博碩士論文 103324069 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.235.56.11
姓名 張芸瑄(Yun-Hsuan Chang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱
(Formation Mechanism of Secondary Building Units and Process-Structure-Property Relationships of Metal-Organic Frameworks: The Reproducibility Study of UiO-66 and In-MIL-68)
相關論文
★ 藉由結晶製程製備高水溶性化合物: 十二烷基硫酸鈉(SDS) 以及控制其水合物★ 唑來膦酸三水合物的初始溶劑篩選和在羥基磷灰石之表面吸附行為
★ 乙烯氨酚的結晶研究:溶劑.界面與固態分散的篩選★ 外消旋(R/S)-(+/-)伊普的初始溶劑篩選及伊普鈉鹽結晶動力學
★ 外消旋(R,S)-(±)-伊普鹽二水化合物的介晶質,成核與結晶成長★ 卡爾指數與溶解速率常數的交叉行為關係與混合率的應用:批次對乙醯氨基酚的研究
★ 蔗糖的同質異構型構★ 磺胺噻唑的初始/雞尾酒混合溶劑式篩選和利用多型晶體的耕作方式篩選
★ 關於量產路徑之初步鹽類篩選程序:以外消旋布洛芬之兩個不同鹽類為例★ 卡馬西平的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造
★ 西咪替丁的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造★ 利用超音波結晶法降低小分子有機半導體分子的昇華點 以及藉由蛋殼膜增進AlQ3奈米管的光激發螢光強度
★ 仿效生物膽結石的形成:在逐漸演化的(牛磺膽酸鈉-卵磷質-膽固醇)複雜脂質系統中結晶碳酸鈣★ 蔗糖的多構形多形晶體與乙醯氨酚共溶劑篩選
★ 共晶化合物的篩選、製備、鑑定、分子辨認及應用: 胞嘧啶和二羧酸的研究★ 生命的起源與天門冬氨酸在水中的結晶
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 金屬有機結構材料(MOF),又稱多孔洞配位聚合物,其複雜的網狀結構及優異的性質吸引了許多注意。透過高壓反應器及水熱合成法是一種文獻中最常見的合成方法,其產物約為毫克規模。透過放大合成規模及不同的添加方法,金屬有機架構材料的再現性並未被仔細探討。因此,此篇研究的重點在透過不同尺度(毫克至克規模)的合成及不同種的合成添加方法來探討其在性質上的影響,進而預測其次級結構單元(SBUs)的形成及性質的再現性。在這篇論文裡我們將討論兩種MOF,UiO-66及In-MIL-68,及透過四種不同的合成添加方法來合成。不同的合成方法會影響MOF之SBUs的形成機制,進而影響SBUs的形成速率及MOF的成核速率。方法一的高壓反應器會使溶解度增加,進而降低反應器內的超飽和濃度,再加上反應並沒有攪拌,因此晶體的成核速率下降且成核數量少,故合成出來的UiO-66有最佳的結晶度、最大的顆粒大小、最高的比表面積,且配位基與金屬之間有較完整的鍵節數量。方法二是在大氣壓下進行合成,容器內的濃度與方法一相同。但大氣壓下的溶解度較低,因此方法二的超飽和濃度較方法一高,且反應有攪拌使晶體的成核速率快,故此方法合成出來的UiO-66結晶度差且晶體顆粒小,從TGA檢測可以得知有機配位基與金屬基團之間鍵結上的缺陷會使比表面積下降。而方法三、四的反應條件與方法二相似,唯一的差別是反應物的添加速率。在反應一開始時,緩慢添加反應物會使濃度降低,但溶解度與方法二同,故超飽和濃度會降低並限制金屬有機結構材料的成核速率並使晶體有序的成長,因此其性質會介於方法一、二之間。此外,方法一、三、四合成出來的UiO-66其光致發光波長皆接近320nm,相對於方法二則是385nm,此結果也可以從XPS的C1s圖譜的束縛能得到呼應。但對於另一種金屬有機結構材料In-MIL-68,不同的合成方法並不太會影響到其性質,因此不同合成方法得到的In-MIL-68有相似的結晶度、化學鍵結、有機配位基數量、光致發光波長、比表面積及原子束縛能。在In-MIL-68唯一的差異僅是顆粒大小,方法一的低成核速率會降低成核數目,使產物的顆粒最大約100μm,但因為合成沒有攪拌而顆粒大小分布較廣。方法三的成核速率快而成長速率慢,因此其顆粒大小最小約5μm。我們可以由以上的實驗結果得知,UiO-66的次級結構單元的形成機制及步驟較複雜,故UiO-66是一種對製程敏感的金屬有機架構材料,其物理性質會受到不同的合成方法影響;而In-MIL-68的次級結構單元形成機制相對簡單,其性質對不同的製程方法不敏感,擁有較佳的性質再現性。
摘要(英) Metal-organic frameworks (MOFs), also known as porous coordination polymers, have attracted tremendous interests due to its complicated structures and outstanding properties. The solvothermal synthetic method without stirring in an autoclave was most commonly used for the milligram scale synthesis. The reproducibility of MOFs’ properties under the different scale and addition rate have been overlooked. Therefore, the aim of this thesis was to understand the reproducibility of MOFs from different