博碩士論文 103324059 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:18.119.133.228
姓名 賴正傑(Cheng-Chieh Lai)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 金屬有機骨架材料與活性碳共填充之混和基材膜性質探討
(Investigation of MOFs and Activated Carbon Co-Filler Mixed-Matrix Membranes)
相關論文
★ 利用固相反應法與電鍍法製備鈣鈦礦太陽能電池之研究★ 設計以雙噻吩併環戊二烯為核心的電洞傳輸材料並製備高效率穩定鈣鈦礦太陽能電池
★ 反溶劑處理對於製備大面積鈣鈦礦太陽能電池影響★ 二氧化鈦奈米粒徑尺寸對介觀結構鈣鈦礦太陽能電池光伏特性之影響
★ 塗佈溫度與混合溶劑比例對於刮刀塗佈製備鈣鈦礦層影響及鈣鈦礦太陽能電池性能表現探討★ 熱處理效應對於混合陽離子鈣鈦礦太陽能電池之光電性質及電池穩定性影響
★ 蔗糖水熱碳化法及後續活化製備活性碳以及活性碳對空氣過濾的應用★ 雙金屬有機骨架結構混合基質膜合成及芳香烴吸附第一原理計算
★ 製膜溶劑對於混合基質膜中金屬有機框架結構沉澱影響與其氣體滲透特性之探討★ 蒸氣相成長金屬有機框架材料合成
★ 外表面積和靜電相互作用機理對MOFs染料吸附的重要性★ 第一原理計算對於氮摻石墨烯在氧氣還原反應與拉曼增強的探討
★ 金屬有機框架結構晶體形貌與缺陷對於混合基材薄膜特性與氣體滲透之探討★ 鋯金屬有機框架結構之二氧化碳吸附性質探討
★ 金屬有機框架結構晶體形貌與缺陷對於混合基材薄膜特性與氣體滲透之探討★ 鋯金屬有機框架結構與石墨烯薄膜之氣體輸送 機制模擬探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 混和基材膜是近年來新穎的材料,它的組成是藉由在高分子膜內摻入無機或有機的顆粒填充劑,填充劑的種類可能是沸石、活性碳、金屬有機骨架材料等等…。
本次研究中我們使用三種填充劑,分別是活性碳和兩種金屬有機架:ZIF-8、NH2-MIL-53(Al),並且選擇其中兩種填充劑去合成以polysulfone為高分子基材的共填充混和基材膜。後續我們使用掃描式電子顯微鏡 (scanning electron microscope) 去鑑定混和基材膜的橫切面,藉此分析填充劑在高分子內的分布、填充劑和高分子之間介面的結合性。使用X射線繞射 (X-ray diffraction) 分析填充劑的結晶結構和填充劑與高分子之間的協同效應。示差掃描熱分析儀 (differential scanning calorimetry) 進一步研究填充劑與填充劑之間的協同效應。
從結果發現,添加ZIF-8或活性碳進入高分子內可以使原本聚集的NH2-MIL-53(Al) 更均勻的分布。XRD的結果顯示活性碳會與MOFs發生協同效應,使MOFs的主要特徵鋒偏移到更高的角度。以DSC分析各種混和基材膜發現,同時添加活性碳和NH2-MIL-53(Al) 的共填充混和基材膜比起單一摻混活性碳或NH2-MIL-53(Al)的混和基材膜擁有較高的玻璃轉化溫度,進一步證實填充劑之間有協同效應。
摘要(英)
Mixed-matrix membranes (MMMs), a relatively new class of such materials, are produced by the incorporation of organic or inorganic fillers, such as zeolites, activated carbon, and metal-organic frameworks (MOFs) into polymeric membrane materials.
In this work, we choose three kind of fillers, activated carbon, MOFs: ZIF-8, NH2-MIL-53(Al), and created co-filler polysulfone-based MMMs with combinations of two fillers blended together. We investigated: a) filler distribution, b) interaction and connectivity of fillers in the polymer matrix, and c) interaction between different fillers. The above phenomenon were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and differential scanning calorimetry (DSC).
