博碩士論文 103324066 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:18.190.156.80
姓名 曾鼎皓(Ding-Hao Tseng)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 雙金屬有機骨架結構混合基質膜合成及芳香烴吸附第一原理計算
(Synthesis of Co-Filler Metal-Organic Framework Mixed-Matrix Membranes and First Principles Calculation of Aromatic Hydrocarbon Adsorption)
相關論文
★ 利用固相反應法與電鍍法製備鈣鈦礦太陽能電池之研究★ 設計以雙噻吩併環戊二烯為核心的電洞傳輸材料並製備高效率穩定鈣鈦礦太陽能電池
★ 反溶劑處理對於製備大面積鈣鈦礦太陽能電池影響★ 二氧化鈦奈米粒徑尺寸對介觀結構鈣鈦礦太陽能電池光伏特性之影響
★ 塗佈溫度與混合溶劑比例對於刮刀塗佈製備鈣鈦礦層影響及鈣鈦礦太陽能電池性能表現探討★ 熱處理效應對於混合陽離子鈣鈦礦太陽能電池之光電性質及電池穩定性影響
★ 蔗糖水熱碳化法及後續活化製備活性碳以及活性碳對空氣過濾的應用★ 製膜溶劑對於混合基質膜中金屬有機框架結構沉澱影響與其氣體滲透特性之探討
★ 金屬有機骨架材料與活性碳共填充之混和基材膜性質探討★ 蒸氣相成長金屬有機框架材料合成
★ 外表面積和靜電相互作用機理對MOFs染料吸附的重要性★ 第一原理計算對於氮摻石墨烯在氧氣還原反應與拉曼增強的探討
★ 金屬有機框架結構晶體形貌與缺陷對於混合基材薄膜特性與氣體滲透之探討★ 鋯金屬有機框架結構之二氧化碳吸附性質探討
★ 金屬有機框架結構晶體形貌與缺陷對於混合基材薄膜特性與氣體滲透之探討★ 鋯金屬有機框架結構與石墨烯薄膜之氣體輸送 機制模擬探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 金屬有機框架結構(MOFs)是一種新型的微孔結晶材料,在工業製程中具有廣泛的應用,例如氣體捕捉、氣體儲存、催化和氣體分離等等。MIL-53系列和UiO-66系列也是具有類似性能的多孔性材料,包括在水中的結構穩定性、靈活的孔洞結構和對特定氣體出色的分離性,也因其優異的性能使MIL-53系列和UiO-66受到各界的關注。
另一方面,電腦模擬計算是幫助我們分析MOFs細部結構的好工具。密度泛函理論(DFT)是一種第一原理的計算,此常見的方法是運用量子力學來模擬週期性系統。第一原理計算基於量子力學,並且在沒有任何假設的情況下執行。蒙特卡羅(Monte Carlo, MC)模擬,另一種模擬的方法,利用隨機抽樣進而找到數值結果,並通過數據統計計算出熱力學中分子的狀態和位置分佈。
在本研究,我們探討MIL-53(Al)和UiO-66(Zr)這兩種類的MOFs,透過製成薄膜來觀察MIL-53(Al)的孔洞結構性能,而透過電腦模擬來觀察UiO-66(Zr)的結構特性。
在實驗部份,我們合成出PSF高分子基底的混合基質膜(mixed-matrix membranes, MMMs)。以雙填料的方式將MIL-53(Al)和NH2-MIL-53(Al)兩種填料,依據不同的比例混到混合基質膜中。並通過X射線繞射、SEM圖像、FTIR分析和DSC分析來鑑定薄膜內部的相互作用。結果驗證,兩添加的填料皆能保持原本的特性,且沒有團聚現象的發生,並能有效與高分子薄膜結合。
在模擬部分,DFT原理透過允許晶包內所有原子與晶格間距能適度的移動、調整,使系統總能量趨近最小值,進而達到幾何結構優化的效果。計算的系統包括淨空的UiO-66(Zr),間二甲苯和對二甲苯兩個吸附分子。在用DFT幾何結構優化之後,此UiO-66(Zr)結構透過MC計算,找到間二甲苯和對二甲苯吸附物,各別在UiO-66(Zr)中最有可能吸附的位置。最後,在找到吸附位置,再次利用DFT原理計算出UiO-66(Zr)吸附間二甲苯與UiO-66(Zr)吸附對二甲苯所需要的吸附能。結果我們發現UiO-66(Zr)吸收間二甲苯的吸附熱為60.9kJ / mol,而吸收對二甲苯分子的吸附熱為58.8kJ / mol。與小分子尺寸的粒子相比較(CO2、CH4)反而有較高的吸附能,驗證了1,4-苯二甲酸酯(BDC)有機鍵結與二甲苯的苯環之間具有良好的相互作用。
摘要(英) Metal–organic frameworks (MOFs), a relatively new class of microporous crystalline materials, have a very large number of applications in industry, such as gas capture, gas storage, catalysis, and selective separation, etc. Both MIL-53 series and UiO-66 series are also such porous materials with similar properties, which have gained a lot of attention due to useful properties including structural stability in water, flexible pore openings, and outstanding selectivity for specific gases.
