博碩士論文 103324056 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:18.226.87.165
姓名 黃偉華(Wei-hua Huang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 團鏈共聚物自組裝、石墨化及金屬碳合金材料之製備
(Electrochemically Active N-doped and N/Fe-doped Graphite with Well Defined Morphology and Dimension Fabricated from Pyrolyzed PS-P2VP Block Copolymer Nanostructures)
相關論文
★ 利用高分子模版製備具有表面增強拉曼訊號之奈米銀陣列基板★ 溶劑退火法調控雙團鏈共聚物薄膜梯田狀表面浮凸物與奈米微結構
★ 新穎硬桿-柔軟雙嵌段共聚物與高分子混摻之介觀形貌★ 超分子側鏈型液晶團鏈共聚物自組裝薄膜
★ 利用溶劑退火法調控雙團鏈共聚物奈米薄膜之自組裝結構★ 溶劑退火誘導聚苯乙烯聚4-乙烯吡啶薄膜不穩定性現象之研究
★ 光化學法調控嵌段共聚物有序奈米結構薄膜及其模板之應用★ 製備具可調控孔洞大小的奈米結構碳材用於增強拉曼效應之研究
★ 結合嵌段共聚物自組裝及微乳化法製備三維侷限多層級結構★ 嵌段共聚物/多巴胺混摻體自組裝製備三維多尺度孔隙模板
★ 弱分離嵌段共聚物與均聚物雙元混合物在薄膜中的相行為★ 摻雜效應對聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸紫外光照-導電度刺激響應之影響與其應用
★ 可撓式聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸熱電裝置研究:微結構調控增進熱電性質★ 由嵌段共聚物膠束模板化的多層級孔洞碳材: 從膠束(微胞)組裝到電化學應用
★ 聚苯乙烯聚4-乙烯吡啶共聚物微胞薄膜之聚變與裂變動態結構演化之研究★ 除潤現象誘導非對稱型團鏈共聚物薄膜之層級結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究分成兩個部分。第一個部分是以雙團鏈共聚物之自組裝奈米結構,製備具有氮摻雜之奈米碳材,第二部分則是製備含鐵/氮摻雜的奈米碳球。

第一部份探討單純高分子所製備的碳材料,首先以溶劑退火法使高分子排列成垂直柱狀、平躺柱狀以及垂直的層板結構,再利用紫外光使高分子產生交聯反應以穩定其結構,之後以高溫碳化製備出能夠複製原有高分子結構的碳材。由於組成鏈段當中含有氮原子,造成該高分子燒製的碳材會有氮原子雜化,此現象能使碳材具備將氧還原的能力。因此除了分析碳材本身的結構特性之外,也利用旋轉電極法(RDE)、循環伏安法(CV)等電化學方法,探討該材料用於氧還原電催化反應(ORR)的潛力。

第二部分是把鐵元素加入碳材當中,製備出含有氮/鐵摻雜的奈米碳球。由單純嵌段共聚物模板燒製的碳材,因為受限於高分子本身的熱裂解溫度,因此無法製備出具有較高石墨化程度的碳材料。進一步發現加入適當比例的含鐵化合物,可以大幅增加高分子在熱燒結之後的殘餘量,因此嘗試以更高的溫度對高分子進行熱燒結,最終得到石墨化程度較高的碳材。由於在極高的溫度下燒結有助於四級氮(Quaternary nitrogen)生成,而四級氮的含量與氧還原催化反應的效能呈正相關,因此加入含鐵化合物並在極高溫度下燒結的碳材除了石墨化程度增加,同時也能大幅的提高ORR的效果。進一步探討鐵的加入量對氧還原反應的影響,也比較在何種燒製條件下可以得到擁有最佳的催化特性的碳材。

摘要(英) The research is divided as two sections. The first section is using block copolymer (BCP) self-assembled nanostructures to fabricate nitrogen-rich carbon nanomaterials, the second section is fabricating Fe/N doped carbonaceous nanomaterials.

