博碩士論文 103324054 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:3.80.6.254
姓名 蘇孟婷(Meng-Ting Su)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 室溫下抗壞血酸引發之粉末黏著與團聚現象
(Powder Adhesion and Agglomeration Induced by Ascorbic Acid at the Room Temperature)
相關論文
★ 單一高分子在接枝表面的吸附現象-分子模擬★ 化學機械研磨的微觀機制探討
★ 界面活性劑與微脂粒的作用★ 家禽傳染性華氏囊病病毒與VP2次病毒顆粒對固定化鎳離子之異相吸附
★ 液滴潤濕與接觸角遲滯★ 親溶劑奈米粒子於高分子溶液中的自組裝現象
★ 具界面活性溶質之蒸發殘留圖形研究★ 奈米自泳動粒子之擴散行為
★ 抗氧化奈米銅粒子的製備及分析★ 柱狀自泳動粒子之擴散行為與沉降平衡
★ 過氧化氫的界面性質與穩定性★ 液橋分離與液面爬升物體之研究
★ 電潤濕動態行為探討★ 表面粗糙度對接觸角遲滯影響之效應
★ 以耗散粒子動力學法研究奈米自泳動粒子輸送現象★ 低溫還原氧化石墨烯薄膜
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本實驗利用抗壞血酸(ascorbic acid)具有之特殊黏著性(adhesion),嘗試將各種具不同特性之粉末黏著於高分子基材上(powder agglomeration),並藉由膠帶測試驗證粉末與基材間優異的黏著效果。根據粉末特性的不同,這種由抗壞血酸所引發的粉末黏著方法可以賦予基材表面各種所需的特性。將具有導電性之銀粉黏著於聚對苯二甲酸乙二酯(polyethylene terephthalate;PET)上,即可製備出具有撓曲特性之導電圖騰,其導電度達6 × 10-4  cm,與市售之導電銀膠相近;將具有疏水性質之粉末(polytetrafluoroethene;PTFE)黏著於PET基材上,即可製備出具有可撓曲特性之超疏水表面,其對水的接觸角可達161o且其超低接觸角遲滯的特性,即便僅8 l之液滴亦可在4o傾斜下快速滾走。並利用高速攝影機以及接觸角測量儀器,深入探討液滴於超疏水表面上之各種運動行為。除此之外,若將PTFE粉末黏著於濾紙上,將可製備出兼具超疏水且超親油特性之PTFE濾紙,並可應用於水面油汙清除以及油水分離之領域。最後,利用Lap-joint方法於兩PMMA板之間測試抗壞血酸之黏著效果並探討其黏著機制。結果顯示抗壞血酸之黏著效果可達4.49 MPa。利用改變不同實驗參數,如溶液的氧化程度、濃度、水分含量以及基材的粗糙度等,藉此來建立抗壞血酸溶液黏著機制的模型。綜言之,抗壞血酸優異的黏著性可歸咎於液體擴散與機械結合兩機制的協同作用。
摘要(英) The experiment is designed to adhere the several powders which possess the different properties respectively on the polymer substrates with the strong adhesion induced by ascorbic acid and uses the tap testing to examine the excellent adhesion performance between the powders and the substrates. According to the different properties of the powders, the powder adhesion method induced by ascorbic acid can be used to create the functionalized surface. It can manufacture the flexible conductive patterns by adhering the conductive silver powders to the polyethylene terephthalate(PET) substrate with ascorbic acid, and its resistivity can reach 6 × 10-4  cm which is similar with the commercial silver conductive paste. Also, it can manufacture the flexible superhydrophobic surfaces by adhering the hydrophobic polytetrafluoroethene(PTFE) powders to the PET. The contact angle on this superhydrophobic surface can reach 161o, and due to the low contact angle hysteresis the 8 l water drop can roll fast with the only 4o sliding angle. By using the high-speed video camera and the contact angle system, various kinds of the motion of the liquid dorp on the superhydrophobic surface can be studied. Otherwise, the superhydrophobic and superlipophilic filter can be manufactured by adhering the PTFE powders on the filter with ascorbic acid, and it can be applied on the removal of the oil pollution on the water surface and the oil/water separation field. Finally, the adhesion performance can be examine by the lap-joint test, and the adhesion mechanism of the ascorbic acid will also be studied by controlling the different parameter of the solution and the substrates. In summary, the excellent adhesion of the ascorbic acid can be attributed to the synergistic effect of the liquid diffusion and the mechanical interlock.
