博碩士論文 103324055 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.15.156.140
姓名 黃士瑋(Shih-Wei Huang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 Al2(SO4)3 結晶物選擇性成核機制應用於 圖案化藍寶石基板之研究
(Study of selective nucleation mechanism of Al2(SO4)3 crystals applied on patterned sapphire substrate)
相關論文
★ Au濃度Cu濃度體積效應於Sn-Ag-Cu無鉛銲料與Au/Ni表面處理層反應綜合影響之研究★ 薄型化氮化鎵發光二極體在銅填孔載具的研究
★ 248 nm準分子雷射對鋁薄膜的臨界破壞性質研究★ 無光罩藍寶石基材蝕刻及其在發光二極體之運用研究
★ N-GaN表面之六角錐成長機制及其光學特性分析★ 藍寶石基板表面和內部原子排列影響Pt薄鍍膜之de-wetting行為
★ 藍寶石基板表面原子對蝕刻液分子的屏蔽效應影響圖案生成行為及其應用★ 陽離子、陰離子與陰陽離子共摻雜對於p型氧化錫薄膜之電性之影響研究與陽離子空缺誘導模型建立
★ 通過水熱和溶劑熱法合成銅奈米晶體之研究★ 自生反應阻障層 Cu-Ni-Sn 化合物 在覆晶式封裝之研究
★ 含銅鎳之錫薄膜線之電致遷移研究★ 微量銅添加於錫銲點對電遷移效應的影響及 鎳金屬墊層在電遷移效應下消耗行為的研究
★ 電遷移誘發銅墊層消耗動力學之研究★ 不同無鉛銲料銦錫'錫銀銅合金與塊材鎳及薄膜鎳之濕潤研究
★ 錫鎳覆晶接點之電遷移研究★ 錫表面處理層之銅含量對錫鬚生長及介面反應之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-7-11以後開放)
摘要(中) 白光LED在近十年內已被認為是新的固態照明光源。特定的黃色螢光粉結構可以搭配合適的藍光光型使白光LED更有效率。圖案化藍寶石基板技術能夠製作出多樣化光型的藍光LED。透過硫酸蝕刻藍寶石基板,在藍寶石基板上可以製作出化學反應生成之晶體遮罩。其中,反應生成之晶體遮罩是藉由硫酸與藍寶石基板之成份-氧化鋁反應生成,是屬於菱方晶系之結晶物,樣貌呈現類立方體狀。蝕刻反應所產生的晶體與蝕刻過後所形成的藍寶石基板圖案形貌可由電子顯微鏡拍攝,面朝上結晶物與角朝上結晶物都可以被觀察到。在進一步分析顯微影像後,可以發現晶體成長與表面蝕刻兩項反應同時發生,兩項反應的速率決定了藍寶石基板表面圖案的側面斜率,因此晶體成核成長機制說明晶體的幾何形狀是決定藍寶石基板表面圖案形貌的關鍵因素。另一方面,在蝕刻溶液預溶氧化鋅粉末能夠增加角朝上結晶物的比例,所以透過改變預溶於蝕刻液之鋅濃度與結晶物之時間成長的條件,結合結晶繞射分析與顯微影像比對,面朝上結晶物與角朝上結晶物的水平結晶面可以分別被分析為硫酸鋁的(012)面及硫酸鋁的(006)面。
根據熱力學觀點,面朝上結晶物與角朝上結晶物之表面稜面可以運用Bravais-Friedel-Donnay-Harker (BFDH)法推定為硫酸鋁{012}平面族之結晶面所構成。這點恰好與面朝上結晶物的繞射結果相符,面朝上結晶物的結晶面經過繞射分析為硫酸鋁的(012)面正好印證BFDH法的模擬結果。同時,BFDH法所模擬出的稜面是該化合物的最低表面能結晶面,這可以解釋硫酸鋁結晶物以硫酸鋁{012}平面族之結晶面構成類立方體狀的幾何形狀是最為穩定的,而不是依照菱方晶系的單位晶胞所形成晶體的幾何形狀。
在EDS元素成份分析中,的確在結晶物中偵測到Zn元素的訊號;在X光繞射結果中,含鋅的硫酸鋁(006)面之XRD繞射峰位置向左偏移;以及鋅的離子半徑大於鋁的離子半徑。上述三點能夠證明鋅在硫酸鋁中取代鋁的位置,使得硫酸鋁(006)面之原子排列變大,減少與藍寶石基板c-plane原子排列之差距。因此藍寶石基板c-plane更有機會誘導原子排列放大後之硫酸鋁(006)面成核,由此印證當預溶於蝕刻液中之鋅濃度越高時,角朝上結晶物的比例越高之結果。
摘要(英) The white-light LED has been considered to be the new solid-state lighting source for recent decade. Suitable light angular distribution of blue light LED would let the specific geometry of phosphor be more efficiency for high performance white-light LED. PSS technique can provide diverse light angular distribution of blue light LED. Cubic-like crystals as the self-assembled mask can be fabricated by the H2SO4 acid and c-plane sapphire substrate. The geometry of crystals and the morphology of the patterns can be observed with SEM. As analyzed with the SEM images, the different morphology of the pattern can be fabricated by the different faced cubic-like crystal. The horizontal crystallographic plane of face-up crystal and corner-up crystal are respectively characterized as Al2(SO4)3 (012) and Al2(SO4)3 (006) with XRD measurement, which are proved by crystal-growing condition and Zn-related proportion of crystals condition.
