博碩士論文 103324071 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:54.224.202.184
姓名 阮翰賢(Han-Xian Ruan)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 運用nDNA 修飾引子於PCR及qPCR平台以提升專一性之研究
(Enhancing Specificity by nDNA modified primers on PCR and qPCR)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究經由在引子上修飾nDNA並進行PCR及qPCR實驗,應用nDNA在與互補的DNA雜交時產生靜電排斥力較低之特性,以期能夠達成提升檢測專一性與準確性之結果。
有些疾病的產生,僅是緣於染色體序列的單一鹼基的突變,且時常因含量過低而不易被偵測。因此如何正確的檢驗出突變的序列就變得日益重要。但是在量測單核?酸多態性(Single Nucleotide Polymor- phism,SNP)、微核糖核酸(microRNA,miRNA)表現量等性質時,易有一般之去氧核醣核酸(DNA)常有分辨性不足,而容易產生誤判之性質。本研究以一種DNA之類似物— nDNA並加入引子序列中,以期能達成提升檢測準確性與專一性之效果。
在本文中,我們首先應用nDNA修飾引子於實驗上,以實驗證明nDNA修飾於引子上不會造成酵素無法辨識,接著分別以完全互補及不完全互補的引子,比較當使用一般DNA及nDNA修飾引子進行PCR及qPCR實驗之結果差異。本研究選用之研究對象分別為plasmid (pUC19)、rs4646-c/-a(基因片段)與miRNA反轉錄之cDNA(let-7b/7e)。實驗結果顯示nDNA修飾於引子可以讓完全互補及不完全互補的引子之間的差異為以DNA引子進行同樣實驗的千倍以上。經由上述實驗,我們證明nDNA能夠提升其檢測專一性,並且於較高之接合溫度時能夠提升檢測準確性,我們希望未來能夠運用此特性於更高精確度的疾病檢測或是治療上。
摘要(英) This research is about using modified DNA (nDNA) primers on polymerase chain reaction (PCR) and quantification polymerase chain reaction (qPCR) experiments. Taking advantage of the property that nDNA-DNA duplex can modify the electrostatic repulsion during the hybridization of two strands, proving nDNA primers can provide higher specificity on detection. Some diseases are caused by single nucleotide mutantion on the sequences, difficult to be discriminated due to the low content. It becomes an important issue to detect these mutants precisely around the world. Technology that can improve the accuracy of detection is what people desired. In this study, nDNA modified primers compare with regular DNA primers, hoping to enhance specificity in detection.
In this research, first, we use nDNA modification around ′ end of primers to verify that these nDNA designs wouldn’t interfere the amplification of templates during PCR. And then we use different kinds of polymerase and different sequences to prove that the results are generally accepted. The result indicated that nDNA modified primers can be amplified generally. Second part, DNA and nDNA applied in enhancing specificity experiments. Comparing the different amplification results between fully complementary (perfect match) primers and partial complementary (mismatched) primers by either nDNA or DNA primers on PCR and qPCR experiments. By annealing temperature gradient method, we found out that nDNA primers have better discrimination between perfect match and mismatched than DNA primers. After ensuring the provement of specificity when using the nDNA primers, we applied nDNA primers on microRNA (miRNA) amplification. miRNA are ~bp RNAs and some of them have only one nucleotide difference, which make them hard to be discriminated. In this part, we choose let-b and let-e as target, comparing the amplification results between perfect match and mismatched primers by either nDNA and DNA primers. The results also show that nDNA primers have better discrimination than DNA primers.
This research proved that nDNA modified primers can improve specificity in PCR and qPCR experiments and have better discrimination in higher annealing temperature. These results can be applied in medical aspect for more credible and for more precise detection.
