博碩士論文 103324061 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:133 、訪客IP:3.12.36.30
姓名 邱婕伶(Chieh-Ling Chiu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 金屬氧化物奈米結構製備及其表面親疏水性質之研究
相關論文
★ 規則氧化鋁模板及鎳金屬奈米線陣列製備之研究★ 電化學沉積法製備ZnO:Al奈米柱陣列結構及其性質研究
★ 溼式蝕刻製程製備矽單晶奈米結構陣列及其性質研究★ 氣體電漿表面改質及濕式化學蝕刻法結合微奈米球微影術製備位置、尺寸可調控矽晶二維奈米結構陣列之研究
★ 陽極氧化鋁模板法製備一維金屬與金屬氧化物奈米結構陣列及其性質研究★ 水熱法製備ZnO, AZO 奈米線陣列成長動力學以及性質研究
★ 新穎太陽能電池基板表面粗糙化結構之研究★ 規則準直排列純鎳金屬矽化物奈米線、奈米管及異質結構陣列之製備與性質研究
★ 鈷金屬與鈷金屬氧化物奈米結構製備及其性質研究★ 單晶矽碗狀結構及水熱法製備ZnO, AZO奈米線陣列成長動力學及其性質研究
★ 準直尖針狀矽晶及矽化物奈米線陣列之製備及其性質研究★ 奈米尺度鎳金屬點陣與非晶矽基材之界面反應研究
★ 在透明基材上製備抗反射陽極氧化鋁膜及利用陽極氧化鋁模板法製備雙晶銅奈米線之研究★ 準直矽化物奈米管陣列、超薄矽晶圓與矽單晶奈米線陣列轉附製程之研究
★ 尖針狀矽晶奈米線陣列及凖直鐵矽化物奈米結構之製備與性質研究★ 尖針狀鈷矽化物/矽單晶異質奈米線陣列結構之製備及其性質研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來,表面潤濕性的研究已經引起人們的關注,由於其廣泛的應用,如自潔,抗菌和抗霧等。因此了解和控制固體材料表面的潤濕性是非常重要的。雖然金屬氧化物材料表面的潤濕性目前已經被廣泛研究,然而,在不同實驗條件下所造成金屬氧化物表面擁有不同潤濕性之確切機制尚不明確。
本研究中,各式金屬氧化物薄膜和奈米線是由純金屬薄膜經熱氧化所製備而成。經不同實驗處理後之金屬氧化物薄膜的表面形貌、晶體結構、化學組成及表面潤濕性的轉換機制可藉由SEM、AFM、XRD、TEM、ATR-FTIR與水滴接觸角量測來進行一系列的分析與探討。並可發現,所有經熱氧化處理後之金屬氧化物薄膜表面為親水,經室溫下短時間抽真空與放置於大氣環境下數天,表面之水滴接觸角逐漸上升轉換成疏水性質,而奈米結構會增強其親疏水之效應。由上述結果,利用高溫退火及室溫下抽真空便能夠使得奈米材料表面擁有快速且可調變的的潤濕特性。
除此之外,本研究也利用二氧化矽及金薄膜針對潤濕性質進行一系列之探討,發現其表面親疏水特性與先前之金屬氧化物有相同的潤濕性。從實驗結果推測可逆之潤濕性轉換可能是由於表面狀態不同。經氧氣退火後,表面會產生許多的缺陷像是氧原子之懸鍵等使表面具有高的表面自由能,而有親水之表面特性。然而,由於此表面的缺陷非常不穩定,放置於大氣環境下會漸漸脫附或與相鄰之懸鍵相互鍵結,表面形成較穩定狀態,使得表面疏水,然而若進行抽真空之處理,會加速表面之缺陷脫附,並可快速由親水轉變為疏水。
摘要(英) Recently, the research of surface wettability has attracted increasing interest due to its wide variety of applications, such as self-cleaning, antibacterial, and anti-fogging. Therefore, understanding and controlling the surface wettability of solid materials is absolutely essential. The surface wettability of metal oxide materials has been studied extensively. However, the exact mechanism of the wetting behaviors of metal oxide surfaces under different experimental conditions is not yet well defined.