關鍵字(中) ★ 抗壞血酸
★ 粉末黏著
★ 超疏水
★ 油水分離
關鍵字(英) ★ Ascorbic acid
★ Powder adhesion
★ Superhydrophobic
★ oil/water seperation
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 viii
表目錄 xii
第一章 緒論 1
1-1  前言 1
1-2  文獻回顧-黏著理論 2
1-2-1 吸附理論 3
1-2-2 靜電理論 5
1-2-3 擴散理論 7
1-2-4 機械結合理論 8
1-2-5 化學鍵理論 9
1-2-6 配位鍵理論 10
1-2-7 流變理論 11
1-3  研究動機與目的 11
第二章 基本原理 15
2-2  潤濕現象 15
2-3  接觸角的定義 17
2-3-1 楊式方程式(Young′s equation) 18
2-3-2 溫佐方程式( Wenzel model ) 20
2-3-3 卡西方程式(Cassie-Baxter model) 21
2-4  接觸角遲滯 23
2-4-1 接觸角遲滯的定義 24
2-4-2 接觸角遲滯的成因 26
2-5  接觸角量測方法 28
2-5-1 微量針頭法 (Needle-syringe method) 28
2-5-2 蒸發法 (Evaporation method) 29
2-5-3 威廉米平板法 (Wilhelmy plate method) 30
2-5-4 傾斜法 (Inclined plate method) 31
第三章 實驗介紹 33
3-1  實驗藥品材料 33
3-1-1 溶劑 33
3-1-2 藥品 33
3-1-3 材料 34
3-2  實驗儀器原理介紹 34
3-2-1 標準型微電腦材料試驗機 34
3-2-2 影像式接觸角測量儀 36
3-2-3 全自動接觸角儀 38
3-2-4 巨觀放大顯微測量系統 39
3-2-5 高速取像光學界面與流變性質量測模組 40
3-2-6 探針式三維表面輪廓量測儀 40
3-2-7 光學顯微鏡 43
3-2-8 相機 44
3-2-9 四點探針 45
3-2-10 流變儀 47
3-2-11 熱重分析儀 50
3-2-12 掃瞄式電子顯微鏡 51
3-2-13 其他儀器設備 53
3-3  粉末黏著之實驗方法 54
3-3-1 實驗組- 利用銅粉輔助氧化抗壞血酸黏著劑之製備 54
3-3-2 對照組①- 未經氧化的抗壞血酸溶液之製備 55
3-3-3 對照組②- 未含抗壞血酸之去離子水 55
3-3-4 粉末黏著於基材上之樣品製備 55
3-3-5 粉末黏著性(Powder adhesion)之測試 56
3-3-6 抗壞血酸黏著PTFE之濾紙製備 57
3-4  抗壞血酸溶液黏著機制探討之實驗方法 58
3-4-1 American Society for Testing and Materials (ASTM) 黏著性標準測試法 58
3-4-2 高分子基材的前處理 58
3-4-3 萬能拉力機試驗之樣品前處理 59
3-4-4 有效面積之量測 (Image J) 與黏著力之計算 59
3-4-5 實驗變因 61
第四章 粉末黏著之探討 62
4-1  各類粉末黏著性之比較 62
4-2  粉末黏著之應用 65
4-2-1 導電性圖騰之製備 66
4-2-2 超疏水表面之製備 69
第五章 抗壞血酸溶液之黏著機制探討 81
5-1  氧化程度對黏著性之影響 81
5-2  濃度對黏著性之影響 83
5-3  基材粗糙度對黏著性之影響 84
5-4  溶液水含量對黏著性之影響 87
5-5  抗壞血酸溶液黏著機制 92
5-5-1 擴散作用 92
5-5-2 機械結合 94
第六章 結論 96
第七章 參考文獻 98
參考文獻 [1] W. Pietsch, Agglomeration processes: phenomena, technologies, equipment. Wiley-VCH, New York, USA (2008).