scale and synthetic methods. In this thesis, two well-known MOFs, UiO-66 and In-MIL-68 were taken into account, and four kinds of synthetic methods were fully investigated. The different synthetic methods would affect the formation mechanism of MOF’s secondary building units (SBUs), hence altering the formation rate of SBUs and nucleation rate of MOFs. Mode I was synthesized in an autoclave with no agitation and under high pressure. Therefore, the solubility of solutes was increased. However the concentration of solution did not change. The degree of supersaturation decreased. The nucleation rate was lower, and resulted in the larger crystal sizes and better crystallinity of MOF. Mode II was synthesized under the atmospheric pressure and with agitation. The concentration was the same as mode I but the solubility was lower than the one of mode I, it resulted in the higher degree of supersaturation than the one of mode I. Therefore, mode II had the higher nucleation rate, and gave the smaller crystal sizes, less crystallinity and more defects of MOF. Modes III and IV were similar to mode II, the only difference was the addition rate of ligand and precursor solution. In modes III and IV, the concentration for the added ligand and precursor were both lower than the one in mode II, but the solubility here was the same with mode II. Therefore, the degree of supersaturation for them were lower than the one of mode II. From the above results, we concluded that in UiO-66, mode I would produce the largest crystal size, crystallinity, surface area, and the coordination amount between ligands and Zr-based SBUs. Mode II would give the opposite results for UiO-66. Besides, the photoluminescence emission signals were similar for both modes I, III, and IV at around 320 nm while 385 nm for mode II, and those results also corresponded to the C1s core-level spectra from XPS. But for another kind of MOF, In-MIL-68, the properties such as crystallinity, chemical bonding, ligand amount, PL emission signal, surface area, and binding energy would not be affected too much by different synthetic processes. The only difference was shown in mode III for In-MIL-68 that cubic addition method would give the smaller crystal size at around 5 μm. As a result, we concluded that the physical properties of UiO-66 were process-dependent because the formation steps of SBUs were more complex. On the contrary, In-MIL-68 showed more uniform properties due to the simple formation mechanism of SBUs. Therefore, we concluded that In-MIL-68 was process-independent.