From the result adding ZIF-8 and activated carbon can increase the synergistic effect of between different fillers resulting in fillers are uniformly dispersion. In XRD patterns, the main peaks of co-filler MMMs synthesized using activated carbon and MOFs displace to higher angles indication some deformation in MOFs crystal lattices which could be attributed to the interaction with the activated carbon. The MMMs doped with both NH2-MIL-53(Al) and activated carbon almost had a higher Tg than that doped with single component showing the synergistic effect between NH2-MIL-53(Al) and activated carbon existed in MMMs.
關鍵字(中) ★ 金屬有機骨架材料
★ 活性碳
★ 共填充
★ 混合基材膜
關鍵字(英) ★ Metal-Organic Framework
★ Activated carbon
★ Co-Filler
★ Mixed-Matrix Membranes
論文目次
Table of Content
摘要 i
Abstract ii
Acknowledgement iii
List of Figures vii
List of Tables xii
Chapter 1 Introduction 1
1.1 Introduction on metal-organic frameworks 1
1.2 Literature Review of Mixed Matrix Membranes 6
1.3 Motivation 15
Chapter 2 Experimental 16
2.1 Chemical Compounds 16
2.2 Experimental Procedure 16
2.2-1 Synthesis of ZIF-8 17
2.2-2 Synthesis of amino-MIL-53(Al) 17
2.2-3 Synthesis of Activated Carbon 18
2.2-4 Preparation of Mixed Matrix Membranes (MMMs) 19
2.3 Equipment Used 23
2.4 Material Characterizations 23
2.4-1 Scanning Electron Microscopy (SEM, JEOL, JSM-7600F) 23
2.4-2 X-ray Diffraction (XRD, BRUKER, D8AXRD) 24
2.4-3 Nitrogen adsorption measurement (Micromeritics ASAP 2010 sorptometer) 24
2.4-4 Differential Scanning Calorimetry (DSC, PerkinElmer PYRIS Diamond) 25
Chapter 3 Results and Discussion 26
3.1 Characterization of fillers 26
3.1-1 ZIF-8 26
3.1-2 NH2-MIL-53(Al) 29
3.1-3 Activated carbon 31
3.2 SEM Characterization of mixed matrix membranes 33
3.2-1 ZIF-8/PSF mixed matrix membrane 33
3.2-2 NH2-MIL-53(Al)/PSF mixed matrix membrane 36
3.2-3 Activated carbon/PSF mixed matrix membrane 38
3.2-4 ZIF-8 and NH2-MIL-53(Al) co-filler PSF based MMMs 39
3.2-5 ZIF-8 and activated carbon co-filler PSF based MMMs 41
3.2-6 NH2-MIL-53(Al) and activated carbon co-filler PSF based MMMs 42
3.3 XRD Characterization of mixed matrix membranes 44
3.3-1 ZIF-8/Polysulfone mixed matrix membranes 44
3.3-2 NH2-MIL-53(Al)/Polysulfone mixed matrix membranes 46
3.3-3 ZIF-8 and NH2-MIL-53(Al) in Polysulfone 48
3.3-4 ZIF-8 and Activated carbon in Polysulfone 49
3.3-5 NH2-MIL-53(Al) and Activated carbon in Polysulfone 51
3.4 Glass transition temperature 52
3.4-1 Glass transition temperature of single fillers MMMs 52
3.4-2 Glass transition temperature of co-fillers MMMs 54
Chapter 4 Conclusions 56
Chapter 5 Future Work 57
Reference 58
參考文獻

Reference
1. Rowsell, J.L.C.,O.M. Yaghi, Metal–organic frameworks: a new class of porous materials. Microporous and Mesoporous Materials, 2004. 73(1-2): p. 3-14.
2. Czaja, A.U., N. Trukhan,U. Muller, Industrial applications of metal-organic frameworks, in Chemical Society Reviews. 2009. p. 1284-1293.
