hodaj, Scripta Materialia, 127, 24-28, (2017).
[68] J. W. Wan, W. J. Zhang, and D. J. Bergstrom, IEEE Transactions on Advanced Packaging, 28(3), 481-487, (2005).
[69] M. K. Schwiebert, and W. H. Leong, IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part C, 19(2), 133-137, (1996).
指導教授 劉正毓(Cheng-Yi Liu) 審核日期 2019-8-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明