關鍵字(中) ★ 金屬有機結構材料
★ 其次級結構單元
★ UiO-66
★ In-MIL-68
★ 高壓反應器合成法
★ 水熱合成法
★ 不同的反應物添加速率
關鍵字(英) ★ metal-organic frameworks
★ secondary building units
★ UiO-66
★ In-MIL-68
★ autoclave synthesis
★ solvothermal synthesis
★ cubic addition method
論文目次 Table of Contents
摘要 i
Abstract iii
Acknowledgement v
Table of Contents vi
List of Figures viii
List of Tables xiv
Chapter 1. Executive Summary 1
1.1. Briefly introduction of Metal-Organic Frameworks 1
1.2. Two Specific Kinds of MOFs: UiO-66 and In-MIL-68 7
1.3. Conceptual Framework 10
1.4. References 12
Chapter 2. Experiments 18
2.1. Materials 18
2.1.1. Chemicals 18
2.1.2. Solvents 18
2.2. Experiment Procedures 20
2.2.1. UiO-66 20
2.2.2. In-MIL-68 ([In(OH)(bdc)]n) 26
2.3. Analytical Instruments 30
2.3.1. Polarized Optical Microscopy (OM) 30
2.3.2. Photoluminescence (PL) 30
2.3.3. Transmission Fourier Transform Infrared (FTIR) Spectroscopy 31
2.3.4. Powder X-ray Diffraction (PXRD) 31
2.3.5. Thermal Gravimetric Analysis (TGA) 31
2.3.6. Brunauer-Emmett-Teller (BET) Surface Area Analysis 32
2.3.7. Scanning Electron Microscopy (SEM) 32
2.3.8. X-ray photoelectron spectroscopy (XPS) 33
2.4. References 34
Chapter 3. Results and discussion 35
3.1. Secondary Building Units of MOFs 35
3.2. Different Synthetic Methods 38
3.3. Results and Discussion 39
3.3.1. UiO-66 39
3.3.2. In-MIL-68 ([In(OH)(bdc)]n) 56
3.4. Conclusions 67
3.5. References 75
Chapter 4. Future Works 80
參考文獻 Chapter 1
1. Lin, Z. J.; Han, L. W.; Wu, D. S.; Huang, Y. B.; Cao, R. Structure versatility of coordination polymers constructed from a semirigid tetracarboylate ligand: syntheses, structures, and photoluminescent properties. Cryst. Growth Des. 2013, 13 (1), 255-263.
2. Kinoshita, Y.; Matsubara, I.; Higuchi, T.; Saito, Y. The crystal structure of bis(adiponitrilo)copper(I) nitrate. Chem. Soc. Jpn. 1959, 32 (11), 1221-1226.
3. Berlin, A. A.; Matveeva, N.G. Polymeric chelate compounds. Russ. Chem. Rev. 1960, 29 (3), 119-128.
4. Kitagawa, S.; Kawata, S.; Nozaka, Y.; Munakata, M. Synthesis and crystal structures of novel copper(I) co-ordination polymers and a hexacopper(I) cluster of quinoline-2-thione. J. Chem. Soc. Dalton Trans. 1993, 1 (9), 1399-1404.
5. Kitagawa, S.; Matsuyama, S.; Munakata, M.; Emori, T. Synthesis and crystal structures of novel one-dimensional polymers, [{M(bpen)X}∞][M = CuI, X = PF6–; M = AgI, X = ClO4–; bpen =trans-1,2-bis(2-pyridyl)ethylene] and [{Cu(bpen)(CO)(CH3CN)(PF6)}∞]. J. Chem. Soc. Dalton Trans. 1991, 11, 2869-2874.
6. Yaghi, O. M.; Li, H. L. Hydrothermal synthesis of a metal-organic framework containing large rectangular channels. J. Am. Chem. Soc. 1995, 117 (41), 10401-10402.
7. Hoskins, B. F.; Robson, R. Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4′,4′′,4′′′-tetracyanotetraphenylmethane]BF4.xC6H5NO2. J. Am. Chem. Soc. 1990, 112 (4), 1546–1554.
8. Batten, S. R.; Hoskins, B.F.; Robson, R. Two interpenetrating 3D networks which generate spacious sealed-off compartments enclosing of the order of 20 solvent molecules in the structures of Zn(CN)(NO3)(tpt)2/3*solv (tpt = 2,4,6-tri(4-pyridyl)-1,3,5-triazine, solv = ~3/4C2H2Cl43/4CH3OH or ~3/2CHC13*1/3CH3OH). J. Am. Chem. Soc. 1995, 117, 5385-5386.
9. Riou, D.; Ferey, G. Hybrid open frameworks (MIL-n). Part 3 Crystal structures of the HT and LT forms of MIL-7: a new vanadium propylenediphosphonate with an open-framework. Influence of the synthesis temperature on the oxidation state of vanadium within the same structural type. J. Mater. Chem. 1998. 8 (12), 2733-2735.
10. Gardner, G. B.; Venkataraman, D.; Moore, J. S; Lee, S. Spontaneous assembly of a hinged coordination network. Nature 1994, 374 (27), 792-795.
11. Zhou, H. C.; Kitagawa, S. Metal–organic frameworks (MOFs). Chem. Soc. Rev., 2014, 43, 5415-5418.
12. Zhou, H. C.; Long , J. R.; Yaghi, O. M. Introduction to metal-organic frameworks. Chem. Rev., 2012, 112 (2), 673-674.
