博碩士論文 103324062 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:36 、訪客IP:18.226.248.14
姓名 賴榕樺(Rong-Hua Lai)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 在氮氣離子佈植非晶矽基材上製備鎳金屬點陣列及其界面反應之研究
相關論文
★ 規則氧化鋁模板及鎳金屬奈米線陣列製備之研究★ 電化學沉積法製備ZnO:Al奈米柱陣列結構及其性質研究
★ 溼式蝕刻製程製備矽單晶奈米結構陣列及其性質研究★ 氣體電漿表面改質及濕式化學蝕刻法結合微奈米球微影術製備位置、尺寸可調控矽晶二維奈米結構陣列之研究
★ 陽極氧化鋁模板法製備一維金屬與金屬氧化物奈米結構陣列及其性質研究★ 水熱法製備ZnO, AZO 奈米線陣列成長動力學以及性質研究
★ 新穎太陽能電池基板表面粗糙化結構之研究★ 規則準直排列純鎳金屬矽化物奈米線、奈米管及異質結構陣列之製備與性質研究
★ 鈷金屬與鈷金屬氧化物奈米結構製備及其性質研究★ 單晶矽碗狀結構及水熱法製備ZnO, AZO奈米線陣列成長動力學及其性質研究
★ 準直尖針狀矽晶及矽化物奈米線陣列之製備及其性質研究★ 奈米尺度鎳金屬點陣與非晶矽基材之界面反應研究
★ 在透明基材上製備抗反射陽極氧化鋁膜及利用陽極氧化鋁模板法製備雙晶銅奈米線之研究★ 準直矽化物奈米管陣列、超薄矽晶圓與矽單晶奈米線陣列轉附製程之研究
★ 尖針狀矽晶奈米線陣列及凖直鐵矽化物奈米結構之製備與性質研究★ 金屬氧化物奈米結構製備及其表面親疏水性質之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究首度探討規則排列之鎳金屬奈米點陣列與氮氣離子佈植非晶矽基材間不同熱處理條件下之界面反應。從掃描式電子顯微鏡影像觀察分析顯示,直到退火溫度至500℃時,其鎳金屬奈米點陣列尺寸隨著退火溫度升高而有逐漸增加的趨勢。此外,再升高熱處理溫度時,其鎳金屬奈米點形貌將從原本的三角形轉變成環狀結構。從穿透式電子顯微鏡及選區電子繞射圖譜分析顯示,在氮氣離子佈植非晶矽基材上製備之鎳金屬奈米點陣列退火至300-450℃時,其奈米尺寸鎳矽化物點陣生成低電阻相NiSi,當退火溫度升高至500℃甚至更高時,其生成相將完全轉換為高電阻相poly-NiSi2之奈米環。由平面式高解析穿透式電子顯微鏡影像及橫截面影像圖顯示,NiSi2奈米環內部已生成再結晶而外部區域仍為非晶矽型態。退火溫度至550℃時,氮氣離子佈植非晶矽層則完全形成再結晶,相對於一般未鍍製鎳金屬奈米點之氮氣離子佈植非晶矽基材須高於700℃下完全形成再結晶而言,顯示NiSi2奈米環有顯著地提升氮氣離子佈植非晶矽再結晶的溫度約提前200℃。此觀察結果可用鎳矽化物誘發非晶質矽再結晶的製程機制解釋。
摘要(英) We report here the first study on the interfacial reactions of two-dimensional (2D) periodic arrays of Ni nanodots on nitrogen ion-implanted amorphous silicon (N2+-a-Si) substrates at different heat treatments. It was found from SEM observations that the size of the nanodots increased gradually by increasing annealing temperature up to 500 ℃ . Furthermore, for the higher temperature annealed samples, many of the nanodots were found to transit from the original triangular shape to become ring-like in shape. From TEM and SAED analyses, low resistivity NiSi was identified to be the only silicide phase form in N2+-a-Si samples annealed at 300-450 ℃ . As the annealing temperature was increased to 500 ℃ or above, the phase of silicide nanorings was converted into NiSi2 and the structure of the NiSi2 nanorings was polycrystalline. The results of planview HRTEM and cross-section TEM analyses further reveal that the inner region of the NiSi2 nanoring on N2+-a-Si substrate has become crystallized while the outer region of the NiSi2 nanoring is still amorphous. Complete recrystallization of the a-Si layer of the Ni metal nanodots N2+-a-Si sample can be achieved at a temperature as low as 550 ℃, which is about 200 ℃ lower than the annealing temperature required for complete solid-phase recrystallization of the blank N2+-a-Si sample. In addition, the presence of NiSi2 nanodots was found to significantly enhance the recrystallization of N2+-a-Si layer. The observed result can be explained by the Ni-silicide induced crystallization process.