In the first section, solvent annealing process was used to fabricate different BCP templates, such as perpendicular-oriented cylinders, lamellae, and parallel-oriented cylinders. The films were further exposed into UV-light to stabilize nanodomains; this process would increase the yield of solid carbonaceous materials during ptrolysis at elevated temperatures. As a result, the pyrolyzed graphitic nanostructures remained the original morphology of their pristine nanodomains. The pyrolysis of the nitrogen-containing block produced nitrogen-rich carbonaceous materials. The presence of nitrogen would cause an uneven distribution of electron density, giving rise to electrocatalytic activities of oxygen reduction reaction (ORR).

In the second section, Fe/N doped carbonaceous materials were fabricated. The graphitic nanostructures fabricated from thermal pyrolysis of BCP templates have low degrees of graphitization since the pyrolysis could only be achieved at a temperature close to the decomposition temperatures of the constituted blocks. An incorporation of iron-containing compounds of various fractions into the BCP template can increase the amounts of residual of solid carbonaceous materials even at much higher pyrolysis temperatures. Thus a carbonaceous material with a high degree of crystallinity can be obtained. High-temperature pyrolysis not only increased the degree of crystallinity, but also improved the amount of graphitic nitrogen. The portions of graphitic nitrogen are correlated with the performance of ORR so that the electrocatalytic activity of such Fe/N containing carbonaceous materials can be increased. Relationships between the fraction of iron-containing species and the ORR performance were found and more details were discussed in the following.

關鍵字(中) ★ 雙團鏈共聚物
★ 碳化
★ 氧氣還原反應
★ 石墨
★ 溶劑退火
關鍵字(英) ★ di-block copolymer
★ carbonization
★ oxygen reduction reaction
★ graphite
★ solvent annealing
論文目次 摘要 i