3. Robin, A.Y.,K.M. Fromm, Coordination polymer networks with O- and N-donors: what they are, why and how they are made. Coordination Chemistry Reviews, 2006. 250(15-16): p. 2127-2157.
4. Horcajada, P., T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J.F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, J.S. Chang, Y.K. Hwang, V. Marsaud, P.N. Bories, L. Cynober, S. Gil, G. Ferey, P. Couvreur,R. Gref, Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nature Materials, 2010. 9(2): p. 172-178.
5. Morris, R.E.,P.S. Wheatley, Gas storage in nanoporous materials. Angewandte Chemie International Edition, 2008. 47(27): p. 4966-81.
6. Nijem, N., H. Wu, P. Canepa, A. Marti, K.J. Balkus, Jr., T. Thonhauser, J. Li,Y.J. Chabal, Tuning the gate opening pressure of Metal-Organic Frameworks (MOFs) for the selective separation of hydrocarbons. Journal of the American Chemical Society, 2012. 134(37): p. 15201-4.
7. Tanh Jeazet, H.B., C. Staudt,C. Janiak, Metal-organic frameworks in mixed-matrix membranes for gas separation. Dalton Trans, 2012. 41(46): p. 14003-142027.
8. Li, H., M. Eddaoudi, M. O′Keeffe,O.M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 1999. 402: p. 276-276.
9. Kaye, S.S., A. Dailly, O.M. Yaghi,J.R. Long, Impact of Preparation and Handling on the Hydrogen Storage Properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). Journal of the American Chemical Society, 2007. 129: p. 14176-14177.
10. Li, J.R., J. Sculley,H.C. Zhou, Metal-organic frameworks for separations. Chemical Reviews, 2012. 112(2): p. 869-932.
11. Kasik, A.,Y.S. Lin, Organic solvent pervaporation properties of MOF-5 membranes. Separation and Purification Technology, 2014. 121: p. 38-45.
12. Loiseau, T., C. Serre, C. Huguenard, G. Fink, F. Taulelle, M. Henry, T. Bataille,G. Ferey, A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. Chemistry, 2004. 10(6): p. 1373-82.
13. Serre, C., F. Millange, C. Thouvenot, M. Nogue`s, G.r. Marsolier, D. Loue¨r,G.r. Fe´rey, Very Large Breathing Effect in the First Nanoporous Chromium (III)-Based Solids: MIL-53 or CrIII (OH)⊙{O2C-C6H4-CO2}⊙{HO2C-C6H4-CO2H} x⊙ H2O y. Journal of the American Chemical Society, 2002. 124: p. 13519-13526.
14. Salles, F., A. Ghoufi, G. Maurin, R.G. Bell, C. Mellot-Draznieks,G. Ferey, Molecular dynamics simulations of breathing MOFs: structural transformations of MIL-53(Cr) upon thermal activation and CO2 adsorption. Angewandte Chemie International Edition, 2008. 47(44): p. 8487-91.
15. Couck, S., J.F.M. Denayer, G.V. Baron, T. Remy, J. Gascon,F. Kapteijn, An Amine-Functionalized MIL-53 Metal-Organic Framework with Large Separation Power for CO2 and CH4. Journal of the American Chemical Society, 2009. 131: p. 6326-6327.
16. Férey, G., M. Latroche, C. Serre, F. Millange, T. Loiseau,A. Percheron-Guégan, Hydrogen adsorption in the nanoporous metal-benzenedicarboxylate M(OH)(O2C–C6H4–CO2) (M = Al3+, Cr3+), MIL-53. Chemical Communications 2003(24): p. 2976-2977.
17. Gascon, J., U. Aktay, M. Hernandezalonso, G. Vanklink,F. Kapteijn, Amino-based metal-organic frameworks as stable, highly active basic catalysts. Journal of Catalysis, 2009. 261(1): p. 75-87.
18. Park, K.S., Z. Ni, A.P. Cote, J.Y. Choi, R. Huang, F.J. Uribe-Romo, H.K. Chae, M. O′Keeffe,O.M. Yaghi, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences of the United States of America, 2006. 103(27): p. 10186-91.