On the other hand, computer simulations are good tools to help us understand details of MOF structure. Density functional theory (DFT), one kind of first principles simulations, is a common way to implement quantum mechanical simulation of periodic systems. First principles calculations are based on quantum mechanics and are performed without any assumptions. Monte Carlo (MC) simulation, another simulation method using random sampling to find numerical results, calculates molecule state and distribution of the location in thermodynamics by statistics.
In this work, we investigated these two classes of MOFs, MIL-53(Al) and UiO-66(Zr), by using membranes synthesis to observe the structural performance of MIL-53(Al) and computer simulation to observe the structural performance of UiO-66(Zr).
Experimentally, we demonstrated PSF polymer-based Mixed-Matrix Membranes. The MIL-53(Al) series, ML-53(Al) and NH2-MIL-53(Al), were added to the MMMs as a co-filler, containing different loading ratio. The membranes were characterized by X-ray diffraction, SEM images, FTIR analyses and DSC analyses to investigate the interactions inside membranes. The results show that the two added fillers can maintain the original characteristics without any agglomeration phenomena, and can effectively combine with the polymer film.
The section of simulation, DFT was used to minimize the total energy of the system by allowing all the atoms and lattices in the cell to relax, thereby optimizing the geometry. The systems calculated include the empty UiO-66(Zr), m- xylene, and p-xylene molecule. After optimizing the geometry with DFT, the structure was used to find the most likely location of adsorbate in UiO-66(Zr) by MC calculation. Finally, the UiO-66(Zr) uptaking m-xylene molecule and UiO-66(Zr) uptaking p-xylene molecule were studied again using DFT after finding the location to calculate the heat of adsorption. The results showed the heat of adsorption is 53.68 kJ/mol for UiO-66(Zr) uptaking m- xylene, and 60.16 kJ/mol for UiO-66(Zr) uptaking p-xylene molecule, respectively. Compared to the molecule with a small diameter(CO2, CH4), m-xylene and p-xylene have a higher adsorption energy, which confirms the good interaction between the 1,4-benzenedicarboxylate (BDC) linkers and benzene ring of xylene.
關鍵字(中) ★ 雙複合填料
★ PSF高分子基底膜
★ 混合基質膜
★ 薄膜塗佈製成
★ 第一原理計算
★ NVT 蒙地卡羅模擬
★ 芳香烴吸附
★ 吸附熱
關鍵字(英) ★ co-fillers
★ PSF-based membrane
★ Mixed-Matrix Membranes (MMMs)
★ membrane coating
★ first principles calculation
★ NVT Monte Carlo
★ Aromatic hydrocarbon adsorption
★ heat of adsorption
論文目次 摘要 i
Abstract iii
Acknowledgement v
Table of Contents vi
List of Figures viii
List of Tables xii
Chapter 1 Overview 1
1.1 Introduction 1
1.2 Literature Review of Mixed Matrix Membranes (MMMs) 2
1.3 Literature Review of Related Simulation Work 7
1.4 Motivation 11
1.4.1 Experimental 11
1.4.2 Simulation calculation 12
Chapter 2 Material, Equipment & Theory 13
2.1 Chemicals Used 13
2.2 Equipment Used 13
2.3 Material Characterizations 14
2.4 Simulation 17
2.4.1 Visualizer Software 17
2.4.2 Density Functional Theory (DFT) 18
2.4.3 Monte Carlo (MC) Method 22
Chapter 3 Experimental Details 28
3.1 Experimental Procedures 28
3.1.1 MIL-53(Al) Synthesis 28
3.1.2 NH2-MIL-53(Al) Synthesis 28
3.1.3 Preparation of Mixed Matrix Membranes (MMMs) 29
3.2 Simulation Methods 32
3.2.1 DFT Computational Details 34
3.2.2 Monte Carlo (MC) Computational Details 35
Chapter 4 Results and Discussion 36
4.1 Experimental 36
4.1.1 Properties of Crystal (Fillers) 36
4.1.2 Membranes Characterization 39
4.1.3 Morphology and Distribute 43
4.1.4 Chemical Properties of Polymer and Co-fillers in Membrane 52
4.2 Simulation 56
4.2.1 DFT Results 57
4.2.2 NVT-MC Results 61
4.2.3 Enthalpy Change 64
Chapter 5 Conclusions & Future Work 66
5.1 Experiment 66
5.2 Simulation 67
References 68

參考文獻 1. Czaja, A.U., N. Trukhan, and U. Muller, Industrial Applications of Metal-Organic Frameworks. Chemical Society Reviews, 2009. 38(5): p. 1284-1293.