Abstract ii

目錄 iv

圖目錄 vii

表目錄 xi

第一章 文獻回顧 1

1-1 高分子團鏈共聚物自組裝機制 1

1-2 塊材系統 2

1-3 溶劑退火 4

1-4 混和溶劑退火 5

1-5 形成雙團鏈共聚物微胞 7

1-6 團鏈共聚物碳化及其在電化學上的應用 8

1-7 摻入氮原子之碳材料於氧還原觸媒之研究進展 9

1-7-1 異種原子摻雜碳材之催化理論 10

1-7-2 氮原子摻雜碳材料 10

1-7-3 氮-鐵原子摻雜碳材料 13

1-8 研究動機 16

第二章 實驗內容 17

2-1實驗材料 17

2-1-1 雙團鏈共聚物 17

2-1-2 溶劑 17

2-1-3 相關藥品 18

2-2 樣品製備 18

2-2-1 製備不同形貌碳材 18

2-2-2 製備孔洞結構碳材 20

2-2-3 製備Fe/N/C複合碳球 20

2-3 實驗儀器 21

2-4 儀器分析 22

2-4-1原子力顯微鏡 22

2-4-2低掠角X光散射儀 22

2-4-3 X光電子能譜 23

2-4-4 X光粉末繞射儀 24

2-4-5 拉曼光譜儀 24

2-4-6 穿透式電子顯微鏡 24

2-4-7 熱重分析儀 25

2-4-8 旋轉電極法 25

第三章 結果討論 28

3-1 利用溶劑退火調控高分子微相結構 28

3-1-1利用理想氣體方程式計算溶劑退火時的氣相組成分率 28

3-1-2 製備垂直柱狀模板 29

3-1-3 製備平躺柱狀模板 31

3-1-4製備垂直層狀模板 33

3-2 高分子微相結構碳化 34

3-2-1 紫外光交聯反應對碳化的影響 34

3-2-2 燒結溫度對高分子模板的影響 35

3-2-3 碳化過程對結構有序性所造成的影響 36

3-2-4 碳化結構之鍵結組成 39

3-2-5 製備孔洞狀結構碳材 41

3-2-6 不同形貌碳材石墨化程度分析 43

3-2-7 由高分子燒結而得碳材在電化學上的應用 43

3-2-7-1 以循環還伏安法分析 44

3-2-7-2 碳材的微結構對氧還原反應的影響 45

3-3 加入鐵離子對氧還原活性的影響 48

3-3-1 鐵在碳材中的含量差異對性質造成的影響 48

3-3-1-1 在高分子中加入鐵前驅物對在碳化過程中對奈米微結構的影響 48

3-3-1-2 鐵的加入對碳膜結晶程度的影響 49

3-3-1-3 含鐵碳材之化學鍵結組成 50

3-3-1-4 以電化學方法分析含鐵量多寡對氧還原反應的差異 52

3-3-2 燒結溫度對碳材性質的影響 54

3-3-2-1 鐵加入對碳材殘餘率的影響 54

3-3-2-2 燒結溫度對含鐵碳材奈米維結構與石墨化程度之影響 55

3-3-2-3以電化學方法分析燒結溫度對氧還原反應的差異 57

3-3-2-4 比較三種不同條件對氧還原反應的影響 59

3-3-2-5 分析鐵在碳材中的結晶型態 61

3-3-2-6比較含鐵碳材在不同燒結條件的鍵結型態 62

第四章 結論 64

第五章 參考文獻 66

第六章 附錄 75

參考文獻 1. P. Alexandridis and J. F. Holzwarth. “Block Copolymers”, Curr. Opin. Colloid Interface Sci., 5, 312 (2000).

2. F. S. Bates, M. A. Hillmyer, T. P. Lodge, C. M. Bates, K. T. Delaney, G. H. Fredrickson. “Multiblock Polymers: Panacea or Pandora′s Box”, Science, 336, 434 (2012).

3. S.P. Hsu, Y.S. Sun. “Controls over Microdomain in Diblock Copolymer Thin Films by Polar/Nonpolar Cosolvent Annealing”, 國立中央大學化學工程研究所碩士論文 (2010).

4. L. Leibler. “Theory of Microphase Separation in Block Copolymers”, Macromolecules, 13, 1062 (1980).

5. M. W. Matsen, F. S. Bates. “Unifying Weak- and Strong-Segregation Block Copolymer Theories”, Macromolecules, 29, 1091 (1996).

6. A. K. Khandpur, S. Forster, F. S. Bates, I. W. Hamley, A. J. Ryan, W. Bras, K. Almdal, K. Mortennsen. “Polyisoprene-Polystyrene Diblock Copolymer Phase Diagram near the Order-Disorder Transition”, Macromolecules, 28, 8796 (1995).

7. S. Park, B. Kim, J. Xu, T. Hofmann, B. M. Ocko, T. P. Russell. “Lateral Ordering of Cylindrical Microdomains Under Solvent Vapor”, Macromolecules, 42, 1278 (2009).

8. Y. S. Jung, C. A. Ross. “Solvent-Vapor-Induced Tunability of Self-Assembled Block Copolymer Patterns”, Adv. Mater., 21, 2540 (2009).

9. Z. Y. Guo, M. S. Lin, Y. T. Chang, Y. S. Sun, Y. W. Chiang, C. Y. Chou, W. Y. Woon, M. C. Chuang. “Surface relief terraces and self-assembled nanostructures in thin block copolymer films with solvent annealing”, Polymer, 53, 4827(2012).

10. Zhisheng Gaot and Adi Eisenberg. “A Model of Micellization for Block Copolymers in Solutions”, Macromolecules, 26, 7353-7360(1993).

11. Riess, G. Prog. “Micellization of Block Copolymers”, Polym. Sci., 28, 1107-1170(2003).

12. Tomasz Kowalewski, Nicolay V. Tsarevsky, and Krzysztof Matyjaszewski. “Nanostructured Carbon Arrays from Block Copolymers of Polyacrylonitrile”, Journal of the American Society, 124, 10632-10633 (2002).