關鍵字(中) ★ 鎳矽化物
★ 氮氣離子佈植
關鍵字(英)
論文目次 摘要 I
Abstract II
致謝 III
第一章 簡介 1
1-1前言 1
1-2微影製程技術 2
1-2-1 光微影技術 2
1-2-2 掃描式探針微影術 3
1-2-3 X-ray微影術 3
1-2-4 電子束微影術 4
1-3奈米球微影術 4
1-3-1 奈米球自組裝技術 5
1-3-2 自然滴製法(Drop Coating) 5
1-3-3 旋轉塗佈法(Spin Coating) 5
1-3-4 液面自組裝轉附技術 6
1-4奈米球微影技術製備各式奈米結構 6
1-4-1 奈米球微影術結合金屬薄膜沉積技術 6
1-5金屬矽化物製程 7
1-5-1 金屬矽化物的應用及製程 7
1-5-2 鈦、鈷金屬矽化物 8
1-5-3 鎳金屬矽化物 10
1-6離子佈植技術 10
1-6-1 離子佈植之非晶化 11
1-6-2 不同佈植離子種類對矽化物生成反應之影響 11
1-6-3 金屬薄膜與非晶矽界面反應 12
1-7研究動機 13
第二章 實驗步驟及儀器分析 15
2-1 奈米球模板之製備 15
2-1-1 基材使用前處理 15
2-1-2 奈米球膠體溶液配置 16
2-1-3 自組裝奈米球陣列 16
2-2 大面積鎳金屬矽化物奈米點陣列之製備 17
2-2-1 金屬薄膜蒸鍍 17
2-2-2 奈米球舉離 17
2-2-3 熱退火處理 17
2-3 使用儀器及特性分析 18
2-3-1 掃描式電子顯微鏡 18
2-3-2 穿透式電子顯微鏡 18
第三章 結果與討論 19
3-1單層奈米球陣列模板之製備 19
3-1-1液面自組裝轉附技術 19
3-1-2鎳金屬奈米點陣列之製備 20
3-2 鎳矽化物奈米點陣列與氮氣離子佈植非晶矽界面反應 20
3-2-1 氮氣離子佈植非晶矽基材製備鎳矽化物點陣之形貌觀察21
3-2-2 鎳矽化物奈米點陣與氮氣離子佈植非晶矽基材之相鑑定分析 22
3-3-3 鎳矽化物相轉換與氮氣離子佈植非晶矽基材間晶體結構分析 25
3-3氮氣離子佈植非晶矽基材生成鎳矽化物奈米點陣之形貌變化及相轉換27
3-4 鎳金屬於氮氣離子佈植濃度1×1015dose/cm2非晶矽基材間界面反應 29
第四章 結論 31
參考文獻 33
表目錄 44
圖目錄 47
參考文獻 [1]R. P. Feynman, “There’s plenty of room at the bottom,” Miniaturization (HD Gilbert, ed.) Reinhold, New York (1961).
[2]G. Binnig, C. F. Quate, and C. Gerber, “Atomic force microscope,” Physical review letters, 56 (1986) 930-934.
[3]D. Rugar, and P. Hansma, “Atomic force microscopy,” Physics today, 43, (1990) 23-30.
[4]G. Binnig, and H. Rohrer, “Scanning tunneling microscopy,” Surface science, 126 (1983) 236-244.
[5]E. Betzig, and J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science, 257 (1992) 189-195.
[6]E. P. L. J. S. Betzig, P. L. Finn, and J. S. Weiner, “Combined shear force and near‐field scanning optical microscopy,” Applied physics letters, 60 (1992) 2484-2486.
[7]S. Ciraci, and I. P. Batra, “Theory of the quantum size effect in simple metals,” Physical Review B, 33 (1986) 4294.
[8]R. Koole, E. Groeneveld, D. Vanmaekelbergh, A. Meijerink, and C. de Mello Donegá, “Size Effects on Semiconductor Nanoparticles,” In Nanoparticles: Springer Berlin Heidelberg, (2014) 13-51.