2. Long, J.R. and O.M. Yaghi, The Pervasive Chemistry of Metal-Organic Frameworks. Chemical Society Reviews, 2009. 38(5): p. 1213-1214.
3. Janiak, C., Engineering Coordination Polymers Towards Applications. Dalton Transactions, 2003(14): p. 2781-2804.
4. Zhou, H.-C., J.R. Long, and O.M. Yaghi, Introduction to Metal–Organic Frameworks. Chemical Reviews, 2012. 112(2): p. 673-674.
5. Zhang, Z., et al., MOFs for CO2 Capture and Separation from Flue Gas Mixtures: The Effect of Multifunctional Sites on Their Adsorption Capacity and Selectivity. Chemical Communications, 2013. 49(7): p. 653-661.
6. Morris, R.E. and P.S. Wheatley, Gas Storage in Nanoporous Materials. Angewandte Chemie International Edition, 2008. 47(27): p. 4966-4981.
7. Nijem, N., et al., Tuning the Gate Opening Pressure of Metal–Organic Frameworks (MOFs) for the Selective Separation of Hydrocarbons. Journal of the American Chemical Society, 2012. 134(37): p. 15201-15204.
8. Doherty, C.M., et al., Magnetic Framework Composites for Polycyclic Aromatic Hydrocarbon Sequestration. Journal of Materials Chemistry, 2012. 22(23): p. 11470-11474.
9. Chen, B., et al., A Luminescent Metal–Organic Framework with Lewis Basic Pyridyl Sites for the Sensing of Metal Ions. Angewandte Chemie International Edition, 2009. 48(3): p. 500-503.
10. Coronado, E. and G. Minguez Espallargas, Dynamic Magnetic MOFs. Chemical Society Reviews, 2013. 42(4): p. 1525-1539.
11. Tanh Jeazet, H.B., C. Staudt, and C. Janiak, Metal-Organic Frameworks in Mixed-Matrix Membranes for Gas Separation. Dalton Transactions, 2012. 41(46): p. 14003-14027.
12. Biondi, C., et al., On the Structure and Water Content of Copper (II) Tricyanomethanide. Chemical Communications (London), 1965(10): p. 191-192.
13. Li, H., et al., Design and Synthesis of an Exceptionally Stable and Highly Porous Metal-Organic Framework. Nature, 1999. 402(6759): p. 276-279.
14. Park, K.S., et al., Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci U S A, 2006. 103(27): p. 10186-91.
15. Anokhina, E.V., et al., In (OH) BDC⊙ 0.75 BDCH2 (BDC= Benzenedicarboxylate), a Hybrid Inorganic-Organic Vernier Structure. Journal of the American Chemical Society, 2005. 127(43): p. 15000-15001.
16. Skoulidas, A.I., Molecular Dynamics Simulations of Gas Diffusion in Metal-organic Frameworks: Argon in CuBTC. Journal of the American Chemical Society, 2004. 126(5): p. 1356-1357.
17. Loiseau, T., et al., A Rationale for the Large Breathing of the Porous Aluminum Terephthalate (MIL?53) Upon Hydration. Chemistry–A European Journal, 2004. 10(6): p. 1373-1382.