19. Le-Clech, P., V. Chen,T.A.G. Fane, Fouling in membrane bioreactors used in wastewater treatment. Journal of Membrane Science, 2006. 284(1-2): p. 17-53.
20. Barhate, R.,S. Ramakrishna, Nanofibrous filtering media: filtration problems and solutions from tiny materials. Journal of Membrane Science, 2007. 296(1-2): p. 1-8.
21. Stamatialis, D.F., B.J. Papenburg, M. Gironés, S. Saiful, S.N.M. Bettahalli, S. Schmitmeier,M. Wessling, Medical applications of membranes: Drug delivery, artificial organs and tissue engineering. Journal of Membrane Science, 2008. 308(1–2): p. 1-34.
22. Tanh Jeazet, H.B.,C. Janiak, Metal-organic frameworks in mixed matrix membtanes. 2014: p. 403-414.
23. Strathmann, H., Membrane separation processes: current relevance and future opportunities. American Institute of Chemical Engineers, 2001. 47: p. 1077-1087.
24. Clarizia, G., Polymer-based membranes applied to gas separation: material and engineering aspects. Desalination, 2009. 245: p. 763–768.
25. Buonomenna, M.G., W. Yave,G. Golemme, Some approaches for high performance polymer based membranes for gas separation: block copolymers, carbon molecular sieves and mixed matrix membranes. Royal Society of Chemistry Advances, 2012. 2(29): p. 10745-10773.
26. Robeson, L.M., The upper bound revisited. Journal of Membrane Science, 2008. 320(1-2): p. 390-400.
27. Robeson, L.M., Correlation of separation factor versus permeability for polymeric membranes. Journal of Membrane Science, 1991. 62(2): p. 165-185.
28. Zimmerman, C.M., A. Singh,W.J. Koros, Tailoring mixed matrix composite membranes for gas separations. Journal of Membrane Science, 1997. 137: p. 145-154.
29. Vu, D.Q., W.J. Koros,S.J. Miller, Mixed matrix membranes using carbon molecular sieves I. Preparation and experimental results. Journal of Membrane Science, 2003. 211: p. 311–334.
30. Anson, M., J. Marchese, E. Garis, N. Ochoa,C. Pagliero, ABS copolymer-activated carbon mixed matrix membranes for CO2/CH4 separation. Journal of Membrane Science, 2004. 243(1): p. 19-28.
31. Zornoza, B., A. Martinez-Joaristi, P. Serra-Crespo, C. Tellez, J. Coronas, J. Gascon,F. Kapteijn, Functionalized flexible MOFs as fillers in mixed matrix membranes for highly selective separation of CO2 from CH4 at elevated pressures. Chemical Communications, 2011. 47(33): p. 9522-9524.
32. Valero, M., B. Zornoza, C. Téllez,J. Coronas, Mixed matrix membranes for gas separation by combination of silica MCM-41 and MOF NH2-MIL-53(Al) in glassy polymers. Microporous and Mesoporous Materials, 2014. 192: p. 23-28.
33. Galve, A., D. Sieffert, C. Staudt, M. Ferrando, C. Güell, C. Téllez,J. Coronas, Combination of ordered mesoporous silica MCM-41 and layered titanosilicate JDF-L1 fillers for 6FDA-based copolyimide mixed matrix membranes. Journal of Membrane Science, 2013. 431: p. 163-170.
34. Tanh Jeazet, H.B., S. Sorribas, J.M. Román-Marín, B. Zornoza, C. Téllez, J. Coronas,C. Janiak, Increased selectivity in CO2/CH4 separation with mixed-matrix membranes of polysulfone and mixed-MOFs MIL-101(Cr) and ZIF-8. European Journal of Inorganic Chemistry, 2016. 2016(27): p. 4363-4367.
35. Zornoza, B., B. Seoane, J.M. Zamaro, C. Tellez,J. Coronas, Combination of MOFs and zeolites for mixed-matrix membranes. ChemPhysChem, 2011. 12(15): p. 2781-2785.