關鍵字(中) ★ 中性DNA
★ 聚合?鏈鎖反應
★ 即時聚合?鏈鎖反應
★ 專一性
關鍵字(英) ★ nDNA
★ PCR
★ qPCR
★ specificity
論文目次 中文摘要 i
Abstract vii
目錄 viii
圖目錄 xi
表目錄 xiii
1、 緒論 1
2、 文獻回顧 3
2.1 核酸分子 3
2.1.1 核酸分子介紹 3
2.1.2 去氧核醣核酸結構 3
2.1.3 核醣核酸結構 6
2.1.4 核酸雜交反應 8
2.2 DNA類似物 8
2.2.1 ?核酸 9
2.2.2 鎖核酸(LNA) 10
2.2.3 嗎?基寡核?酸(Morpholino oligomers,MOs) 13
2.2.4 磷酸甲基化核酸 (phosphate-methylated DNA) 13
2.3 生物感測器 16
2.3.1 紫外光/可見光光譜儀 16
2.3.2 聚合?鏈鎖反應 18
2-3-2 逆轉錄聚合?鏈鎖反應 23
2.4 單核?酸多態性 24
2.4.1 錯誤配對辨識能力之研究 25
3、 實驗藥品、儀器設備與方法 26
3.1 實驗藥品 26
3.2 儀器設備 28
3.3 實驗方法 28
3.3.1 熔點量測實驗 28
3.3.2 雜交實驗 29
3.3.3 PCR 30
3.3.4 qPCR 33
4、 結果與討論 35
4.1 nDNA修飾引子是否能被酵素辨識之測試 35
4.2 nDNA修飾引子提升專一性之實驗 40
4.2.1 Mismatch on primer 40
4.2.2 Mismatch on template 45
4.3 nDNA修飾引子應用於微小RNA(miRNA)檢測以提升專一性之實驗 50
5、 結論與未來展望 59
未來展望 59
參考文獻 61
附錄 67
參考文獻 1. Dahm, R., Friedrich Miescher and the discovery of DNA. Developmental Biology, 2005. 278(2): p. 274-288.
2. Watson, J.D. and F.H. Crick, Molecular structure of nucleic acids. JAMA, 1953. 269(15): p. 1966-7.
3. Consortium. and I.H.G.S., Initial sequencing and analysis of the human genome. Nature, 2001. 409(6822): p. 860-921.
4. Leslie, A., et al., Polymorphism of DNA double helices. Journal of molecular biology, 1980. 143(1): p. 49-72.
5. Lee, R.C., R.L. Feinbaum, and V. Ambros, The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. cell, 1993. 116(2): p. 281-297.
6. Kloosterman, W.P. and R.H.A. Plasterk, The Diverse Functions of MicroRNAs in Animal Development and Disease. Developmental Cell, 2006. 11(4): p. 441-450.
7. Kim, J., et al., Identification of many microRNAs that copurify with polyribosomes in mammalian neurons. Proceedings of the National Academy of Sciences of the United States of America, 2004. 101(1): p. 360-365.
8. Palmer, S., et al., New Real-Time Reverse Transcriptase-Initiated PCR Assay with Single-Copy Sensitivity for Human Immunodeficiency Virus Type 1 RNA in Plasma. Journal of Clinical Microbiology, 2003. 41(10): p. 4531-4536.
9. Chen, C., et al., Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res, 2005. 33(20): p. e179.
10. Kellokoski, J.K., et al., Southern blot hybridization and PCR in detection of oral human papillomavirus (HPV) infections in women with genital HPV infections. Journal of Oral Pathology & Medicine, 1992. 21(10): p. 459-464.
11. Flores-D??az, M., et al., Cellular UDP-glucose deficiency caused by a single point mutation in the UDP-glucose pyrophosphorylase gene. Journal of Biological Chemistry, 1997. 272(38): p. 23784-23791.
12. Peterson, A.W., L.K. Wolf, and R.M. Georgiadis, Hybridization of mismatched or partially matched DNA at surfaces. Journal of the American Chemical Society, 2002. 124(49): p. 14601-14607.
13. Kushon, S.A., et al., Effect of secondary structure on the thermodynamics and kinetics of PNA hybridization to DNA hairpins. Journal of the American Chemical Society, 2001. 123(44): p. 10805-10813.
14. Koole, L.H. and H.M. Buck. Enhanced stability of a Watson & Crick DNA duplex structure by methylation of the phosphate groups in one strand. in Proc. K. Ned. Acad. Wet. 1987.