13. M. Zhong, E. K. Kim, P. McGann, S. E. Chun, Jay F. Whiteacre, M. Jaroniec, K. Matyjaszewski, T. Kowalewski. “Electrochemically Active Nitrogen-Enriched Nanocarbons with Well-Defined Morphology Synthesized by Pyrolysis of Self-Assembled Block Copolymer”, Journal of the American Society, 2012, 134, 14846.

14. M. Zhong, S. Jiang, Y. Tang, E. Gottlieb, E. K. Kim, A. Star, K. Matyjaszewski, T. Kowalewski. “Block copolymer-templated nitrogen-enriched nanocarbons with morphology-dependent electrocatalytic activity for oxygen reduction”, Chem. Sci., 2014, 5, 3315.

15. S. Chen, Z. Wei, L. Guo, W. Ding, L. Dong, P. Shen, X. Qia, L. Lia. “Enhanced dispersion and durability of Pt nanoparticles on thiolated CNT support”, Chemical Communication, 2011, 47, 10984-10986.

16. S. Chen, Z. Wei, X. Qi, L. Dong, Y. G. Guo, L. Wan, Z. Shao, L Li. “Nanostructured polyaniline-decorated Pt/C, PANI core, Shell catalyst with enhanced durability and activity”. Journal of the American Society, 2012, 134(32), 13252-13255.

17. S. Chen, Z. Wei, H. Lib, L. Lib. “High Pt utilization PEM-FC electrode obtained by alternative ion-exchange/electrode-position”. Chemical Communications, 2010, 46, 8782-8784.

18. R. Jasinski. “A new fuel cell cathode catalyst”. Nature, 1964, 201, 1212-1213.

19. J. Lee, T. Aida. “Bucky gels for tailoring electroative materials with ionic liquid”. Chemical Communications, 2011, 47, 6757-6762.

20. J. Maruyama, I. Abe. “Structure control of a carbon-based noble-metal-free fuel cell cathodes catalyst leading to high power output”. Chemical communications, 2007, 27, 2879-2881.

21. Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier and H. Dai. “Co3O4 Nano-particles on graphene as a synergistic catalyst for oxygen reduction reaction”. Nature Materials, 2011, 10, 780-786.

22. Y. Cheng, H. Zhang, C. V. Varanasi, J. Liu. “Nitrogen-doped carbon nanotubes array as a synergistic activity for oxygen”. Science, 2009, 323(5915), 750764.

23. J. Zhang, K. Sasaki, E. Sutter, R. R. Adzic. “Stabilization of platinum oxygen-reduction electrocatalytic using gold cluster”. Science, 2007, 315(5809), 220-224.

24. Y. Sun, C. Li, Y. Xu, H. Bai, Z. Yao and G. Shi. “Chemical converted graphene as substrate for immobilizing and enhancing the activity of a polymeric catalyst”. Chemical Communications, 2010, 46, 4740-4742.

25. A. Serov, K. C. Kwa. “Review of non-platinum anode catalysts for DMFC and PEMFC application”. Applied Catalysis B-Environmental, 2009, 90, 313-320.

26. W. Qi, D. Su. “Metal-free heterogeneous catalysis for sustainable chemistry”. ChemSusChem, 2010, 3, 169-180.

27. J. Ma1, X. Wang, X. Jiao. “High rates of oxygen reduction over a vapor phase-poly-merized PEDOT electrode”. Science, 2008, 321, 671-674.

28. L. Yang1, S. Jiang, Y. Zhao, L. Zhu, S. Chen, X. Wang, Q. Wu, J. Ma, Y. Ma, Z. Hu. “Boron-doped carbon nanotubes as metal-free eletrocatalysts for the oxygen reduction reaction”. Angewandte Chemie-International Edition, 2011, 50, 7132-7135.

29. Z. Liu, F. Peng, H. J. Wang, H. Yu, W. X. Zheng, J. Yang. “Phosphorus-doped graphite layers with high electrocatalytic activity for the O2 reduction in an alkaline medium”. Angewandte Chemie-International Edition, 2011, 50, 3257-3261.