13. Ma, S.; Sun, D.; Simmons, J. M.; Collier, C. D.; Yuan, D.; Zhou, H. C. Metal-organic framework from an anthracene derivative containing nanoscopic cages exhibiting high methane uptake. J. Am. Chem. Soc. 2007, 130 (3), 1012-1016.
14. Furukawa, H.; Ko, N.; Go, Y. B.; Aratani, N.; Choi, S. B.; Choi, E.; Yazaydin, A. O.; Snurr, R. Q.; O’Keeffe, M.; Kim, J.; Yaghi, O. M. Ultrahigh porosity in metal-organic frameworks. Science 2010, 329 (5990), 424-428.
15. Mueller, U.; Schubert, M.; Teich, F.; Puetter, H.; Schierle-Arndt, K.; Pastre, J. Metal-organic frameworks–prospective industrial applications. J. Mater. Chem. 2006, 16 (7), 626-636.
16. Britt, D.; Furukawa, H.; Wang, B.; Glover, T. G.; Yaghi, O. M. Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites. Proc. Natl. Acad. Sci. 2009, 106 (49), 20637-20640.
17. Li, J. R.; Kuppler, R. J.; and Zhou, H. C. Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 2009, 38 (5), 1477-1504.
18. Allendorf, M. D.; Houk, R. J. T.; Andruszkiewicz, L.; Talin, A. A.; Pikarsky, J.; Choudhury, A.; Gall, K. A.; Hesketh, P. J. Stress-induced chemical detection using flexible metal−organic frameworks. J. Am. Chem. Soc. 2008, 130 (44), 14404-14405.
19. Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Metal-organic framework materials as catalysts. Chem. Soc. Rev. 2009, 38 (5), 1450-1459.
20. Corma, A.; García, H.; Llabrés i Xamena, F. X. Engineering metal organic frameworks for heterogeneous catalysis. Chem. Rev. 2010, 110 (8), 4606-4655.
21. Taylor-Pashow, K. M. L.; Rocca, J. D.; Xie, Z.; Tran, S.; Lin, W. Postsynthetic modifications of iron-carboxylate nanoscale metal−organic frameworks for imaging and drug delivery. J. Am. Chem. Soc. 2009, 131 (40), 14261-14263.
22. Rieter, W. J.; Taylor, K. M. L.; Lin, W. Surface modification and functionalization of nanoscale metal-organic frameworks for controlled release and luminescence sensing. J. Am. Chem. Soc. 2007, 129 (32), 9852-9853.
23. Rieter, W. J.; Pott, K. M.; Taylor, K. M. L.; Lin, W. Nanoscale coordination polymers for platinum-based anticancer drug delivery. J. Am. Chem. Soc. 2008, 130 (35), 11584-11585.
24. Wang, Q. M.; Shen, D.; Bulow, M.; Lau, M. L.; Deng, S.; Fitch, F. R.; Lemcoff, N. O.; Semanscin, J. Metallo-organic molecular sieve for gas separation and purification. J. Microporous Mesoporous Mater. 2002, 55 (2), 217-230.
25. Mueller, U.; Schubert, M.; Teich, F.; Puetter, H.; Schierle-Arndt, K.; Pastre, J. Metal-organic frameworks-prospective industrial applications. J. Mater. Chem. 2006, 16 (7), 626-636.
26. Stock, N.; Biswas, S. Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem. Rev. 2012, 112 (2), 933-969.
27. Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga S.; Lillerud, K. P. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 2008, 130 (42), 13850-13851.
28. DeCoste, J. B.; Peterson, G. W.; Jasuja, H.; Glover, T. G.; Huangc, Y. G.; Walton, K. S. Stability and degradation mechanisms of metal-organic frameworks containing the Zr6O4(OH)4 secondary building unit. J. Mater. Chem. A. 2013, 1 (18), 5642-5650.
29. Alhamami, M.; Doan, H.; Cheng, C. H. A review on breathing behaviors of metal-organic-frameworks (MOFs) for gas adsorption. Materials, 2014, 7 (4), 3198-3250.
30. Biswas, S.; Van Der Voort, P. General strategy for the synthesis of functionalised UiO-66 frameworks: characterisation, sability and CO2 adsorption properties. Eur. J. Inorg. Chem. 2013, 2013 (12), 2154-2160.