[9]J. I. Shirakashi, “Scanning probe microscope lithography at the micro-and nano-scales,” Journal of nanoscience and nanotechnology, 10 (2010) 4486-4494.
[10]Y. Lin, B. Yu, Y. Zou, Z. Li, C. J. Alpert, and D. Z. Pan, “Stitch aware detailed placement for multiple e-beam lithography,” In IEEE/ACM International Conference on Computer-Aided Design, (2016) 186-191.
[11]V. Nazmov, E. Reznikova, J. Mohr, J. Schulz, and A. Voigt, “Development and characterization of ultra high aspect ratio microstructures made by ultra deep X-ray lithography,” Journal of Materials Processing Technology, 225 (2015) 170-177.
[12]H. W. Deckman, and J. H. Dunsmuir, “Natural lithography,” Applied Physics Letters, 41 (1982) 377-379.
[13]V. Lotito, and T. Zambelli, “Self-assembly and nanosphere lithography for large-area plasmonic patterns on graphene,” Journal of colloid and interface science, 447 (2015) 202-210.
[14]D. Lee, I. S. Shin, L. Jin, D. Kim, Y. Park, and E. Yoon, “Nanoheteroepitaxy of GaN on AlN/Si (111) nanorods fabricated by nanosphere lithography,” Journal of Crystal Growth, 444 (2016) 9-13.
[15]S. D. Oh, J. Kim, D. H. Lee, J. H. Kim, C. W. Jang, S. Kim, and S. H. Choi, “Structural and optical characteristics of graphene quantum dots size-controlled and well-aligned on a large scale by polystyrene-nanosphere lithography,” Journal of Physics D: Applied Physics, 49 (2015) 025308.
[16]P. Tiberto, G. Barrera, F. Celegato, G. Conta, M. Coïsson, F. Vinai, and F. Albertini, “Ni80Fe20 nanodisks by nanosphere lithography for biomedical applications,” Journal of Applied Physics, 117 (2015) 17B304.
[17]S. Krämer, R. R. Fuierer, and C. B. Gorman, “Scanning probe lithography using self-assembled monolayers,” Chemical Reviews, 103 (2003) 4367-4418.
[18]R. Garcia, A. W. Knoll, and E. Riedo, “Advanced scanning probe lithography,” Nature nanotechnology, 9 (2014) 577-587.
[19]C. F. Quate, “Scanning probes as a lithography tool for nanostructures,” Surface Science, 386 (1997) 259-264.
[20]K. Liu, P. Avouris, J. Bucchignano, R. Martel, S. Sun, and J. Michl, “Simple fabrication scheme for sub-10 nm electrode gaps using electron-beam lithography,” Applied Physics Letters, 80 (2002) 865-867.
[21]N. Denkov, O. Velev, P. Kralchevski, I. Ivanov, H. Yoshimura, and K. Nagayama, “Mechanism of formation of two-dimensional crystals from latex particles on substrates,” Langmuir, 8 (1992) 3183-3190.
[22]E. M. Hicks, X. Zhang, S. Zou, O. Lyandres, K. G. Spears, G. C. Schatz, and R. P. Van Duyne,“Plasmonic properties of film over nanowell surfaces fabricated by nanosphere lithography,” The Journal of Physical Chemistry B,109 (2005) 22351-22358.
[23]J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, “Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays,” The Journal of Physical Chemistry B, 103 (1999) 3854-3863.
[24]C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” The Journal of Physical Chemistry B, 105 (2001) 5599-5611.
[25]P. Jiang and M. J. McFarland, “Large-scale fabrication of wafer-size colloidal crystals, macroporous polymers and nanocomposites by spin-coating,” Journal of the American Chemical Society, 126 (2004) 13778-13786.
[26]A. F. Lubambo, N. Lucyszyn, C. L. Petzhold, P. C. de Camargo, M. R. Sierakowski, W. H. Schreiner, and C. K. Saul, “Self-assembled polystyrene/xyloglucan nanospheres from spin coating evaporating mixtures,” Carbohydrate polymers, 84 (2011) 126-132.
[27]J. C. ulteen, and R. P. Duyne, “Nanosphere lithography: a materials general fabrication process for periodic particle array surfaces,” Journal of Vacuum Science & Technology A, 13 (1995) 1553-1558.