In this study, various metal oxide thin films and nanowires were fabricated by thermal oxidation of pure metal films. The evolutions of surface morphology, crystal structure, chemical composition, and surface wettability of metal oxide films after different experimental treatments have been investigated by SEM, TEM, ATR-FTIR, and water contact angle measurements. The obtained results showed that all the as-oxidized metal oxide thin films were hydrophilic in nature. However, their surface wettability would gradually transform from hydrophilic to hydrophobic with increasing the storage time under atmospheric ambient or vacuum environment at room temperature. The reversible switching of the surface wettability of metal oxide films can be accomplished by alternate annealing in oxygen ambient and storage in vacuum or in atmosphere.
The surface wettability were also investigated in this study, and it was found that the silicon dioxide and gold films have the same wetting behaviors as those of metal oxides. The reversible wettability conversion is likely due to the surface state variety. The oxygen related defects and oxygen adatoms created by oxygen annealing make the surfaces have high surface free energy, in which results hydrophilic surfaces. However, these defects were not stable. When the storage time is long enough, the surface will return to its hydrophobic state.
關鍵字(中) ★ 奈米結構
★ 金屬氧化物
★ 親疏水性
關鍵字(英)
論文目次 第一章 前言 1
1-1 簡介 1
1-2 奈米材料 2
1-3 金屬氧化物奈米材料 3
1-4 金屬氧化物奈米線之製備 4
1-5 矽晶奈米線之製備 5
1-5-1 無電鍍金屬催化蝕刻法 5
1-5-2 矽奈米線結構之氧化 5
1-6 親疏水性質及相關理論 5
1-7 金屬氧化物親疏水現象之機制探討 7
1-7-1 表面形貌變化之影響 7
1-7-2 氫氧基對表面之影響 7
1-7-3 氧分子之吸附對表面之影響 8
1-7-4 有機分子之吸附對表面之影響 8
1-7-5 材料表面缺陷之影響 9
1-8 傅立葉轉換衰減全反射紅外光譜儀 10
1-8-1 傅立葉轉換衰減全反射紅外光譜儀理論 10
1-8-2 傅立葉轉換衰減全反射紅外光譜儀應用 11
1-9 研究動機與實驗目的 12
第二章 實驗步驟及儀器設備 13
2-1 以熱氧化退火法製備金屬氧化物薄膜 13
2-1-1 基材使用之前處理 13
2-1-2 金屬薄膜之蒸鍍 14
2-1-3 金屬薄膜之濺鍍 14
2-1-4 熱退火處理 14
2-2 以熱氧化退火法製備大面積金屬氧化物奈米線 14
2-2-1 基材使用之前處理 15
2-2-2 金屬薄膜之蒸鍍 15
2-2-3 電鍍液配製 16
2-2-4 熱氧化退火 16
2-3 無電鍍金屬催化蝕刻法成長矽晶奈米線 16
2-4實驗設備 16
2-4-1 蒸鍍系統 16
2-4-2 濺鍍系統 17
2-4-3 電沉積系統 17
2-4-4 退火爐系統 17
2-4-5 真空處理系統 18
2-5 儀器分析實驗 18
2-5-1 掃描式電子顯微鏡 18
2-5-2 穿透式電子顯微鏡 18
2-5-3 原子力顯微鏡 19
2-5-4 XRD繞射分析 19
2-5-5 傅立葉轉換衰減全反射紅外光譜儀 ( ATR-FTIR ) 19
2-5-6 影像式接觸角量測儀 20
第三章 結果與討論 21
3-1 金屬氧化物薄膜及奈米線結構之製備與分析 21
3-1-1 金屬氧化物薄膜之相鑑定及其結晶結構分析 21
3-1-2 金屬氧化物奈米線之結構分析 24
3-2 金屬氧化物表面之親疏水性質 25
3-2-1 金屬氧化物薄膜之表面親疏水性質 25
3-2-2 金屬氧化物奈米線之表面親疏水性質 25
3-3 金屬氧化物表面之化學組成分析 27
3-4 金與氧化矽表面形貌與親疏水性質及化學組成分析 28
3-4-1 金與氧化矽表面形貌之分析 28
3-4-2 金與氧化矽之表面親疏水性質 30
3-4-3 金與二氧化矽之表面化學組成分析 31
3-5 金屬氧化物親疏水性轉換機制之探討 32
第四章 結論與未來展望 36
4-1 結論 36
4-2 未來展望 36
參考文獻 38
圖目錄 45
參考文獻 [1] W. Barthlott and C. Neinhuis, “Purity of the Scared Lotus, or Escape from Contamination in Biological Surfaces,” Planta 202 (1997) 1–8.