36. Li, X., L. Ma, H. Zhang, S. Wang, Z. Jiang, R. Guo, H. Wu, X. Cao, J. Yang,B. Wang, Synergistic effect of combining carbon nanotubes and graphene oxide in mixed matrix membranes for efficient CO2 separation. Journal of Membrane Science, 2015. 479: p. 1-10.
37. Sarfraz, M.,M. Ba-Shammakh, Synergistic effect of adding graphene oxide and ZIF-301 to polysulfone to develop high performance mixed matrix membranes for selective carbon dioxide separation from post combustion flue gas. Journal of Membrane Science, 2016. 514: p. 35-43.
38. Sarfraz, M.,M. Ba-Shammakh, Synergistic effect of incorporating ZIF-302 and graphene oxide to polysulfone to develop highly selective mixed-matrix membranes for carbon dioxide separation from wet post-combustion flue gases. Journal of Industrial and Engineering Chemistry, 2016. 36: p. 154-162.
39. Sarfraz, M.,M. Ba-Shammakh, Combined Effect of CNTs with ZIF-302 into Polysulfone to Fabricate MMMs for Enhanced CO2 Separation from Flue Gases. Arabian Journal for Science and Engineering, 2016. 41(7): p. 2573-2582.
40. He, M., J. Yao, Q. Liu, K. Wang, F. Chen,H. Wang, Facile synthesis of zeolitic imidazolate framework-8 from a concentrated aqueous solution. Microporous and Mesoporous Materials, 2014. 184: p. 55-60.
41. Hao, S.-W., C.-H. Hsu, Y.-G. Liu,B.K. Chang, Activated carbon derived from hydrothermal treatment of sucrose and its air filtration application. Royal Society of Chemistry Advances, 2016. 6(111): p. 109950-109959.
42. Mahajan, R.,W.J. Koros, Factors Controlling Successful Formation of Mixed-Matrix Gas Separation Materials. Industrial & Engineering Chemistry Research, 2000. 39: p. 2692-2696.
43. Ordoñez, M.J.C., K.J. Balkus, J.P. Ferraris,I.H. Musselman, Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes. Journal of Membrane Science, 2010. 361(1-2): p. 28-37.
44. Britt, D., H. Furukawa, B. Wang, T.G. Glover,O.M. Yaghi, Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites. Proceedings of the National Academy of Sciences of the United States of America, 2009. 106(49): p. 20637-40.
45. Chen, X.Y., H. Vinh-Thang, D. Rodrigue,S. Kaliaguine, Amine-Functionalized MIL-53 Metal–Organic Framework in Polyimide Mixed Matrix Membranes for CO2/CH4Separation. Industrial & Engineering Chemistry Research, 2012. 51(19): p. 6895-6906.
46. Jeazet, H.B., C. Staudt,C. Janiak, A method for increasing permeability in O2/N2 separation with mixed-matrix membranes made of water-stable MIL-101 and polysulfone. Chemical Communications, 2012. 48(15): p. 2140-2.
47. Zornoza, B., C. Téllez,J. Coronas, Mixed matrix membranes comprising glassy polymers and dispersed mesoporous silica spheres for gas separation. Journal of Membrane Science, 2011. 368(1): p. 100-109.
48. Md Nordin, N.A.H., A.F. Ismail,A. Mustafa, Synthesis and Preparation of Asymmetric PSf/ZIF-8 Mixed Matrix Membrane for CO2/CH4 Separation. Jurnal Teknologi, 2014. 69(9).
49. Md. Nordin, N.A.H., A.F. Ismail, A. Mustafa, R.S. Murali,T. Matsuura, Utilizing low ZIF-8 loading for an asymmetric PSf/ZIF-8 mixed matrix membrane for CO2/CH4separation. Royal Society of Chemistry Advances, 2015. 5(38): p. 30206-30215.
指導教授 張博凱(Bok Kae Chang) 審核日期 2017-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明