31. Schaate, A.; Roy, P.; Godt, A.; Lippke, J.; Waltz, F.; Wiebcke, M.; Behrens, P. Modulated synthesis of Zr-based metal-organic frameworks: from nano to single crystals. Chem. Eur. J. 2011, 17 (24), 6643-6651.
32. Van de Voorde, B.; Stassen, I.; Bueken, B.; Vermoortele, F.; Vos, D. D.; Ameloot, R.; Tan, J. C. and Bennett T. D. Improving the mechanical stability of zirconium-based metal-organic frameworks by incorporation of acidic modulators. J. Mater. Chem. A, 2015, 3 (4), 1737-1742.
33. Guillerm, V.; Ragon, F.; Dan-Hardi, M.; Devic, T.; Vishnuvarthan, M.; Campo, B.; Vimont, A.; Clet, G.; Yang, Q.; Maurin, G.; Férey, G.; Vittadini, A.; Gross S.; Serre, C. A series of isoreticular, highly stable, porous zirconium oxide based metal-organic frameworks. Angew, Chem., Int. Ed., 2012, 51 (37), 9267-9271.
34. Wu, H.; Yildirim, T.; Zhou, W. Exceptional mechanical stability of highly porous zirconium metal-organic framework UiO-66 and its important implications. J. Phys. Chem. Lett., 2013, 4 (6), 925-930.
35. Øien, S.; Wragg, D.; Reinsch, H.; Svelle, S.; Bordiga, S.; Lamberti, C.; Lillerud, K. P. Detailed structure analysis of atomic positions and defects in zirconium metal-organic frameworks. Cryst. Growth Des., 2014, 14 (11), 5370-5372.
36. Contreras, J. G.; Poland, J. S.; Tuck, D. G. Co-ordination compounds of indium. Part XXII. Anionic complexes derived from the lower halides of indium. J. Chem. Soc., Dalton Trans. 1973, (9), 922-925.
37. Anokhina, E. V.; Zanda, M. V.; Wang, X.; Jacobson, A. J. In(OH)BDC•0.75BDCH2 (BDC = Benzenedicarboxylate), a hybrid inorganic-organic vernier structure. J. Am. Chem. Soc. 2005, 127 (43), 15000-15001.
38. Lee,T.; Liu, Z. X.; Lee, H. L. A biomimetic nose by microcrystals and oriented films of luminescent porous metal-organic frameworks. Cryst. Growth Des. 2011, 11 (9), 4146-4154.
39. Lee, T.; Lee, H. L.; Tsai, M. H.; Cheng, S. L.; Lee, S. W.; Huc, J. C.; Chen, L. T. A biomimetic tongue by photoluminescent metal-organic frameworks. Biosensors and Bioelectronics. 2013, 43, 56-62.
40. Lee, T.; Tsai, M. H.; Lee, H. L. Riboflavin chelated luminescent metal-organic framework: identified by liquid-assisted grinding for large-molecule sensing via chromaticity coordinates. Cryst. Growth Des. 2012, 12 (6), 3181-3190.

Chapter 2
1. Katz, M. J.; Brown, Z. J.; Colón, Y. J.; Siu, P. W.; Scheidt, K. A.; Snurr, R. Q.; Hupp, J. T.; Farha, O. K. A facile synthesis of UiO-66, UiO-67 and their derivatives. Chem. Commun. 2013, 49 (82), 9449-9451.
2. Biswas, S.; Van Der Voort, P. A general strategy for the synthesis of functionalised UiO-66 frameworks: characterisation, stability and CO2 adsorption properties. Eur. J. Inorg. Chem. 2013, 2013 (12), 2154-2160.
3. Devic, T.; Serre, C. High valence 3p and transition metal based MOFs. Chem. Soc. Rev., 2014, 43 (16), 6097-6115.
4. Kim, S.; Lotz, B.; Lindrud, M.; Girard, K.; Moore, T.; Nagarajan, K.; Alvarez, M.; Lee, T.; Nikfar, F.; Davidovich, M.; Srivastava, S.; Kiang, S. Control of the particle properties of a drug substance by crystallization engineering and the effect on drug product formulation. Org. Process Res. Dev., 2005, 9 (6), 894-901.