[2] C. Neinhuis and W. Barthlott, “Characterization and Distribution of Water-Repellent, Self-Cleaning Plant Surfaces,” Annals of Botany 79 (6) (1997) 667–77.
[3] T. Nishino, M. Meguro, K. Nakamae, M. Matsushita and Y. Ueda, “The Lowest Surface Free Energy Based on-CF3 Alignment,” Langmuir 15 (13) (1999) 4321–4323.
[4] E. Puukilainen, H. K. Koponen, Z. Xiao, S. Suvanto and T. A. Pakkanen, “Nanostructured and Chemically Modified Hydrophobic Polyolefin Surfaces,” Colloids and Surfaces A: Physicochemical and Engineering Aspects 287 (1-3) (2006) 175–181.
[5] J. Bico, C. Marzolin and D. Quere, “Pearl Drops,” EPL 47 (1999) 220.
[6] M. Barberoglou, V. Zorba, A. Pagozidis, C. Fotakis and E. Stratakis, “Electrowetting Properties of Micro/Nanostructured Black Silicon,” Langmuir 26(15) (2010) 13007–13014.
[7] S. Shibuichi, T. Onda, N. Satoh, K. Tsujii, “Super Water-Repellent Surfaces Resulting from Fractal Structure,” The Journal of Physical Chemistry 100 (50) (1996) 19512–19517.
[8] Z. Yoshimitsu, A. Nakajima, T. Watanabe and K. Hashimoto, “Effects of Surface Structure on the Hydrophobicity and Sliding Behavior of Water Droplets,” Langmuir 18(15) (2002) 5818–5822.
[9] 丁志明等編著,奈米科技:基礎、應用與實作,初版,臺北縣五股鄉,高立,2005年。
[10] 呂宗昕,圖解奈米科技與光觸媒,初版,臺北市,商周出版,2003年。
[11] 呂宗昕,全面進攻奈米科技與太陽電池,第一版,臺北市,天下遠見,2009年。
[12] 陳富亮編著,最新奈米光觸媒應用技術,初版,臺北縣五股鄉,普林斯頓,2003年。
[13] 垰田博史著,張晶、楊健譯,光觸媒圖解,初版,臺北市,商周出版,2003年。
[14] 林有銘,無所不在的環境清潔工奈米光觸媒,科學發展,408期,2006年。
[15] W. Barthlott and C. Neinhuis, “Purity of the Scared Lotus, or Escape from Contamination in Biological Surfaces,” Planta 202 (1997) 1–8.
[16] S. Leijonmarck, A. Cornell, G. Lindbergh and L. Wågberg, “Single-Paper Flexible Li-Ion Battery Cells Through a Paper-Making Process Based on Nano-Fbrillated Cellulose,” J. Mater. Chem. A (2013) 4671–4677.
[17] O. Karaagac, H. Kockar and M. Alper, “Electrodeposited Cobalt Films: TheEffect of Deposition Potentials on the Film Properties,” J. Optel. Adv. Mater. 15 (2013) 1412–1416.