30. L. Wang, A. Ambrosi, M. Pumera. “Metal free catalytic oxygen reduction reaction on heteroatomdoped graphene is caused by trace metal impurity”. Angewandte Chemie-International Edition, 2013, 52, 13818-13821.

31. Y. Zhao, L. Yang, S. Chen, X. Wang, Y. Ma, Q. Wu, Y. Jiang, W. Qian, Z. Hu, “Can boron and nitrogen Co-doping improve oxygen reduction reaction activity of carbon nanotubes?” Journal of the American Society, 2013, 135, 1201-1204.

32. Y. Okamoto. “First-principle molecular dynamics simulation of O2 reduction on nitrogen-doped carbon”. Applied Surface Since, 2009, 256, 335-341.

33. L. Qu, Y. Liu, J. Baek, L. Dai. “Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells”. ACS Nano, 2010, 4, 1321-1326.

34. S. Yang, X. Feng, X. Wang, K. Müllen. “Graphene-based carbon nitride nanosheets as efficient metal-free electrocatalyst for oxygen reduction”. Angewandte Chemie-International Edition, 2011, 50, 5339-5343.

35. Z. Sheng, H. Gao, W. Bao, F. Wang, X. Xia. “Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells”. Journal of materials Chemistry, 2012, 22, 390-395.

36. Z. Yang, Z. Yao, G. Li, G. Fang, H. Nie, Z. Liu, X. Zhou, X. Chen, S. Huang. “Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction reaction”. ACS Nano, 2012, 6, 205-211.

37. Z. Yao, H. Nie, Z. Yang, X. Zhou, Z. Liu, S. Huang. “Catalyst-free synthesis of iodine-doped graphene via facile thermal annealing process and its use for electrocatalytic oxygen reduction in an alkaline medium”. Chemical communications, 2012, 48, 1027-1029.

38. Liu R L, Wu D Q, Feng X L, et al. “Nitrogen-doped ordered mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction”. Angewandte Chemie-International Edition, 2010, 49, 2565-2569.

39. R. Liu, D. Wu, X. Feng, K. Müllen. “Nitrogen-doped graphene and its electrochemical application”. Journal of materials Chemistry, 2010, 20, 7491-7496.

40. D. Yu, Q. Zhang, L. Dai. “Highly efficient metal-free growth of nitrogen-doped single walled carbon nanotubes on plasma-etched substrates for oxygen reduction”. Journal of the American Society, 2010, 132, 15127-15129.

41. S. Wang, D. Yu, L. Dai. “Polyelectrolyte functionalized carbon nanotubes as efficient metal-free electrocatalysts for oxygen reduction”. Journal of the American Society, 2011, 133, 5182-5185.

42. D. Yu, E. Nagelli, F. Du, L. Dai. “ Metal-free carbon nano-materials become more active than metal catalysts and last longer”. Journal of Physical Chemistry letters, 2010, 1, 2165-2173.

43. X. Wang, J. Lee, Q. Zhu, J. Liu, Y. Wang, S. Dai. “Ammonia-treated ordered mesoporous carbons as catalytic materials for oxygen reduction reactions”. Chemistry of Materials, 2010, 22, 2178-2180.

44. J. Zhang, X. Liu, R. Blume, A. Zhang, R. Schlögl, D. S. Su. “Surface-modified carbon nanotubes catalyze oxidative dehydrogenation of n-butane”. Science, 2008, 322, 73-77.11

45. A. V. Okotrub, L. G. Bulusheva, A. G. Kudashov, V. V. Belavin, D. V. Vyalikh, S. L. Molodtsov. “Orientation ordering of nitrogen molecules in vertically aligned CNx nanotubes”. Applied physics A-material Science and Processing, 2009, 94, 437-443.

46. E. J. Biddinger, D. V. Deak, U. S. Ozkan. “Nitrogen-containing carbon N as oxygen-reduction catalysts”. Topics in Catalysis, 2009, 52, 1566-1574.