[28]J. Chen, P., Di, D. Dong, C. Wang, H. Wang, J. Wang, and X. Wu, “Controllable fabrication of 2D colloidal-crystal films with polystyrene nanospheres of various diameters by spin-coating,” Applied Surface Science, 270 (2013) 6-15.
[29]E. Sirotkin, J. D. Apweiler, and F. Y. Ogrin, “Macroscopic ordering of polystyrene carboxylate-modified nanospheres self-assembled at the water− air interface,” Langmuir, 26 (2010) 10677-10683.
[30]J. Rybczynski, U. Ebels, and M. Giersig, “Large-scale, 2D arrays of magnetic nanoparticles,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 219 (2003) 1-6.
[31]H. Li, J. Low, K. S. Brown, and N. Wu, “Large-area well-ordered nanodot array pattern fabricated with self-assembled nanosphere template,” IEEE Sensors Journal, 8 (2008) 880-884.
[32]C. L. Haynes and R. P. Van Duyne, “Dichroic optical properties of extended nanostructures fabricated using angle-resolved nanosphere lithography,” Nano letters, 3 (2003) 939-943.
[33]G. H. Chan, J. Zhao, E. M. Hicks, G. C. Schatz, and R. P. Van Duyne, “Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography,” Nano letters, 7 (2007) 1947-1952.
[34]A. Kosiorek, W. Kandulski, H. Glaczynska, and M. Giersig, “Fabrication of nanoscale rings, dots, and rods by combining shadow nanosphere lithography and annealed polystyrene nanosphere masks,” Small, 1 (2005) 439-444.
[35]X. Zhang, E. M. Hicks, J. Zhao, G. C. Schatz, and R. P. Van Duyne, “Electrochemical tuning of silver nanoparticles fabricated by nanosphere lithography,” Nano letters, 5 (2005)1503-1507.
[36]M. C. Gwinner, E., Fu, L. Koroknay, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, “Periodic Large‐Area Metallic Split‐Ring Resonator Metamaterial Fabrication Based on Shadow Nanosphere Lithography,” Small, 5 (2009) 400-406.
[37]A. Kosiorek, W. Kandulski, P. Chudzinski, K. Kempa, and M. Giersig, “Shadow nanosphere lithography: simulation and experiment,” Nano letters, 4 (2004) 1359-1363.
[38]S. H. Lee, K. C. Bantz, N. C. Lindquist, S. H. Oh, and C. L. Haynes, “Self-assembled plasmonic nanohole arrays,” Langmuir, 25 (2009) 13685-13693.
[39]A. V. Whitney, B. D. Myers, and R. P. Van Duyne, “Sub-100 nm triangular nanopores fabricated with the reactive ion etching variant of nanosphere lithography and angle-resolved nanosphere lithography,” Nano letters, 4 (2004) 1507-1511.
[40]J. Ji, H. Zhang, Y. Qiu, L. Wang, Y. Wang, and L. Hu, “Fabrication and photoelectrochemical properties of ordered Si nanohole arrays,” Applied Surface Science, 292 (2014) 86-92.
[41]J. Wang, G. Duan, Y. Li, G. Liu, and W. Cai, “Wet etching-assisted colloidal lithography: a general strategy toward nanodisk and nanohole arrays on arbitrary substrates,” ACS applied materials and interfaces, 6 (2014) 9207-9213.
[42]X. D. Wang, E. Graugnard, J. S. King, Z. L. Wang, and C. J. Summers, “Large-scale fabrication of ordered nanobowl arrays,” Nano letters, 4 (2004) 2223-2226.
[43]X. Wang, C. Lao, E. Graugnard, C. J. Summers, and Z. L. Wang, “Large-size liftable inverted-nanobowl sheets as reusable masks for nanolithiography,” Nano letters, 5 (2005) 1784-1788.
[44]T. Morimoto, T. Ohguro, S. Momose, T. Iinuma, I. Kunishima, K. Suguro, and Y. Katsumata, “Self-aligned nickel-mono-silicide technology for high-speed deep submicrometer logic CMOS ULSI,” IEEE Transactions on Electron Devices, 42 (1995) 915-922.
[45]S. J. Wang, G. R. Misium, J. C. Camp, K. L. Chen, and H. L. Tigelaar, “High-performance metal/silicide antifuse (for CMOS technology),” IEEE electron device letters, 13 (1992) 471-472.