[18] P. M. Rao, L. Cai, C. Liu, I. S. Cho, C. H. Lee, J. M. Weisse, P. Yang and X. Zheng, “Simultaneously Efficient Light Absorption and Charge Separation in WO3/BiVO4 Core/Shell Nanowire Photoanode for Photoelectrochemical Water Oxidation,” Nano Lett. 14 (2014) 1099−1105.
[19] R. Rurali, M. Palummo and X. Cartoixà1, “Convergence Study of Neutral and Charged Defect Formation Energies in Si Nanowires,” Physical Review B 81 (2010) 235304 1–6.
[20] W. Wang, Y. Xie, Y. Wang, H. Du, C. Xia, F. Ti, “Glucose Biosensor Based on Glucose Oxidase Immobilized on Unhybridized Titanium Dioxide Nanotube Arrays,” Microchim Acta 181 (2014) 381–387.
[21] H. W. Shim, D. K. Lee, I. S. Cho, K. S. Hong and D. W. Kim, “Facile Hydrothermal Synthesis of Porous TiO2 Nanowire Electrodes with High-Rate Capability for Li Ion Batteries,” Nanotechnology 21 (2010) 255706 1–9.
[22] D. Gong, C. A. Grimes, O. K. Varghese, W. Hu, R. S. Singh, Z. Chen and E. C. Dickey, “Titanium Oxide Nanotube Arrays Prepared by Anodic Oxidation,” J. Mater. Res. 16 (2001) 12.
[23] C. Y. Tsai, C. Y. Wu, K. H. Chang and P. T. Lee, “ Slab Thickness Dependence of Localized Surface Plasmon Resonance Behavior in Gold Nanorings,” Plasmonics 8 (2013) 1011–1016.
[24] J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Ka¨ll, G. W. Bryant and F. J. Garcı´a de Abajo, “Optical Properties of Gold Nanorings,” Phy. Rev. Lett. 90 (2003) 5.
[25] S. Horiuchi, T. Gotou, M. Fujiwara, R. Sotoaka, M. Hirata, K. Kimoto, T. Asaka, T. Yokosawa, Y. Matsui, K. Watanabe and M. Sekita, “Carbon Nanofilm with a New Structure and Property,” Jpn. J. Appl. Phys. 42 (2003) L1073.
[26] L. Chen, K. Yang, H. Liu and X. Wang, “Carbon Nanotube Supported Pd Catalyst for Liquid-Phase Hydrodehalogenation of Bromobenzene,” Carbon 46 (2008) 2137–2139.
[27] H. Wang, B. Hu, L. Zhang, M. Li, E. Ja, and Z. Liu, “Enhanced Structural Ordering and Coercivity in FePt Nanowire Arrays by Addition of Zn,” Journal of Magnetism and Magnetic Materials 362 (2014) 47–51.
[28] S. K. Srivastava, D. Kumar, S. W. Schmitt, K. N. Sood, S. H. Christiaansen and P. K. Singh, “Large Area Fabrication of Vertical Silicon Nanowire Arrays by Silver-Assisted Single-Step Chemical Etching and Their Formation Kinetics,” Nanotechnology 25 (2014) 175601.
[29] U. Dembereldorj, S. Y. Choi, E. O. Ganbold, N. W. Song, D. Kim, J. Choo, S. Y. Lee, S. Kim and S. W. Joo, “Gold Nanorod-Assembled Pegylated Graphene-Oxide Nanocomposites for Photothermal Cancer Therapy,” Photochemistry and Photobiology 90 (2014) 659–666.
[30] S. H. Huang, S. C. Twan, S. L. Cheng, T. Lee, J. C. Hu, L. T. Chen and S. W. Lee, “Influence of Al Addition on Phase Transformation and Thermal Stability of Nickel Silicides on Si(001),” Journal of Alloys and Compounds 586 (2014) S362–S367.
[31] Y. Peng, H. L. Zhang, S. L. Pan and H. L. Li, “Magnetic Properties and Magnetization Reversal of α-Fe Nanowires Deposited in Alumina Film,” J. Appl.Phys. 87 (2000) 7405.