47. C. L. Sun, H. W. Wang, M. Hayashi, L. C. Chen, K. H. Chen, “Atomic-scale deformation in N-doped carbon nanotubes”. Journal of the American Society, 2006, 128, 8368-8369.

48. M. Terrones, P.M. Ajayan, F. Banhart, X. Blase, D. L. Carroll, J. C. Charlier, R. Czerw, B. Foley, N. Grobert, R. Kamalakaran, P. Kohler-Redlich, M. Rühle, T. Seeger, H. Terrones. “N-doped and coalescence of carbon nanotubes: Synthesis and electronic properties”. Applied physics A-material Science and Processing, 2002, 74, 355-461.

49. L. S. Panchakarla, A. Govindaraj, C. N. R. Rao. “Nitrogen- and Boron-doped double-walled carbon nanotubes”. ACS Nano, 2007, 1, 494-500.

50. W.Y. Wonga, W.R.W. Dauda, A.B. Mohamada, A.A.H. Kadhuma, K.S. Loha, E.H. Majlana. “Recent progress in nitrogen-doped carbon and its compositions as electrocatalysts for fuel cell application”. International Journal of Hydrogen Energy, 2013, 38, 9370-9386.

51. S. Maldonado, K. J. Stevenson. “Influence of nitrogen doping on oxygen reduction electrocatalysis at carbon nanofiber electrodes”. Journal of Physical chemistry B, 2005, 109(10), 4707-4716.

52. S. Chen, X. Z. Wang, H. X. Zhong, L. Yang, C. Zhang, Y. Ma, Q. Wu, X. Wang, Z. Hu. “Nitrogen-doped carbon nanocages as efficient metal-free electrocatalysts for oxygen reduction reaction”. Advanced materials, 2012, 24, 5593-5597.

53. H. Jin, H. Zhang, H. Zhonga, J. Zhang. “Nitrogen-doped carbon Xerogel: A novel carbon-based electrocatalysts for oxygen reduction reaction in proton exchange membrane (PEM) fuel cells”. Energy and Environment Science, 2011, 4, 3389-3394.

54. G. Ma, R. Jia, J. Zhao, Z. Wang, C. Song, S. Jia, Z. Zhu. “Nitrogen-doped hollow carbon nanoparticles with excellent oxygen reduction performances and their electrocatalytic Kinetics”. Journal of Physical Chemistry C, 2011, 115, 25148-25154.

55. D. Yu, L. Wei, W. Jiang, H. Wang, B Sun, Q. Zhang, K. Goh, R. Sia, Y. Chen. “Nitrogen doped holey graphene as efficient metal-free multifunctional electrochemical catalyst for hydrazine oxidation”. Nanoscale, 2013, 5, 3457-3464.

56. D. Deng, X. Pan, L. Yu, Y. Cui, Y. Jiang, J. Qi, W. Li, Qi. Fu, X. Ma, Q. Xue, G. Sun, X. Bao. “Toward N-doped graphene via solvent-thermal synthesis”. Chemistry of Materials, 2011, 23, 1188-1193.

57. Z. Luo, S. Lim, Z. Tian, J. Shang, L. Lai, B. MacDonald, C. Fu, Z. Shen, T. Yu, J. Lin. “Pyridinic N doped graphene: Synthesis, electronic structures, and electrocatalytic property”. Journal of materials Chemistry, 2011, 21, 8038-8044.

58. C. V. Rao, C. R. Cabrera, Y. Ishikawain. “Search of the active site in nitrogen-doped carbon nanotube electrodes for the oxygen reduction reaction”. Journal of Physical Chemistry Letters, 2010, 1, 2622-2627.

59. S. M. Unni, S. Devulapally, N. Karjulea, S. Kurungot. “Graphene enriched with pyrrolic coordination of the doped nitrogen as an efficient metal-free electrocatalyst for oxygen reduction”. Journal of Materials Chemistry, 2012, 22, 23506-23513.