5. Lee, T.; Liu, Z. X.; Lee, H. L. A biomimetic nose by microcrystals and oriented films of luminescent porous metal-organic frameworks. Cryst. Growth Des. 2011, 11(9), 4146-4154.

Chapter 3
1. Bai, Y.; Dou, Y.; Xie, L. H.; William Rutledge; Li, J. R.; Zhou, H. C. Zr-based metal-organic frameworks: design, synthesis, structure, and applications. Chem. Soc. Rev., 2016, 45 (24), 2327-2367.
2. Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc., 2008, 130 (42), 13850-13851.
3. Feng, D.; Gu, Z. Y.; Chen, y. p.; Park, J.; Wei, Z.; Sun, Y.; Bosch, M.; Yuan, S.; Zhou, H. C. A highly stable porphyrinic zirconium metal-organic framework with shp-a topology. J. Am. Chem. Soc., 2014, 136 (51), 17714-17717.
4. Mihaly, J. J.; Zeller, M.; Genna, D. T. Ion-directed synthesis of indium-derived 2,5-thiophenedicarboxylate metal–organic frameworks: tuning framework dimensionality. Cryst. Growth Des., 2016, 16 (3), 1550-1558.
5. Sun, J.; Weng, L.; Zhou, Y.; Chen, J.; Chen, Z.; Liu, Z.; Zhao, D. QMOF-1 and QMOF-2: three-dimensional metal–organic open frameworks with a quartzlike topology. Angew. Chem., 2002, 41 (23), 4471-4473.
6. Huh, S.; Kwon,T. H.; Park, N.; Kimc S. J. and Kim, Y. Nanoporous In-MOF with multiple one-dimensional pores. Chem. Commun., 2009, (33), 4953-4955.
7. Jin, Z.; Zhao, H. Y.; Zhao, X. J.; Fang, Q. R.; Long, J. R. and Zhu, G. S. A novel microporous MOF with the capability of selective adsorption of xylenes. Chem. Commun., 2010, 46 (45), 8612-8614.
8. Gándara, F.; Gomez-Lor, B.; Gutiérrez-Puebla, E.; Iglesias, M.; Monge, M. A.; Proserpio, D. M. and Snejko, N. An indium layered MOF as recyclable lewis acid catalyst. Chem. Mater., 2008, 20 (1), 72-76.
9. Stylianou, K. C.; Heck, R.; Chong, S. Y.; Bacsa, J.; Jones, J. T. A.; Khimyak, Y. Z.; Bradshaw, D.; Rosseinsky, M J. A guest-responsive fluorescent 3D microporous metal-organic framework derived from a long-lifetime pyrene core. J. Am. Chem. Soc., 2010, 132 (12), 4119-4130.
10. Gu, X.; Lua, Z. H.; and Xu, Q. High-connected mesoporous metal-organic framework. Chem. Commun., 2010, 46 (39), 7400-7402.
11. Liu, Y.; Eubank, J. F.; Cairns, A. J.; Eckert, J.; Ch. Kravtsov, V.; Luebke, R. and Eddaoudi, M. Assembly of metal-organic frameworks (MOFs) based on indium-trimer building blocks: a porous MOF with SOC topology and high hydrogen storage. Angew. Chem. Int. Ed. 2007, 46 (18), 3278-3283.
12. Anokhina, E. C.; Vouga-Zanda, M.; Wang, X.; Jacobson, A. J. In(OH)BDC•0.75BDCH2 (BDC= Benzenedicarboxylate), a hybrid inorganic-organic vernier structure. J. Am. Chem. Soc. 2005, 127 (43), 15000-15001.
13. Devic, T.; Serre, C. High valence 3p and transition metal based MOFs. Chem. Soc. Rev., 2014, 43 (16), 6097-6115.
14. Han, Y.; Liu, M.; Li, K.; Zuo, Y.; Wei, Y.; Xu, S.; Zhang, G.; Song, C.; Zhang, Z.; Guo, X. Facile synthesis of morphology and size-controlled zirconium metal-organic framework UiO-66: the role of hydrofluoric acid in crystallization. Cryst. Eng. Comm., 2015, 17 (33), 6434-6440.