[32] H. Zeng, M. Zheng, R. Skomski, D. J. Sellmyer, Y. Liu, L. Menon and S. Bandyopadhyay, “Magnetic Properties of Self-Assembled Co Nanowires of Varying Length and Diameter,”J. Appl. Phys. 87 (2000) 4718.
[33] G. J. Strijkers, J. H. J. Dalderop, M. A. A. Broeksteeg, H. J. M. Swagten and W. J. M. De Jonge, “Structure and Magnetization of Arrays of Electrodeposited Co Wires in Anodic Alumina,” J. Appl. Phys. 86 (1999) 5141.
[34] P. Raksa, A. Gardchareon, T. Chairuangsri, P. Mangkorntong, N. Mangkorntong and S. Choopun, “Ethanol Sensing Properties of CuO Nanowires Prepared by an Oxidation Reaction,” Ceram. Int. 35 (2009) 649–652.
[35] G. Amin, M. H. Asif, A Zainelabdin, S. Zaman, O. Nur and M. Willander, “Influence of pH, Precursor Concentration, Growth Time, and Temperature on the Morphology of ZnO Nanostructures Grown by the Hydrothermal Method,” Nanomaterials. 10 (2011) 269692.
[36] Z. L. Jin, X. J. Zhang, Y. X. Li, S. B. Li and G. X. Lu, “5.1% Apparent Quantum Efficiency for Stable Hydrogen Generation over Eosin-Sensitized CuO/TiO2 Photocatalyst under Visible Light Irradiation,” Catal. Commun. 8 (2007) 1267–1273.
[37] Q. L. Bao, C. M. Li, L. Liao, H. B. Yang, W. Wang, C. Ke, Q. L. Song, H. F. Bao, T. Yu, K. P. Loh and J. Guo, “Electrical Transport and Photovoltaic Effects of Core-Shell CuO/C60 Nanowire Heterostructure,” Nanotechnology 20 (2009) 065203 1–8.
[38] G. Zou, H. Li, D. Zhang, K. Xiong, C. Dong and Y. Qian, “Well-Aligned Arrays of CuO Nanoplatelets,” J. Phys. Chem. B 110 (2006) 1632–1637.
[39] H. J. Nam, T. Sasaki and N. Koshizaki, “Optical CO Gas Sensor Using a Cobalt Oxide Thin Film Prepared by Pulsed LaserDeposition under Various Argon Pressures,” J. Phys. Chem. B. 110 (2006) 23081–23084.
[40] L. Fu, Z. Liu, Y. Liu, B. Han, P. Hu, L. Cao and D. Zhu, “Beaded Cobalt Oxide Nanoparticles along Carbon Nanotubes: Towards More Highly Integrated Electronic Devices,” Advanced Materials 17 (2005) 217–22.
[41] S. H. Yi, S. K. Choi, J. M. Jang, J. A. Kim and W. G. Jung, “Low-Temperature Growth of ZnO Nanorods by Chemical Bath Deposition,” J. colloid interface Sci. 313 (2007) 705–710.
[42] Z. K. Tang, G. K. L. Wong and P. Yu, “Room-Temperature Ultraviolet Laser Emission from Self-Assembled ZnO Microcrystallite Thin Films,” Appl. Phys. Lett. 72 (1998) 3270–3272.
[43] M. Mandal, S. K. Ghosh, S. Kundu, K. Esumi and T. Pal, “UV Photoactivation for Size and Shape Controlled Synthesis and Coalescence of Gold Nanoparticles in Micelles,” Langmuir 18 (2002) 7792–7797.
[44] N. R. Jana, Y. Chen and X. Peng, “Size- and Shape-Controlled Magnetic (Cr, Mn,Fe, Co, Ni) Oxide Nanocrystals via a Simple and General Approach,” Chem. Mater. 16 (2004) 3931–3935.
[45] L. H. Wang, X. Z. Zhang, S. Q. Zhao, G. Y. Zhou, Y. L. Zhou and J. J. Qi, “Synthesis of Well-Aligned ZnO Nanowires by Simple Physical Vapor Deposition on C-Oriented ZnO Thin Films Without Catalysts or Additives,” Appl. Phys. Lett. 86 (2005) 024108 1–3.