In thermodynamic, the facets of face-up and corner-up cubic-like crystals can be deduced as the crystallographic planes of {012} by Bravais-Friedel-Donnay-Harker (BFDH) method with the crystallographic structure of Al2(SO4)3, which fit as aforementioned XRD peak intensity of plane Al2(SO4)3 (012) related to face-up crystals. Simultaneously, it explains that Al2(SO4)3{012} is the crystallographic planes with the lowest surface energy, so the geometry of the cubic-like crystals can be composed of the crystallographic planes of Al2(SO4)3{012} rather than the geometry of the rhombohedral unit cell.
Owing that the ionic radius of Zn is larger than that of Al, the Zn-substitution of Al in Al2(SO4)3 decreases the difference of the atomic arrangement between Al2O¬3 c-plane and corner-up crystals, which can be proved by left-shift XRD peak position of Al2(SO4)3 (006) and the Zn content included in the crystals with EDS analysis.
關鍵字(中) ★ 發光二極體
★ 圖案化藍寶石基板
★ 異質成核成長
★ X光繞射結晶學
★ 原子排列
關鍵字(英) ★ LED
★ Patterned sapphire substrate
★ Heterogeneous nucleation growth
★ X-ray diffraction crystallography
★ Atomic arrangement
論文目次 摘要 I
Abstract III
Table of contents IV
List of figures V
List of table VIII
Chapter 1: Background 1
1.1 Introduction of light emitting diodes (LEDs) 1
1.2 Self-assembled crystal nucleated on sapphire substrate by heterogeneous growth mechanism 10
1.3 Thermodynamic control of crystallographic shape 13
Chapter 2: Motivation 18
Chapter 3: Experiment 20
Chapter 4: Crystallographic plane confirmation of Al2(SO4)3 crystal 23
4.1 Checking crystallographic plane with XRD database 24
4.2 Selecting crystal-related XRD peaks with crystal-growing condition 29
4.3 Comparison of crystallization on proportion of different morphology 33
Chapter 5: Formation mechanism of Al2(SO4)3 preferred facets 35
5.1 Geometry of crystals 35
5.2 Selective nucleation mechanism studied from induced atomic arrangement 37
5.3 Zn effect for Al2(SO4)3 (001) dominant 42
Chapter 6: Summary 45
References 46
參考文獻 [1] D.A. Steigerwald, J.C. Bhat, D. Collins, R.M. Fletcher, M.O. Holcomb, M.J. Ludowise, P.S. Martin, S.L. Rudaz, Illumination with solid state lighting technology, IEEE Journal of Selected Topics in Quantum Electronics, Vol. 8, Issue 2, pp. 310–320, 2002.