[46]M. Y. Tsai, H. H. Chao, L. M. Ephrath, B. L. Crowder, A. Cramer, R. S. Bennett, and M. R. Wordeman, “One‐Micron Polycide (WSi2 on Poly‐Si) MOSFET Technology,” Journal of The Electrochemical Society, 128 (1981) 2207-2214.
[47]V. Probst, H. Schaber, A. Mitwalsky, H. Kabza, and K. Maex, “WSi2 and CoSi2 as diffusion sources for shallow‐junction formation in silicon,” Journal of applied physics, 70 (1991) 708-719.
[48]Y. Mizutani, S. Taguchi, M. Nakahara, and H. Tango, “Hot carrier instability in submicron MoSi2 gate MOS/SOS devices,” In Electron Devices Meeting, 1981 International IEEE, 27 (1981) 550-553.
[49]R. W. Mann and L. A. Clevenger, “The C49 to C54 phase transformation in TiSi2 thin films,” Journal of The Electrochemical Society, 141 (1994) 1347-1350.
[50]C. Cabral Jr, L. A. Clevenger, J. M. E. Harper, F. M. d’Heurle, R. A. Roy, C. Lavoie, and J. S Nakos, “Low temperature formation of C54–TiSi2 using titanium alloys,” Applied physics letters, 71 (1997) 3531-3533.
[51]E. G. Colgan, L. A. Clevenger, and C. Cabral Jr, “Activation energy for C94 and C54 TiSi2 formation measured during rapid thermal annealing,” Applied physics letters, 65 (1994) 2009-2011.
[52]T. Ohguro, M. Saito, E. Morifuji, T. Yoshitomi, T. Morimoto, H. S. Momose, and H.Iwai, “Thermal stability of CoSi2 film for CMOS silicide,” IEEE Transactions on Electron Devices, 47 (2000) 2208-2213.
[53]E. K. Broadbent, R. F. Irani, A. E. Morgan, and P. Maillot, “Application of self-aligned CoSi2 interconnection in submicrometer CMOS transistors,” IEEE Transactions on Electron Devices, 36 (1989) 2440-2446.
[54]A. Kalnitsky, I. Saadat, A Bergemont, and P. Francis, “CoSi/sub 2/integrated fuses on poly silicon for low voltage 0.18/spl mu/m CMOS applications,” IEEE Transactions on Electron Devices, (1999) 765-768.
[55]P. Ranade, T. Ghani, K. Kuhn, K. Mistry, S. Pae, L. Shifren, amd M. Bohr, “High performance 35nm L/sub GATE/CMOS transistors featuring NiSi metal gate (FUSI), uniaxial strained silicon channels and 1.2 nm gate oxide,” IEEE Transactions on Electron Devices, (2005) 4-220.
[56]T. Morimoto, T. Ohguro, S. Momose, T. Iinuma, I. Kunishima, K. Suguro, and Y. Katsumata, “Self-aligned nickel-mono-silicide technology for high-speed deep submicrometer logic CMOS ULSI,” IEEE Transactions on Electron Devices, 42 (1995) 915-922.
[57]M. A. Pawlak, J. A. Kittl, O. Chamirian, A. Veloso, A. Lauwers, T. Schram, and A. Vantomme, “Investigation of Ni fully silicided gates for sub-45 nm CMOS technologies,” Microelectronic engineering, 76 (2004) 349-353.
[58]H. Iwai, T. Ohguro, and S. I. Ohmi, “NiSi salicide technology for scaled CMOS,” Microelectronic Engineering, 60 (2002) 157-169.
[59]M. E. Alperin, T. C. Hollaway, R. A. Haken, C. D. Gosmeyer, R. V. Karnaugh, and W. D. Parmantie, “Development of the self-aligned titanium silicide process for VLSI applications,” IEEE Journal of Solid-State Circuits, 20 (1985) 61-69.
[60]R. Beyers and R. Sinclair, “Metastable phase formation in titanium‐silicon thin films,” Journal of applied physics, 57 (1985) 5240-5245.
[61]T. Ohguro, S. I. Nakamura, M. Koike, T. Morimoto, A. Nishiyama, Y. Ushiku, and H. Iwai, “Analysis of resistance behavior in Ti-and Ni-salicided polysilicon films,” IEEE Transactions on Electron Devices, 41 (1994) 2305-2317.