18. Serre, C., et al., Very Large Breathing Effect in the First Nanoporous Chromium (III)-Based Solids: MIL-53 or CrIII (OH)⊙{O2C-C6H4-CO2}⊙{HO2C-C6H4-CO2H} x⊙ H2O y. Journal of the American Chemical Society, 2002. 124(45): p. 13519-13526.
19. Yan, J., et al., Metal-Organic Framework MIL-53 (Al): Synthesis, Catalytic Performance for The Friedel-Crafts Acylation, and Reaction Mechanism. Science China Chemistry, 2015. 58(10): p. 1544-1552.
20. Chatti, R., et al., Amine Loaded Zeolites for Carbon Dioxide Capture: Amine Loading and Adsorption Studies. Microporous and Mesoporous Materials, 2009. 121(1): p. 84-89.
21. Chin, J.M., et al., Tuning the Aspect Ratio of NH 2-MIL-53 (Al) Microneedles and Nanorods via Coordination Modulation. CrystEngComm, 2013. 15(4): p. 654-657.
22. Le-Clech, P., V. Chen, and T.A.G. Fane, Fouling in membrane bioreactors used in wastewater treatment. Journal of Membrane Science, 2006. 284(1–2): p. 17-53.
23. Barhate, R.S. and S. Ramakrishna, Nanofibrous Filtering Media: Filtration Problems and Solutions from Tiny Materials. Journal of Membrane Science, 2007. 296(1): p. 1-8.
24. Wang, C.-F. and S.-J. Lin, Robust Superhydrophobic/Superoleophilic Sponge for Effective Continuous Absorption and Expulsion of Oil Pollutants from Water. ACS applied materials & interfaces, 2013. 5(18): p. 8861-8864.
25. Abedini, R., M. Omidkhah, and F. Dorosti, Hydrogen Separation and Purification with Poly (4-methyl-1-pentyne)/MIL 53 Mixed Matrix Membrane Based on Reverse Selectivity. International Journal of Hydrogen Energy, 2014. 39(15): p. 7897-7909.
26. Clarizia, G., Polymer-Based Membranes Applied to Gas Separation: Material and Engineering Aspects. Desalination, 2009. 245(1): p. 763-768.
27. Buonomenna, M.G., W. Yave, and G. Golemme, Some Approaches for High Performance Polymer Based Membranes for Gas Separation: Block Copolymers, Carbon Molecular Sieves and Mixed Matrix Membranes. RSC Advances, 2012. 2(29): p. 10745-10773.
28. Robeson, L.M., Correlation of Separation Factor versus Permeability for Polymeric Membranes. Journal of Membrane Science, 1991. 62(2): p. 165-185.
29. Jeazet, H.B.T. and C. Janiak, Metal-Organic Frameworks in Mixed-Matrix Membranes. Metal-Organic Framework Materials, 2014: p. 403.
30. Robeson, L.M., The Upper Bound Revisited. Journal of Membrane Science, 2008. 320(1): p. 390-400.
31. Chung, T.-S., et al., Mixed Matrix Membranes (MMMs) Comprising Organic Polymers with Dispersed Inorganic Fillers for Gas Separation. Progress in Polymer Science, 2007. 32(4): p. 483-507.
32. Zhou, Y., J. Wu, and E.W. Lemmon, Thermodynamic Properties of o-Xylene, m-Xylene, p-Xylene, and Ethylbenzene. Journal of Physical and Chemical Reference Data, 2012. 41(2): p. 023103-023103-26.
33. Rudolph, H., K. Walzer, and I. Krutzik, Microwave Spectrum, Barrier for Methyl Rotation, Methyl Conformation, and Dipole Moment of ortho-Xylene. Journal of Molecular Spectroscopy, 1973. 47(2): p. 314-339.
34. Ravindranath, K. and R.A. Mashelkar, Polyethylene terephthalate—I. Chemistry, thermodynamics and transport properties. Chemical Engineering Science, 1986. 41(9): p. 2197-2214.
35. Specialty Coating Systems, I. SCS Parylene Properties. 2014; Available from: http://scscoatings.com/what-is-parylene/parylene-properties/.