[2] A. A. Setlur, A. M. Srivastava, and H. A. Comanzo, High luminosity phosphor blends for generating white light from near-UV/blue light-emitting devices, US Patent, Pub. No.: US 20040150316A1, 2004.
[3] T. Kawabata, T. Matsuda, and S. Koike, GaN blue light emitting diodes prepared by metalorganic chemical vapor deposition, Journal of applied physics, Vol. 56, Issue 8, pp. 2367-2368, 1984.
[4] S. Kamiyama, M. Iwaya, N. Hayashi, T. Takeuchi, H. Amano, I. Akasaki, Y. Watanabe, S. Kaneko and N. Yamada, Low-temperature-deposited AlGaN interlayer for improvement of AlGaN/GaN heterostructure, Journal of crystal growth, Vol. 223, Issue1-2, pp. 83-91, 2001.
[5] J. H. Kang, M. Ebaid, D. K. Jeong, J. K. Lee, and S. W. Ryu, Efficient energy harvesting of a GaN p–n junction piezoelectric generator through suppressed internal field screening, Journal of Materials Chemistry C, Vol. 4, Issue 15, pp. 3337-3341, 2016.
[6] M. Pophristic, F. H. Long, C. Tran, I. T. Ferguson, and R. F. Karlicek Jr, Time-resolved photoluminescence measurements of InGaN light-emitting diodes, Applied Physics Letters, Vol.73, No.24, pp. 3550-3552, 1998.
[7] I. Akasaki, H. Amano, M. Kito, and K. Hiramatsu, Photoluminescence of Mg-doped p-type GaN and electroluminescence of GaN pn junction LED, Journal of luminescence, Vol. 48, pp. 666-670, 1991.
[8] J. H. Lin, S. J. Huang, Y. K. Su, and K. W. Huang, The improvement of GaN-based LED grown on concave nano-pattern sapphire substrate with SiO2 blocking layer. Applied Surface Science, Vol. 354, pp. 168-172, 2015.
[9] T. Sugahara, H. Sato, M. Hao, Y. Naoi, S. Kurai, S. Tottori, K. Yamashita, K. Nishino, L. T. Romano, and S. Sakai, Direct evidence that dislocations are non-radiative recombination centers in GaN, Japanese Journal of Applied Physics, Vol. 37, No. 4A, 1998.
[10] E. Matioli, and C. Weisbuch, Active Region Part A. Internal Quantum Efficiency in LEDs, In III-Nitride Based Light Emitting Diodes and Applications, Topics in Applied Physics, pp. 121-152, Publisher Name Springer, Dordrecht, 2013.
[11] H. J. Queisser, Recombination at deep traps, Solid-State Electronics, Vol, 21, Issue 11-12, pp. 1495-1503, 1978.
[12] A. Y. Kim, W. Götz, D. A. Steigerwald, J. J. Wierer, N. F. Gardner, J. Sun, S.A. Stockman, P.S. Martin, M.R. Krames, R.S. Kern, and F. M. Steranka, Performance of High‐Power AlInGaN Light Emitting Diodes, Physica Status Solidi (a), Vol. 188, Issue 1, pp. 15-21, 2001.
[13] R. C. Powell, N. E. Lee, and J. E. Greene, Growth of GaN (0001) 1× 1 on Al2O3 (0001) by gas‐source molecular beam epitaxy, Applied Physics Letters, Vol. 60, Issue 20, pp. 2505-2507, 1992.
[14] D. S. Wuu, W. K. Wang, K. S. Wen, S. C. Huang, S. H. Lin, S. Y. Huang, C. F. Lin, and R. H. Horng, Defect reduction and efficiency improvement of near-ultraviolet emitters via laterally overgrown GaN on a GaN/patterned sapphire template, Applied Physics Letters, Vol. 89, Issue 16, p. 161105, 2006.