[2] G. Rowland, Adhesives and adhesion. Chem. Nz. 71, 17 (1998).
[3] J. Thornton, Adhesives and adhesion. Buffalo State College (2005).
[4] W. C. Wake, Theories of adhesion and uses of adhesives: a review. Polymer 19, 291-308 (1978).
[5] 顧繼友,膠接理論與膠接基礎,科學出版社,北京,中國 (2003)。
[6] C. L. Weidner and G. J. Crocker, Elastomeric Adhesion and Adhesives. Rubb. Chem. Technol. 33, 1323-1374 (1960).
[7] S. Brunauer, L. S. Deming, W. E. Deming and E. Teller, On a theory of the van der Waals adsorption of gases. J. Am. Chem. Soc. 62, 1723-1732 (1940).
[8] A. Dąbrowski, Adsorption-From theory to practice. Adv. Colloid Interface Sci. 93, 135-224 (2001).
[9] S. S. Dukhin, G. Kretzschmar and R. Miller, Dynamics of adsorption at liquid interfaces: theory, experiment, application. Elsevier Science B. V., Amsterdam, Netherlands (1995).
[10] M. Iwamatsu and K. Horii, Capillary condensation and adhesion of two wetter surfaces. J. colloid interface sci. 182, 400-406 (1996).
[11] S. M. Skinner, L. S. Robert and J. E. Rutzler Jr, Electrical phenomena in adhesion. I. Electron atmospheres in dielectrics." J. Appl. Phys. 24, 438-450 (1953).
[12] J. W. McBain and D. G. Hopkins, On adhesives and adhesive action. J. Phys. Chem. 29, 188-204 (1925).
[13] B. V. Deryagin and N. A. Krotova, Electrical theory of adhesion of films to solid surfaces and its experimental foundation. Usp. Fiz. Nauk. 36, 387-406 (1948).
[14] M. Hermansson, The DLVO theory in microbial adhesion. Colloids Surf. B: Biointerfaces 14, 105-119 (1999).
[15] B. V. Deryagin, Problems of adhesion. Prog. Surf. Sci. 45, 223-231 (1994).
[16] S. S. Voiutskii, Autohesion and adhesion of high polymers. Wiley-VCH, New York, USA (1963).
[17] S. S. Voyutskiĭ, The diffusion theory of adhesion. Rubb. Chem. Technol. 33, 748-756 (1960).
[18] S. S. Voyutskii and V. L. Vakula, The role of diffusion phenomena in polymer‐to‐polymer adhesion. J. Appl. Polym. Sci. 7, 475-491 (1963).
[19] A. J. Kinloch, Adhesion and adhesives: science and technology. Springer-Science & Business Media, Berlin, Germany (2012).
[20] S. R. Hartshorn, Structural adhesives: chemistry and technology. Springer Science & Business Media, Berlin, Germany (2012).
[21] J. G. Kirkwood and P. B. Frank, The statistical mechanical theory of surface tension. J. Chem. Phys. 17, 338-343 (1949).
[22] D. E. Packham, The mechanical theory of adhesion-Changing perceptions 1925-1991. J. Adhesion 39, 137-144 (1992).
[23] D. E. Packham, Chapter 4. The mechanical theory of adhesion, Handbook of adhesive technology, Marcel Dekker, New York, USA (2003).
[24] D. E. Packham, The mechanical theory of adhesion–A seventy year perspective and its current status. First International Congress on Adhesion Science and Technology. (1998)
[25] G. P. Anderson, S. J. Bennett and K. L. Devries, Analysis and testing of adhesive bonds. NTRS, 273 (1977).
[26] E. M. Liston and M. R. Wertheimer, Plasma surface modification of polymers for improved adhesion: a critical review. J. Adhesion Sci. Tech. 7, 1091-1127 (1993).