[62]J. F. DiGregorio and R. N. Wall, “Small area versus narrow line width effects on the C49 to C54 transformation of TiSi2,” IEEE Transactions on Electron Devices, 47 (2000) 313-317.
[63]C. D. Lien, M. Finetti, M. A. Nicolet, and S. S. Lau, “Electrical properties of thin Co2Si, CoSi, and CoSi2 layers grown on evaporated silicon,” Journal of Electronic Materials, 13 (1984) 95-105.
[64]K. Inoue, K. Mikagi, H. Abiko, and T. Kikkawa, “A new cobalt salicide technology for 0.15 μm CMOS using high-temperature sputtering and in-situ vacuum annealing,” IEEE, (1995) 445-448..
[65]K. Goto, I. Fushida, J. Watanabe, T. Sukegawa, K. Kawamura, T. Yamazaki, and T. Sugii, “Leakage mechanism and optimized conditioms of Co salicide process for deep-submicron CMOS devices,” IEEE (1995) 449-452.
[66]J. B. Lasky, J. S. Nakos, O. J. Cain, and P. J. Geiss, “Comparison of transformation to low-resistivity phase and agglomeration of TiSi2 and CoSi2,” IEEE Transactions on Electron Devices, 38 (1991) 262-269.
[67]M. Tsuchiaki, C. Hongo, A. Takashima, and K. Ohuchi, “Intrinsic junction leakage generated by cobalt in-diffusion during CoSi2 formation,” Japanese journal of applied physics, 41 (2002) 2437.
[68]F. d’Heurle, C. S. Petersson, J. E. E. Baglin, S. J. La Placa, and C. Y. Wong, “Formation of thin films of NiSi: Metastable structure, diffusion mechanisms in intermetallic compounds,” Journal of applied physics, 55 (1984) 4208-4218.
[69]L. Knoll, Q. T. Zhao, S. Habicht, C. Urban, B. Ghyselen, and S. Mantl, “Ultrathin Ni silicides with low contact resistance on strained and unstrained silicon,” IEEE Electron Device Letters, 31 (2010) 350-352.
[70]D. Deduytsche, C. Detavernier, R. L. Van Meirhaeghe, and C. Lavoie, “High-temperature degradation of NiSi films: Agglomeration versus NiSi2 nucleation,” Journal of applied physics, 98 (2005) 033526.
[71]J. Park, H. B. Kang, G. R. Kim, and M. Kim, “Phase transformation of programmed NiSi electrical fuse: Diffusion, agglomeration and thermal stability,” IEEE (2011) 1-7.
[72]S. Prussin, D. I. Margolese, and R. N. Tauber, “Formation of amorphous layers by ion implantation,” Journal of applied physics, 57 (1985) 180-185.
[73]J. Luo, Z. J. Qiu, J. Deng, C. Zhao, J. Li, W. Wang, and S. L. Zhang, “Effects of carbon pre-silicidation implant into Si substrate on NiSi,” Microelectronic Engineering, 120 (2014) 178-181.
[74]S. L. Cheng, L. J. Chen, and B. Y. Tsui, “Low-resistivity TiSi2 contacts on nitrogen implanted ultra-shallow junctions,” Materials chemistry and physics, 50 (1997)172-175.
[75]K. M. Chen, S. L. Cheng, L. J. Chen, and B. Y. Tsui, “Effects of N+ implantation on CoSi2 contacts on shallow junctions,” Materials chemistry and physics, 54 (1998) 71-75.
[76]L. W. Cheng, S. L. Cheng, J. Y. Chen, L. J. Chen, and B. Y. Tsui, “Effects of nitrogen ion implantation on the formation of nickel silicide contacts on shallow junctions,” Thin Solid Films, 355 (1999) 412-416.
[77]R. S. Wagner and W. C. Ellis, “Vapor‐liquid‐solid mechanism of single crystal growth,” Applied Physics Letters, 4 (1964) 89-90.
[78]S. F. Chen, Y. K. Fang, W. D. Wang, C. Y. Lin, and C. S. Lin, “Low temperature grown poly-SiGe thin film by Au metal-induced lateral crystallisation (MILC) with fast MILC growth rate,” Electronics Letters, 39 (2003) 1612-1614.