[15] C. H. Chiu, H. H. Yen, C. L. Chao, Z. Y. Li, P. C. Yu, H. C. Kuo, T. C. Lu, S. C. Wang, K. M. Lau, and S. J. Cheng, Nanoscale epitaxial lateral overgrowth of GaN-based light-emitting diodes on a SiO2 nanorod-array patterned sapphire template, Applied Physics Letters, Vol. 93, Issue 8, p. 081108, 2008.
[16] N. Okada, Y. Inomata, H. Ikeuchi, S. Fujimoto, H. Itakura, S. Nakashima, R. Kawamura, and K. Tadatomo, Characterization of high-quality relaxed flat InGaN template fabricated by combination of epitaxial lateral overgrowth and chemical mechanical polishing, Journal of Crystal Growth, Vol. 512, pp. 147-151, 2019.
[17] S. Zhou, S. Yuan, S. Liu, and H. Ding, Improved light output power of LEDs with embedded air voids structure and SiO2 current blocking layer, Applied Surface Science, Vol. 305, pp. 252-258, 2014.
[18] P. Mao, F. Sun, H. Yao, J. Chen, B. Zhao, B. Xie, M. Han, and G. Wang, Extraction of light trapped due to total internal reflection using porous high refractive index nanoparticle films, Nanoscale, Vol. 6, Issue 14, pp. 8177-8184, 2014.
[19] M. Ma, F. W. Mont, X. Yan, J. Cho, E. F. Schubert, G. B. Kim, and C. Sone, Effects of the refractive index of the encapsulant on the light-extraction efficiency of light-emitting diodes, Optics Express, Vol. 19, Issue S5, pp. A1135-A1140, 2011.
[20] M. Leszczynski, T. Suski, H. Teisseyre, P. Perlin, I. Grzegory, J. Jun, and T. D. Moustakas, Thermal expansion of gallium nitride, Journal of Applied Physics, Vol. 76, Issue 8, pp. 4909-4911, 1994.
[21] A. D. Bykhovski, B. L. Gelmont, and M. S. Shur, Elastic strain relaxation and piezoeffect in GaN-AlN, GaN-AlGaN and GaN-InGaN superlattices, Journal of Applied Physics, Vol. 81, Issue 9, p. 6332, 1997.
[22] T. Sano, T. Doi1, S. A. Inada, T. Sugiyama, Y. Honda, H. Amano, and T. Yoshino, High internal quantum efficiency blue-green light-emitting diode with small efficiency droop fabricated on low dislocation density GaN substrate, Japanese Journal of Applied Physics, Vol. 52, No. 8S, p. 08JK09, 2013.
[23] C. He, W. Zhao, K. Zhang, L. He, H. Wu, N. Liu, S. Zhang, X. Liu, and Z. Chen, High-quality GaN epilayers achieved by facet-controlled epitaxial lateral overgrowth on sputtered AlN/PSS templates, ACS Applied Materials & Interfaces, Vol. 9, Issue 49, pp. 43386-43392, 2017.
[24] J. Y. Cho, J. S. Kim, Y. D. Kim, H. J. Cha, and H. Lee, Fabrication of oxide-based nano-patterned sapphire substrate to improve the efficiency of GaN-based of LED, Japanese Journal of Applied Physics, Vol. 54, No. 2S, p. 02BA04, 2015.
[25] H. Liu, Y. Li, S. Wang, L. Feng, H. Xiong, X. Su, and F. Yun, Air-void embedded GaN-based light-emitting diodes grown on laser drilling patterned sapphire substrates, AIP Advances, Vol. 6, Issue 7, p. 075016, 2016.