15. Cavka, J. H; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc., 2008, 130 (42), 13850-13851.
16. Sindoro, M.; Yanai, N.; Jee, A. Y.; Granick, S. Colloidal-sized metal-organic frameworks: synthesis and applications. Acc. Chem. Res., 2014, 47 (2), 459-469.
17. Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure & Appl. Chem., 1985, 57 (4), 603-619.
18. Valenzano, L.; Civalleri, B.; Chavan,S.; Bordiga, S.; Nilsen,M. H.; Jakobsen, S.; Lillerud, K. P. and Lamberti, C. Disclosing the complex structure of UiO-66 metal-organic framework: a synergic combination of experiment and theory. Chem. Mater., 2011, 23 (7), 1700-1718.
19. Wu, H.; Chua, Y. S.; Krungleviciute, V.; Tyagi, M.; Chen, P.; Yildirim, T.; Zhou, W. Unusual and highly tunable missing-linker defects in zirconium metal–organic framework UiO-66 and their important effects on gas adsorption. J. Am. Chem. Soc., 2013, 135 (28), 10525-10532.
20. Ronda, C. R. Emission and Excitation Mechanisms of Phosphors. In Luminescence: From Theory to Applications. Ronda, C. R., Eds.; Wiley-VCH: Weiheim, Germany, 2008. Chapter 1, 1-34.
21. Zhu, A. X.; Qiu, Z. Z.; Yang, L. B.; Fang, X. D.; Chen, S. J.; Xua, Q. Q.; Li, Q. X. A luminescent cadmium(II) metal-organic framework based on a triazolate-carboxylate ligand exhibiting selective gas adsorption and gas-dependent photoluminescence properties. Cryst. Eng. Comm., 2015, 17 (26), 4787-4792.
22. Yang, J.; Dai, Y.; Zhu, X.; Wang, Z.; Li, Y.; Zhuang, Q.; Shia, J.; Gu, J. Metal-organic frameworks with inherent recognition sites for selective phosphate sensing through their coordination-induced fluorescence enhancement effect. J. Mater. Chem. A, 2015, 3 (14), 7445-7452.
23. Williams, D. E.; Shustova, N. B. Metal-organic frameworks as a versatile tool to study and model energy transfer process. Chem. Eur. J. 2015, 21 (44), 15474-15479.
24. Tait, S. L.; Wang, Y.; Costantini, G.; Lin, N.; Baraldi, A.; Esch, F.; Petaccia, L.; Lizzit, S.; Kern, K. Metal-organic coordination interactions in Fe-terephthalic acid networks on Cu(100). J. Am. Chem. Soc., 2008, 130 (6), 2108-2113.
25. Lee, T.; Lee, H. L.; Tsai, M. H.; Cheng, S. L.; Lee, S. W.; Hu, J. C.; Chen, L. J. A biomimetic tongue by photoluminescent metal-organic frameworks. Biosens. Bioelectron. 2013, 43, 56-62.
26. Lee, T.; Liu, Z. X.; Lee, H. L. A biomimetic nose by microcrystals and oriented films of luminescent porous metal-organic frameworks. Cryst. Growth Des., 2011, 11 (9), 4146-4154.
27. Anokhina, E. V.; Vougo-Zanda, M.; Wang X.; Jacobson, A. J. In(OH)BDC•0.75BDCH2 (BDC=benzenedicarboxylate), a hybrid inorganic-organic vernier structure. J. Am. Chem. Soc. 2005, 127 (43), 15000-15001.
28. Cantu, D. C.; McGrail, B. P.; Glezakou, V. A. Formation mechanism of the secondary building unit in a chromium terephthalate metal–organic framework. Chem. Mater., 2014, 26 (22), 6401-6409.
29. Rao, N.; Holerca, M. N.; Klein, M. L.; Pophristic, V. Computational Study of the Zr4+ Tetranuclear Polymer, [Zr4(OH)8(H2O)16]8+. J. Phys. Chem. A, 2007, 111 (45), 11395-11399.
30. Kouva, S.; Honkala, K.; Lefferts, L.; Kanervo, J. Review: monoclinic zirconia, its surface sites and their interaction with carbon monoxide. Catal. Sci. Technol., 2015, 5 (7), 3473-3490.
指導教授 李度(Tu Lee) 審核日期 2016-6-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明