[79]S. F. Gong, H. T. G. Hentzell, A. E. Robertsson, L. Hultman, S. E. Hörnström, and G. Radnoczi, “Al‐doped and Sb‐doped polycrystalline silicon obtained by means of metal‐induced crystallization,” Journal of applied physics,62 (1987) 3726-3732.
[80]M. Miyasaka, K. Makihira, T. Asano, E. Polychroniadis, and J. Stoemenos, “In situ observation of nickel metal-induced lateral crystallization of amorphous silicon thin films,” Applied physics letters, 80 (2002) 944-946.
[81]S. Y. Yoon, K. H. Kim, C. O. Kim, J. Y. Oh, and J. Jang, “Low temperature metal induced crystallization of amorphous silicon using a Ni solution,” Journal of applied physics, 82 (1997) 5865-5867.
[82]Z. Jin, G. A. Bhat, M. Yeung, H. S. Kwok, and M. Wong, “Nickel induced crystallization of amorphous silicon thin films, “Journal of Applied Physics, 84 (1998) 194-200.
[83]Z. Jin, K. Moulding, H. S. Kwok, and M. Wong, “The effects of extended heat treatment on Ni induced lateral crystallization of amorphous silicon thin films,” IEEE Transactions on electron devices, 46 (1999) 78-82.
[84]S. W. Lee, Y. C. Jeon, and S. K. Joo, “Pd induced lateral crystallization of amorphous Si thin films,” Applied Physics Letters, 66 (1995) 1671-1673.
[85]Y. S. Kim, M. S. Kim, and S. K. Joo, “Effect of adjacent metal and dopant on Pd-metal induced lateral crystallization,” Journal of The Electrochemical Society, 153 (2006) H19-H22.
[86]B. Mohadjeri, J. Linnros, B. G. Svensson, and M. Östling, “Nickel-enhanced solid-phase epitaxial regrowth of amorphous silicon,” Physical review letters, 68 (1992) 1872.
[87]Z. Jin, G. A. Bhat, M. Yeung, H. S. Kwok, and M. Wong, “Nickel induced crystallization of amorphous silicon thin films,” Journal of Applied Physics, 84 (1998) 194-200.
[88]C. Hayzelden and J. L. Batstone, “Silicide formation and silicide‐mediated crystallization of nickel‐implanted amorphous silicon thin films,” Journal of Applied Physics, 73 (1993) 8279-8289.
[89]C. Hayzelden, J. L. Batstone, and R. C. Cammarata, “In situ transmission electron microscopy studies of silicide‐mediated crystallization of amorphous silicon,” Applied physics letters, 60 (1992) 225-227.
[90]G. Drozdy, H. Ronkainen, and I. Suni, “Formation of CoSi2 on amorphous silicon by RTA,” Applied Surface Science, 38 (1989) 72-79.
[91]S. L. Cheng, S. W. Lu, S. L. Wong, and H. Chen, “Growth of size-tunable periodic Ni silicide nanodot arrays on silicon substrates,” Applied Surface Science, 253 (2006) 2071-2077.
[92]S. L. Cheng, S. W. Lu, and H. Chen, “Interfacial reactions of 2-D periodic arrays of Ni metal dots on (001) Si,” Journal of Physics and Chemistry of Solids, 69 (2008) 620-624.
[93]J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. G. De Abajo, “Optical properties of gold nanorings,” Physical Review Letters, 90 (2003) 057401.
[94]C. Y. Tsai, S. P. Lu, J. W. Lin, and P. T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Applied physics letters,98 (2011) 153108.
[95]T. Raz, D. Ritter, and G. Bahir, “Formation of InAs self-assembled quantum rings on InP,” Applied physics letters, 82 (2003) 1706-1708.
[96]C. Hayzelden and J. L. Batstone, “Silicide formation and silicide‐mediated crystallization of nickel‐implanted amorphous silicon thin films,” Journal of Applied Physics, 73 (1993) 8279-8289.
[97]C. F. Cheng, V. M. Poon, C. W. Kok, and M. Chan, “Modeling of grain growth mechanism by nickel silicide reactive grain boundary effect in metal-induced-lateral-crystallization,” IEEE Transactions on Electron Devices, 50 (2003) 1467-1474.
指導教授 鄭紹良(Shao-Liang Cheng) 審核日期 2016-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明