[26] J. Shen, D. Zhang, Y. Wang, and Y. Gan, AFM and SEM Study on Crystallographic and Topographical Evolution of Wet-Etched Patterned Sapphire Substrates (PSS) I. Cone-Shaped PSS Etched in Sulfuric Acid and Phosphoric Acid Mixture (3: 1) at 230° C, ECS Journal of Solid State Science and Technology, Vol. 6, Issue 1, pp. R24-R34, 2017.
[27] H. Hu, S. Zhou, X. Liu, Y. Gao, C. Gui, and S. Liu, Effects of GaN/AlGaN/Sputtered AlN nucleation layers on performance of GaN-based ultraviolet light-emitting diodes, Scientific Reports, 7, p. 44627, 2017.
[28] R. Peng, X. Meng, S. Xu, J. Zhang, P. Li, J. Huang, J. Du, Y. Zhao, X. Fan, and Y. Hao, Study on Dislocation Annihilation Mechanism of the High-Quality GaN Grown on Sputtered AlN/PSS and Its Application in Green Light-Emitting Diodes, IEEE Transactions on Electron Devices, Vol. 66, Issue 5, pp. 2243-2248, 2019.
[29] S. C. Chang, C. C. Chen, T. C. Chang, K. L. Lin, T. C. Lu, L. Chang, and Y. C. Sermon Wu, Growth of GaN on Patterned Sapphire Substrate with High-Index Facets, ECS Journal Solid State Science Technology, Vol. 4, Issue 12, pp. R159-R161, 2015.
[30] D. S. Kim, W. S. Jeong, H. Ko, J. S. Lee, and D. Byun, Pretreatment by selective ion-implantation for epitaxial lateral overgrowth of GaN on patterned sapphire substrate, Thin Solid Films, Vol. 641, pp. 2-7, 2017.
[31] T. Jiang, S. Xu, J. Zhang, P. Li, J. Huang, Z. Ren, M. Fu, J. Zhu, H. Shan, Y. Zhao, and Y. Hao, Spatial distribution of crystalline quality in N-type GaN grown on patterned sapphire substrate, Optical Materials Express, Vol. 6, Issue 6, pp. 1817-1826, 2016.
[32] Y. Zhang, J. Zhang, Y. Zheng, C. Sun, K. Tian, C. Chu, Z. Zhang, J. Liu, and W. Bi, The Effect of Sapphire Substrates on Omni-Directional Reflector Design for Flip-Chip Near-Ultraviolet Light-Emitting Diodes, IEEE Photonics Journal, Vol. 11, Issue 1, pp. 1-9, 2019.
[33] C. C. Sun, Y. Y. Chang, C. Y. Lu, H. Y. Lin, Z. Y. Ting, , T. H. Yang, T. Y. Chung, and Y. W. Yu, Spatial-coded phosphor coating for high-efficiency white LEDs, IEEE Photonics Journal, Vol. 9, No. 3, pp. 1-9, 2017.
[34] C. F. Lai, J. S. Li, and C. W. Shen, High-efficiency robust free-standing composited phosphor films with 2D and 3D nanostructures for high-power remote white LEDs, ACS Applied Materials & Interfaces, Vol. 9, Issue 5, pp. 4851-4859, 2017.
[35] N. D. Quoc Anh, M. F. Lai, H. Y. Ma, and H. Y. Lee, Enhancing of correlated color temperature uniformity for multi-chip white-light LEDs by adding SiO2 in phosphor layer, Journal of the Chinese Institute of Engineers, Vol. 38, Issue 3, pp. 297-303, 2015.
[36] X. Mou, N. Narendran, Y. Zhu, and J. P. Freyssinier, Evaluation of OLED and edge-lit LED lighting panels, In Fifteenth International Conference on Solid State Lighting and LED-based Illumination Systems, International Society for Optics and Photonics, Vol. 9954, p. 995403, 2016.
[37] S. W. Huang, C. C. Chang, H. Y. Lin, X. F. Li, Y. C. Lin, and C. Y. Liu, Fabrication of nano-cavity patterned sapphire substrate using self-assembly meshed Pt thin film on c-plane sapphire substrate, Thin Solid Films, Vol. 628, pp. 127-131, 2017.