[46] Y. C. Kong, D. P. Yu, B. Zhang, W. Fang and S. Q. Feng, “Ultraviolet-Emitting ZnO Nanowires Synthesized by a Physical Vapor Deposition Approach,” Appl. Phys. Lett. 78 (2001) 407–409.
[47] C. H. Hsiao, S. J. Chang, S. B. Wang, S. P. Chang, T. C. Li, W. J. Lin, C. H. Ko, T.M. Kuan and B. R. Huang, “ZnSe Nanowire Photodetector Prepared on Oxidized Silicon Substrate by Molecular-Beam Epitaxy,” J. Electrochem. Soc. 156 (2009) J73–J76.
[48] J. Thangala, S. Vaddiraju, S. Malhotra, V. Chakrapani and M. K. Sunkara, “A Hot-Wire Chemical Vapor Deposition (HWCVD) Method for Metal Oxide and Their Alloy Nanowire Arrays,” Thin Solid Films 517 (2009) 3600–3605.
[49] J. B. Baxtera and E. S. Aydil, “Metallorganic Chemical Vapor Deposition of ZnO Nanowires from Zinc Acetylacetonate and Oxygen,” J. Electrochem. Soc. 156 (2009) H52–H58.
[50] J. Lao, J. Huang, D. Wang and Z. Ren, “Self-Assembled In2O3 Nanocrystal Chains and Nanowire Networks,” Adv. Mater. 16 (2004) 65–69.
[51] E. Zhang, Y. Tang, Y. Zhang and C. Guo, “Synthesis and Photoluminescence Property of Silicon Carbon Nanowires Synthesized by the Thermal Evaporation Method,” Physica E 41 (2009) 655–659.
[52] M. X. Qiu, Z. Z. Ye, J. G. Lu, H. P. He, J. Y. Huang, L. P. Zhu and B. H. Zhao, “Growth and Properties of ZnO Nanorod and Nanonails by Thermal Evaporation,” Appl. Surf. Sci. 252 (2009) 3972–3976.
[53] H. B. Xu, H. Z. Chen, W. J. Xu and M. Wang, “Fabrication of Organic Copper Phthalocyanine Nanowire Arrays via a Simple AAO Template-Based Electrophoretic Deposition,” Chem. Phys. Lett. 412 (2005) 294–298.
[54] J. C. Hulteen and C. R. Martin, “A General Template-Based Method for the Preparation of Nanomaterials,” J. Mater. Chem. 7 (1997) 1075–1087.
[55] H. J. Fan, W. Lee, R. Hauschild, M. Alexe, G. L. Rhun, R. Scholz, A. Dadgar, K. Nielsch, H. Kalt, A. Krost, M. Zacharias and U. Gösele, “Template-Assisted Large-Scale Ordered Arrays of ZnO Pillars for Optical and Piezoelectric Applications,” Small 2 (2006) 561–568.
[56] J. Zhao, Z. G. Jin, T. Li and X. X. Liu, “Nucleation and Growth of ZnO Nanorods on the ZnO-Coated Seed Surface by Solution Chemical Method,” J. Eur. Ceram. Soc. 26 (2006) 2769–2775.
[57] A. Y. Zhang, Q. Ma, M. K. Lu, G. W. Yu, Y. Y. Zhou and Z. F. Qiu, “Copper-Indium Sulfide Hollow Nanospheres Synthesized by a Facile Solution-Chemical Method,” Cryst. Growth Des. 8 (2008) 2402–2405.
[58] X. Jiang, T. Herricks and Y. Xia, “CuO Nanowires Can Be Synthesized by Heating Copper Substrates in Air,” Nano Lett. 2 (2002) 1333–1338.
[59] C. H. Xu, C. H. Woo and S. Q. Shi, “Formation of CuO Nanowires on Cu Foil,” Chem. Phys. Lett. 399 (2004) 62–66.