[27] E. L. Florin, T. M. Vincent and E. G. Hermann, Adhesion forces between individual ligand-receptor pairs. Science 264,415-417 (1994).
[28] W. C. Wake, The rheology of adhesives. Adhesion,191-206 (1961).
[29] K. L. Mittal, Adhesion aspects of metallization of organic polymer surfaces. J. Vac. Sci. Technol., 13, 19-25 (1976).
[30] C. J. Wu, S. M. Chen, Y. J. Sheng and H. K. Tsao, Anti-oxidative copper nanoparticles and their conductive assembly sintered at room temperature. J. Taiwan Inst. Chem. Eng. 45, 2719-2724 (2014).
[31] C. J. Wu, S. L. Cheng, Y. J. Sheng and H. K. Tsao, Reduction-assisted sintering of micron-sized copper powders at low temperature by ethanol vapor. RSC Adv. 5, 53275-53279 (2015).
[32] J. Xiong, Y. Wang, Q Xue and X. Wu, Synthesis of highly stable dispersions of nanosized copper particles using L-ascorbic acid. Green Chem.13, 900-904 (2011).
[33] C. J. Wu, Y. J. Sheng and H. K. Tsao, Copper conductive lines on flexible substrates fabricated at room temperature. J. Mater. Chem. C 4, 3274-3280 (2016).
[34] P. G. de Gennes, F. Brochard-Wyart and D. Quéré, Capillarity and Wetting Phenomena, Springer, New York, USA (2004).
[35] F. M. Chang, S. J. Hong, Y. J. Sheng and H. K. Tsao, High contact angle hysteresis of superhydrophobic surfaces: hydrophobic defects." Appl. Phys. Letters 95, 064102 (2009).
[36] L. Feng, Y. Zhang, J. Xi, Y. Zhu, N. Wang, F. Xia and L. Jiang, Petal effect: a superhydrophobic state with high adhesive force. Langmuir 24, 4114-4119 (2008).
[37] J. S. Rowlinson and B. Widom, Molecular theory of capillarity. The international series of monographs on chemistry. Clarendon (1982).
[38] R. N. Wenzel, Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 28, 988-994 (1936).
[39] A. B. D. Cassie and S. Baxter, Wettability of porous surfaces. Trans. Faraday Soc. 40, 546-551 (1944).
[40] R. E. Johnson Jr and R.H. Dettre, Contact angle hysteresis. III. Study of an idealized heterogeneous surface. J. phys. chem. 68, 1744-1750 (1964).
[41] J. F. Joanny, P. G. de Gennes, A model for contact angle hysteresis. J. Chem. Phys. 81, 552-562 (1984).
[42] S. J. Hong, F. M. Chang, T. H. Chou, S. H. Chan, Y. J. Sheng and H. K. Tsao, Anomalous contact angle hysteresis of a captive bubble: advancing contact line pinning. Langmuir 27, 6890-6896 (2011).
[43] E. Rame, The interpretation of dynamic contact angles measured by the Wilhelmy plate method. J. colloid interface sci. 185, 245-251 (1997).
[44] Standard, A. S. T. M., D1002-10. Standard test method for apparent shear strength of single-lap-joint adhesively bonded metal specimens by tension loading (Metal-to-Metal). West Conshohocken, PA: ASTM International. doi: 10.1520/D1002-10."
[45] S. Wang, M. Li and Q. Lu, Filter paper with selective absorption and separation of liquids that differ in surface tension. ACS Appl. Mater. Interface 2, 677-683 (2010).
[46] C. C. Chang, C. J. Wu, Y. J. Sheng and H. K. Tsao, Air pocket stability and the imbibition pathway in droplet wetting. Soft matter 11, 7308-7315 (2015).
[47] A. G. Gaonkar and A. McPherson, Ingredient interactions: effects on food quality. CRC Press, New York, USA (2005).
指導教授 曹恆光(Heng-Kwong Tsao) 審核日期 2016-6-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明