[38] L. Zhang, F. Xu, J. Wang, C. He, W. Guo, M. Wang, B. Sheng, L. Lu, Z. Qin, X. Wang, and B. Shen, High-quality AlN epitaxy on nano-patterned sapphire substrates prepared by nano-imprint lithography, Scientific Reports, 6, p. 35934, 2016.
[39] S. X. Jiang, Z. Z. Chen, X. Z. Jiang, X. X. Fu, S. Jiang, Q. Q. Jiao, T. J. Yu, and G. Y. Zhang, Study on the morphology and shape control of volcano-shaped patterned sapphire substrates fabricated by imprinting and wet etching, CrystEngComm, Vol. 17, Issue 16, pp. 3070-3075, 2015.
[40] S. W. Huang, Y. J. Wu, H. Y. Lin, S. F. Li, Y. J. Chen, and C. Y. Liu, Etching Three-Dimensional Pattern on Sapphire Substrate by Dynamic Self-Masking Alunogen Compound, ECS Solid State Letters, Vol. 4, Issue 6, pp. R35-R38, 2015.
[41] F. Dwikusuma, D. Saulys, and T. F. Kuech, Study on Sapphire Surface Preparation for III-Nitride Heteroepitaxial Growth by Chemical Treatments, Journal of The Electrochemical Society, Vol. 149, Issue 11, p. G603, 2002.
[42] H. Y. Lin, Y. J. Chen, C. C. Chang, X. F. Li, S. C. Hsu, and C. Y. Liu, Pattern-coverage effect on light extraction efficiency of GaN LED on patterned-sapphire substrate, Electrochemical and Solid-State Letters, Vol. 15, Issue 3, pp. H72-H74, 2011.
[43] D. Tian, W. Yan, X. Cao, J. Yu, R. Xu, Morphology changes of transition-metal-substituted aluminophosphate molecular sieve AlPO4-5 crystals, Chemistry of Materials, Vol. 20, Issue 6, pp. 2160-2164, 2008.
[44] T. H. Yang, R. Aggarwal, A. Gupta, H. Zhou, R. J. Narayan, and J. Narayan, Semiconductor-metal transition characteristics of VO2 thin films grown on c-and r-sapphire substrates, Journal of Applied Physics, Vol. 107, Issue 5, p. 053514, 2010.
[45] B. Pokroy, and J. Aizenberg, Calcite shape modulation through the lattice mismatch between the self-assembled monolayer template and the nucleated crystal face, CrystEngComm, Vol. 9, Issue 12, pp. 1219-1225, 2007.
[46] J. Aizenberg, A. J. Black, and G. M. Whitesides, Oriented growth of calcite controlled by self-assembled monolayers of functionalized alkanethiols supported on gold and silver, Journal of the American Chemical Society, Vol. 121, Issue 18, pp. 4500-4509, 1999.
[47] S. Furukawa, K. Ochi, H. Luo, M. Miyazaki, and T. Komatsu, Selective stereochemical catalysis controlled by specific atomic arrangement of ordered alloys, ChemCatChem, Vol. 7, Issue 21, pp. 3472-3479, 2015.
[48] G. Liu, C. Y. Jimmy, G. Q. M. Lu, and H. M. Cheng, Crystal facet engineering of semiconductor photocatalysts: motivations, advances and unique properties, Chemical Communications, Vol. 47, Issue 24, pp. 6763-6783, 2011.
[49] Y. Xia, Y. Xiong, B. Lim, and S. E. Skrabalak, Shape‐controlled synthesis of metal nanocrystals: simple chemistry meets complex physics?, Angewandte Chemie International Edition, Vol. 48, Issue 1, pp. 60-103, 2009.
[50] J. Behari, Principles of nanoscience: an overview, Indian Journal of Experimental Biology, Vol. 48, pp. 1008-1019, 2010.