[60] K. Zhang, C. Rossi, P. Alphonse and C. Tenailleau, “Synthesis of NiO Nanowalls by Thermal Treatment of Ni Film Deposited onto a Stainless Steel Substrate,” Nanotechnology 19 (2008) 155605.
[61] Z. Qiao, D. Xu, F. Nie, G. Yang and K. Zhang, “Controlled Facile Synthesis, Growth Mechanism, and Exothermic Properties of Large-Area Co3O4 Nanowalls and Nanowires on Silicon Substrates,” Journal of Applied Physics 112 (2012) 014310.
[62] D. H. Ha, L. M. Moreau, S. Honrao, R. G. Hennig and R. D. Robinson, “The Oxidation of Cobalt Nanoparticles into Kirkendall-Hollowed CoO and Co3O4: The Diffusion Mechanisms and Atomic Structural Transformations,” J. Phys. Chem. C. 117 (2013) 14303−14312.
[63] C. Florica, N. Preda, A. Costas, I. Zgura and I. Enculescu, “ZnO Nanowires Grown Directly on Zinc Foils by Thermal Oxidation in Air: Wetting and Water Adhesion Properties,” Materials Letters 170 (2016) 156–159.
[64] C. X. Zhao, Y. F. Li, J. Zhou, L. Y. Li, S. Z. Deng, N. S. Xu and J. Chen, “Large-Scale Synthesis of Bicrystalline ZnO Nanowire Arrays by Thermal Oxidation of Zinc Film: Growth Mechanism and High-Performance Field Emission,” Cryst. Growth Des. 13 (2013) 2897–2905.
[65] S. Xie, Y. Zhao and Y. Jiang, “Laser-Induced Hydrophobicity on Single Crystal Zinc Oxide Surface,” Applied Surface Science 263 (2012) 405–409.
[66] J. Zhang, Y. Liu, Z. Wei and J. Zhang, “Mechanism for Wettability Alteration of ZnO Nanorod Arrays via Thermal Annealing in Vacuum and Air,” Applied Surface Science 265 (2013) 363–368.
[67] X. Q. Meng, D. X. Zhao, J. Y. Zhang, D. Z. Shen, Y. M. Lu, L. Dong, Z. Y. Xiao, Y. C. Liu and X.W. Fan, “Wettability Conversion on ZnO Nanowire Arrays Surface Modified by Oxygen Plasma Treatment and Annealing,” Chemical Physics Letters 413 (2005) 450–453.
[68] Y. Kobayashi and S. Adachi, “Properties of Si Nanowires Synthesized by Galvanic Cell Reaction,” Japanese Journal of Applied Physics 49 (2010) 075002.
[69] M. L. Zhang, K. Q. Peng, X. Fan, J. S. Jie, R. Q. Zhang, S. T. Lee and N. B. Wong, “Preparation of Large-Area Uniform Silicon Nanowires Arrays through Metal-Assisted Chemical Etching,” J. Phys. Chem. C 112 (2008) 4444–4450.
[70] L. Lin, S. Guo, X. Sun, J. Feng and Y. Wang, “Synthesis and Photoluminescence Properties of Porous Silicon Nanowire Arrays,” Nano. Res. Lett. 5 (2010) 1822–1828.
[71] B. Ozdemir, M. Kulakci, R. Turan and H. E. Unalan, “Effect of Electroless Etching Parameters on the Growth and Reflection Properties of Silicin Nanowires,” Nanotechnology 22(2011) 155606.
[72] J. S. Rowlinson and B. Widom, “Molecular Theory of Capillarity,” Oxford. 66 (1982) 816.
[73] R. N. Wenzel, “Resistance of Solid Surfaces to Wettingby Water,” Industrial & Engineering Chemistry 28 (1936) 988.
[74] A. B. D. Cassie, S. Baxter, “Wettability of Porous Surfaces,” Trans. Faraday Soc. 40 (1944) 546.