36. Scheirs, J. and D. Priddy, Modern Styrenic Polymers: Polystyrenes and Styrenic Copolymers. Vol. 6. 2003: John Wiley & Sons.
37. Fifth, C.R.E., Ullmann′s Encyclopedia of Industrial Chemistry. 1991.
38. Aristov, Y.I., Novel Materials for Adsorptive Heat Pumping and Storage: Screening and Nanotailoring of Sorption Properties. Journal of Chemical Engineering of Japan, 2007. 40(13): p. 1242-1251.
39. Nguyen, N.T., et al., Selective Capture of Carbon Dioxide under Humid Conditions by Hydrophobic Chabazite?Type Zeolitic Imidazolate Frameworks. Angewandte Chemie International Edition, 2014. 53(40): p. 10645-10648.
40. Gandara, F., et al., High Methane Storage Capacity in Aluminum Metal–Organic Frameworks. Journal of the American Chemical Society, 2014. 136(14): p. 5271-5274.
41. Rouquerol, J., et al., Adsorption by Powders and Porous Solids: Principles, Methodology and Applications. 2013: Academic press.
42. Kim, H., et al., Characterization of Adsorption Enthalpy of Novel Water-Stable Zeolites and Metal-Organic Frameworks. Scientific Reports, 2016. 6.
43. Cavka, J.H., et al., A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. Journal of the American Chemical Society, 2008. 130(42): p. 13850-13851.
44. Oien, S., et al., Detailed Structure Analysis of Atomic Positions and Defects in Zirconium Metal–Organic Frameworks. Crystal Growth & Design, 2014. 14(11): p. 5370-5372.
45. Valenzano, L., et al., Disclosing the Complex Structure of UiO-66 Metal Organic Framework: A Synergic Combination of Experiment and Theory. Chemistry of Materials, 2011. 23(7): p. 1700-1718.
46. Yang, Q., et al., Functionalizing Porous Zirconium Terephthalate UiO-66 (Zr) for Natural Gas Upgrading: A Computational Exploration. Chemical Communications, 2011. 47(34): p. 9603-9605.
47. Galve, A., et al., Combination of Ordered Mesoporous Silica MCM-41 and Layered Titanosilicate JDF-L1 Fillers for 6FDA-Based Copolyimide Mixed Matrix Membranes. Journal of Membrane Science, 2013. 431: p. 163-170.
48. Valero, M., et al., Mixed Matrix Membranes for Gas Separation by Combination of Silica MCM-41 and MOF NH 2-MIL-53 (Al) in Glassy Polymers. Microporous and Mesoporous Materials, 2014. 192: p. 23-28.
49. Material Studio. 2016, Accelrys Software Inc.
50. Milman, V., et al., Electronic Structure, Properties, and Phase Stability of Inorganic Crystals: A Pseudopotential Plane?Wave Study. International Journal of Quantum Chemistry, 2000. 77(5): p. 895-910.
51. Metropolis, N., et al., Equation of State Calculations by Fast Computing Machines. The Journal of Chemical Physics, 1953. 21(6): p. 1087-1092.
52. Orio, M., D.A. Pantazis, and F. Neese, Density Functional Theory. Photosynthesis Research, 2009. 102(2-3): p. 443-453.
53. Schrodinger, E., An Undulatory Theory of the Mechanics of Atoms and Molecules. Physical Review, 1926. 28(6): p. 1049.
54. Bush, I., et al. Parallel Implementation of the ab initio CRYSTAL Program: Electronic Structure Calculations for Periodic Systems. in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 2011. The Royal Society.
55. Clark, S.J., et al., First Principles Methods Using CASTEP. Zeitschrift fur Kristallographie-Crystalline Materials, 2005. 220(5/6): p. 567-570.
56. Jones, R.O., Density Functional Theory: Its Origins, Rise to Prominence, and Future. Reviews of Modern Physics, 2015. 87(3): p. 897.
57. Hellmann, H., A New Approximation Method in the Problem of Many Electrons. Journal of Chemical Physics, 1934.
58. Inc., B.M.S. Castep Guide. 2016; Available from: http://accelrys.com/products/collaborative-science/biovia-materials-studio/references/.
59. Calvo, F. and P. Labastie, Configurational Density of States from Molecular Dynamics Simulations. Chemical Physics Letters, 1995. 247(4): p. 395-400.