[51] G. Cao, and Y. Wang, Nanostructures and Nanomaterials: Synthesis, Properties, and Applications, World Scientific Publishing Co. Pte. Ltd., Vol. 2, pp. 21-23, 2004.
[52] R. Docherty, G. Clydesdale, K. J. Roberts, and P. Bennema, Application of Bravais-Friedel-Donnay-Harker, attachment energy and Ising models to predicting and understanding the morphology of molecular crystals, Journal of Physics D: Applied Physics, Vol. 24, No. 2, p. 89, 1991.
[53] Y. Xia, B. Chen, X. Jiao, and D. Chen, Large-scale synthesis and formation mechanism study of basic aluminium sulfate microcubic crystals, Physical Chemistry Chemical Physics, Vol. 16, Issue 12, pp. 5866-5874, 2014.
[54] J. H. Donnay, and D. Harker, A new law of crystal morphology extending the law of Bravais, American Mineralogist: Journal of Earth and Planetary Materials, Vol. 22, No. 5, pp. 446-467, 1937.
[55] A. Bravais, Etudes Crystallographiques, Paris, 1913.
[56] S. X. M. Boerrigter, H. M. Cuppen, R. I. Ristic, J. N. Sherwood, P. Bennema, and H. Meekes, Explanation for the supersaturation-dependent morphology of monoclinic paracetamol, Crystal Growth & Design, Vol. 2, No. 5, pp. 357-361, 2002.
[57] C. C. Sun, Y. Y. Chang, T. H. Yang, T. Y. Chung, C. C. Chen, T. X. Lee, D. R. Li, C. Y. Lu, Z. Y. Ting, B. Glorieux, Y. C. Chen, K. Y. Lai and C. Y. Liu, Packaging efficiency in phosphor-converted white LEDs and its impact to the limit of luminous efficacy, Journal of Solid State Lighting, Vol. 1, Issue 1, p. 19, 2014.
[58] X. F. Li, S. W. Huang, H. Y. Lin, C. Y. Lu, S. F. Yang, C. C. Sun, and C. Y. Liu, Fabrication of patterned sapphire substrate and effect of light emission pattern on package efficiency, Optical Materials Express, Vol. 5, Issue 8, pp. 1784-1791, 2015.
[59] R. Tran, Z. Xu, B. Radhakrishnan, D. Winston, W. Sun, K. A. Persson, and S. P. Ong, Surface energies of elemental crystals, Scientific data, 3, No. 160080, 2016.
[60] C. Rottman, and M. Wortis, Statistical mechanics of equilibrium crystal shapes: Interfacial phase diagrams and phase transitions, Physics Reports, Vol. 103, Issue 1-4, pp. 59-79, 1984.
[61] L. D. Marks, Modified Wulff constructions for twinned particles, Journal of Crystal Growth, Vol. 61, Issue 3, pp. 556-566, 1983.
[62] F. Lu, B. Zhao, R. Li, and W. Ruan, Crystal growth of barium nitrate on thiol-terminated self-assembled monolayers and a Raman spectroscopic investigation of the crystal facets, Journal of Crystal Growth, Vol. 426, pp. 33-37, 2015.
[63] M. X. Zhang, P. M. Kelly, M. A. Easton, and J. A. Taylor, Crystallographic study of grain refinement in aluminum alloys using the edge-to-edge matching model, Acta Materialia, Vol. 53, Issue 5, pp. 1427-1438, 2005.
[64] R. G. Banal, M. Imura, and Y. Koide, Formation Mechanism and Elimination of Small‐Angle Grain Boundary in AlN Grown on (0001) Sapphire Substrate, Study of Grain Boundary Character, p. 43, 2017.
[65] K. H. Kim, K. C. Park, and D. Y. Ma, Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering, Journal of Applied Physics, Vol. 81, Issue 12, pp. 7764-7772, 1997.
指導教授 劉正毓(Cheng-Yu Liu) 審核日期 2019-8-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明