[75] P. W. Chi, C. W. Su, B. H. Jhuo and D. H. Wei, “Photoirradiation Caused Controllable Wettability Switching of Sputtered Highly Aligned c-Axis-Oriented Zinc Oxide Columnar Films,” International Journal of Photoenergy 2014 (2014) 765209.
[76] J. Y. Zheng, S. H. Bao, Y. Guo and P. Jin, “Natural Hydrophobicity and Reversible Wettability Conversion of Flat Anatase TiO2 Thin Film,” ACS Appl. Mater. Interfaces 6 (2014) 1351–1355.
[77] B. J. Li, L. J. Huang, M. Zhu and N. F. Ren, “Reversible Wettability Control of ZnO Thin Films Synthesized by Hydrothermal Precess on Different Buffer Layers,” Materials Letters 110 (2013) 160–163.
[78] B. Y. Zhang, S. X. Lu, W. G. Xu and Y. Y. Cheng, “Controllable Wettability and Morphology of Electrodeposited Surfaces on Zinc Substrates,” Applied Surface Science 360 (2016) 904–914.
[79] J. Yang, Z. Z. Zhang, X. H. Men, X. H. Xu and X. T. Zhu, “Reversible Superhydrophobicity to Superhydrophilicity Switching of a Carbon Nanotube Film via Alternation of UV Irradiation and Dark Storage,” Langmuir 26 (2010) 10198–10202.
[80] J. Y. Long, M. L. Zhong, P. X. Fan, D. W. Gong and H. J. Zhang, “Wettability Conversion of Ultrafast Structured Copper Surface,” Journal of Laser Applications 27 (2015) S29107.
[81] J. Y. Long, M. L. Zhong, H. J. Zhang, P. X. Fan, “Superhydrophilicity to Superhydrophobicity Transition of Picosecond Laser Microstructured Aluminum in Ambient Air,” Journal of Colloid and Interface Science 441 (2015) 1–9.
[82] B. Yan, J. Tao, C. Pang, Z. Zheng, Z. Shen, C. H. A. Huan and T. Yu, “Reversible UV-Light-Induced Ultrahydrophobic-to-Ultrahydrophilic Transition in an α-Fe2O3 Nanoflakes Film,” Langmuir 24 (2008) 10569–10571.
[83] H. Luo, J. Ma, P. Wang, J. Bai and G. Jing, “Two-Step Wetting Transition on ZnO Nanorod Arrays,” Applied Surface Science 347 (2015) 867–874.
[84] Y. S. Liu, W. W. Chen, S. H. Wei and W. Gao, “TiO2/ZnO Nanocomposite, ZnO/ZnO Bi-Level Nanostructure and ZnO Nanorod Arrays: Microstructure and Time-Affected Wettability Change in Ambient Conditions,” RSC Adv. 4 (2014) 30658–30065.
[85] S. J. Xie, Y. Zhao and Y. J. Jiang, “Laser-Induced Hydrophobicity on Single Crystal Zinc Oxide Surface,” Applied Surface Science 263 (2012) 405–409.
[86] S. L. Cheng, J. H. Syu, S. Y. Liao, C. F. Lin and P. Y. Yeh, “Growth Kinetics and Wettability Conversion of Vertically-Aligned ZnO Nanowires Synthesized by a Hydrothermal Method,” RSC Adv. 5 (2015) 67752–67758.
[87] 潘純華,張衛红,陳芬等,ATR紅外光譜法在高分子材料表面成份分析上的應用,廣州化工,28 期,2000 年。
[88] 江艷,沈怡,武培怡,ATR-FTIR光譜技術在聚合物膜研究中的應用,化學進展,19 期,2007 年。
[89] 吳瑾光,近代傅立葉變換紅外光譜技術及應用,第一版,北京,科學技術文獻出版社,1994年。
[90] 薛奇,高分子結構研究中的光譜方法,北京,高等教育出版社,1995年。
[91] 曾泳淮,林樹昌,分析化學(儀器分析部分),第二版,北京,高等教育出版社,2004年。
指導教授 鄭紹良(Shao-Liang Cheng) 審核日期 2016-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明