60. Caflisch, R.E., Monte Carlo and Quasi-monte Carlo Methods. Acta Numerica, 1998. 7: p. 1-49.
61. Dubbeldam, D., A. Torres-Knoop, and K.S. Walton, On the Inner Workings of Monte Carlo Codes. Molecular Simulation, 2013. 39(14-15): p. 1253-1292.
62. Wustner, D. and H. Sklenar, Atomistic Monte Carlo Simulation of Lipid Membranes. International Journal of Molecular Sciences, 2014. 15(2): p. 1767-1803.
63. Gasteiger, J. and M. Marsili, Iterative Partial Equalization of Orbital Electronegativity—A Rapid Access to Atomic Charges. Tetrahedron, 1980. 36(22): p. 3219-3228.
64. Frenkel, D. and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications. Computational sciences series. Vol. 1. 2002, San Diego: Academic Press. 1-638.
65. Kuzkin, V.A., On Angular Momentum Balance for Particle Systems with Periodic Boundary Conditions. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift fur Angewandte Mathematik und Mechanik, 2015. 95(11): p. 1290-1295.
66. Boutin, A., et al., Breathing Transitions in MIL?53 (Al) Metal–Organic Framework Upon Xenon Adsorption. Angewandte Chemie International Edition, 2009. 48(44): p. 8314-8317.
67. Mahajan, R. and W.J. Koros, Factors Controlling Successful Formation of Mixed-Matrix Gas Separation Materials. Industrial & Engineering Chemistry Research, 2000. 39(8): p. 2692-2696.
68. Zornoza, B., et al., Functionalized Flexible MOFs as Fillers in Mixed Matrix Membranes for Highly Selective Separation of CO 2 from CH 4 at Elevated Pressures. Chemical Communications, 2011. 47(33): p. 9522-9524.
69. Rodenas, T., et al., Mixed Matrix Membranes Based on NH 2-Functionalized MIL-Type MOFs: Influence of Structural and Operational Parameters on the CO 2/CH 4 Separation Performance. Microporous and Mesoporous Materials, 2014. 192: p. 35-42.
70. Rodenas, T., et al., Mixed matrix membranes based on NH2-functionalized MIL-type MOFs: Influence of structural and operational parameters on the CO2/CH4 separation performance. Microporous and Mesoporous Materials, 2014. 192: p. 35-42.
71. Garibay, S.J., Z. Wang, and S.M. Cohen, Evaluation of Heterogeneous Metal? Organic Framework Organocatalysts Prepared by Postsynthetic Modification. Inorganic Chemistry, 2010. 49(17): p. 8086-8091.
72. Peens, F.H., Electrochemical and Adsorption Studies of a Carboxylic Acid-Modified Aluminium Aminoterephthalate Framework (H2N-MIL-53) with Heterogeneous Catalysis Applications, in Department of Chemistry Faculty of Natural and Agricultural Sciences. 2014, University of the Free State. p. 106.
73. Chen, X.Y., et al., Optimization of Continuous Phase in Amino-functionalized Metal–organic Framework (MIL-53) Based Co-Polyimide Mixed Matrix Membranes for CO 2/CH 4 Separation. RSC Advances, 2013. 3(46): p. 24266-24279.
74. Dorosti, F., M. Omidkhah, and R. Abedini, Fabrication and Characterization of Matrimid/MIL-53 Mixed Matrix Membrane for CO 2/CH 4 Separation. Chemical Engineering Research and Design, 2014. 92(11): p. 2439-2448.
75. Duerinck, T., et al., Understanding Hydrocarbon Adsorption in the UiO-66 Metal–Organic Framework: Separation of (Un) Saturated Linear, Branched, Cyclic Adsorbates, including Stereoisomers. The Journal of Physical Chemistry C, 2013. 117(24): p. 12567-12578.
76. Santacesaria, E., et al., The Effect of the Exchanged Cations in the Adsorption of p-and m-Xylene onto Y zeolite. Journal of Colloid and Interface Science, 1984. 98(2): p. 467-470.
77. Cmarik, G.E., et al., Tuning the Adsorption Properties of UiO-66 via Ligand Functionalization. Langmuir, 2012. 28(44): p. 15606-15613.

指導教授 張博凱(Bor-Kae Chang) 審核日期 2017-1-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明