60. W. Ding, Z. Wei, S. Chen, X. Qi, T. Yang, J. Hu, D. Wang, L. Wan, S. F. Alvi, L. Li. “Space-confinement-induced synthesis of pyridinic- and pyrrolic-nitrogen-doped graphene for the catalysis of oxygen reduction”. Angewandte Chemie-International Edition, 2013, 52, 11755-11759.

61. J. Tian, A. Morozan, M. T. Sougrati, M. Lefèvre, R. Chenitz, J. Dodelet, D. Jones, F. Jaouen. “Optimized synthesis of Fe/N/C cathode catalysts for PEM fuel cells: A matter of iron-ligand coordination strength”, Angewandte Chemie-International Edition, 2013, 52, 6867-6870.

62. M. Sc. Yang Hu, J. O. Jensen, W. Zhang, L. N. Cleemann, W. Xing, N. J. Bjerrum, Q. Li. “Hollow spheres of iron carbide nanoparticles encased in graphite layers as oxygen reduction catalysts”. Angewandte Chemie-International Edition, 2014, 53, 3675-3679.

63. M. Lefèvre, E. Proietti, F. Jaouen, J. Dodelet. “Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells”. Science, 2009, 324, 71-74.

64. H. Liang, W. Wei, Z. Wu, X. Feng, K. Müllen. “Mesoporous metal-nitrogen-doped carbon eletrocatalysts for highly efficient oxygen reduction reaction”. Journal of the American Society, 2013, 135, 16002-16005.

65. G. Wu, K. More, C. M. Johnston, P. Zelenay. “High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron and cobalt”. Science, 2011, 332, 443-447.

66. S. Zhang, H. Zhang, Q. Liua, S. Chen. “Fe-N doped carbon nanotube/graphene composite: Facile synthesis and superior electrocatalytic activity”. Journal of Materials chemistry A, 2013, 1, 3302-3308.

67. D. Deng, L. Yu, X. Chen, G. Wang, L. Jin, X. Pan, J. Deng, G. Sun, X. Bao. “Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction”. Angewandte Chemie-International Edition, 2012, 52(1), 371-375.

68. A. M. Lyons, E. M. Pearce, A. M. Mujsce. “Thermal decomposition of Poly(2-vinylpyridine): effect of complexation with copper chloride”. J. Polymer Sci. Part A ,1990, 28, 245–259

69. Barton, A.F.M., CRC Handbook of Solubility Parameters and Other Cohesion Parameters. 1911.

70. G.Y. Liou, Y.S. Sun. “Tailoring Nanostructure of Diblock Copolymer by

Photochemistry and Its Application in Spatial Control of Ag and Ag@Au

nanoparticles”, 國立中央大學化學工程研究所博士論文 (2014).

71. F. Tuinstra and J. L. Koenig, “Raman Spectrum of Graphite”, J. Chem. Phys. 1970, 53, 1126.

72. Taberna, L., Mitra, S., Poizot, P., Simon, P. & Tarascon, J. M. “High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications”. Nature Mater. 2006, 5, 567–573 .

73. T. Yamashita , P. Hayes, “Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials”. Applied Surface Science, 2008, 254, 2441–2449

74. L. Wang, J. Yin, L. Zhao, C. Tian, P. Yu, J. Wang and H. Fu, “Ion-exchanged route synthesis of Fe2N–N-doped graphitic nanocarbons composite as advanced oxygen reduction electrocatalyst”, Chem. Commun., 2013, 49, 3022.

75. J. Liu, B. Yu, Q. Zhang, L. Hou, Q. Huang, C. Song, S. Wang, Y. Wu, Y. He, J. Zou, H. Huang, “Synthesis and magnetic properties of Fe3C-C core-shell nanoparticles”, Nanotechnology, 2015, 26, p. 085601

指導教授 孫亞賢(Ya-en Sun) 審核日期 2015-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明