15. Yguerabide, J. and A. Ceballos, Quantitative fluorescence method for continuous measurement of DNA hybridization kinetics using a fluorescent intercalator. Analytical biochemistry, 1995. 228(2): p. 208-220.
16. Denison, C. and T. Kodadek, Small-molecule-based strategies for controlling gene expression. Chemistry & biology, 1998. 5(6): p. R129-R145.
17. Dervan, P.B., Molecular recognition of DNA by small molecules. Bioorganic & medicinal chemistry, 2001. 9(9): p. 2215-2235.
18. Demidov, V.V. and M.D. Frank-Kamenetskii, Two sides of the coin: affinity and specificity of nucleic acid interactions. Trends in biochemical sciences, 2004. 29(2): p. 62-71.
19. Obika, S., et al., Synthesis of 2′-O, 4′-C-methyleneuridine and-cytidine. Novel bicyclic nucleosides having a fixed C 3,-endo sugar puckering. Tetrahedron Letters, 1997. 38(50): p. 8735-8738.
20. Bondensgaard, K., et al., Structural studies of LNA: RNA duplexes by NMR: conformations and implications for RNase H activity. Chemistry-A European Journal, 2000. 6(15): p. 2687-2695.
21. Tomac, S., et al., Ionic effects on the stability and conformation of peptide nucleic acid complexes. Journal of the American Chemical Society, 1996. 118(24): p. 5544-5552.
22. Koppelhus, U. and P.E. Nielsen, Cellular delivery of peptide nucleic acid (PNA). Advanced drug delivery reviews, 2003. 55(2): p. 267-280.
23. Egholm, M., et al., PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules. NATURE, 1993. 365: p. 566-568.
24. Zhang, G.-J., et al., Label-free direct detection of MiRNAs with silicon nanowire biosensors. Biosensors and Bioelectronics, 2009. 24(8): p. 2504-2508.
25. Hahm, J.-i. and C.M. Lieber, Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano letters, 2004. 4(1): p. 51-54.
26. Cattani-Scholz, A., et al., Organophosphonate-based PNA-functionalization of silicon nanowires for label-free DNA detection. ACS nano, 2008. 2(8): p. 1653-1660.
27. Zhang, G.-J., et al., Highly sensitive measurements of PNA-DNA hybridization using oxide-etched silicon nanowire biosensors. Biosensors and Bioelectronics, 2008. 23(11): p. 1701-1707.
28. Li, Z., et al., Silicon nanowires for sequence-specific DNA sensing: device fabrication and simulation. Applied Physics A, 2005. 80(6): p. 1257-1263.
29. Gao, Z., et al., Silicon nanowire arrays for label-free detection of DNA. Analytical Chemistry, 2007. 79(9): p. 3291-3297.
30. Cai, B., et al., Ultrasensitive label-free detection of PNA–DNA hybridization by reduced graphene oxide field-effect transistor biosensor. ACS nano, 2014. 8(3): p. 2632-2638.
31. Obika, S., et al., Stability and structural features of the duplexes containing nucleoside analogues with a fixed N-type conformation, 2′-O,4′-C-methyleneribonucleosides. Tetrahedron Letters, 1998. 39(30): p. 5401-5404.
32. Bhagat, T.D., et al., miR-21 mediates hematopoietic suppression in MDS by activating TGF-β signaling. Blood, 2013. 121(15): p. 2875-2881.
33. Wang, Q., et al., LNA real-time PCR probe quantification of hepatitis B virus DNA. Exp Ther Med, 2012. 3(3): p. 503-508.
34. Latorra, D., K. Arar, and J. Michael Hurley, Design considerations and effects of LNA in PCR primers. Molecular and Cellular Probes, 2003. 17(5): p. 253-259.
35. Levin, J.D., et al., Position-dependent effects of locked nucleic acid (LNA) on DNA sequencing and PCR primers. Nucleic Acids Research, 2006. 34(20): p. e142-e142.
36. Marin, V., et al., Effect of LNA Modifications on Small Molecule Binding to Nucleic Acids. Journal of Biomolecular Structure and Dynamics, 2004. 21(6): p. 841-850.
37. Latorra, D., et al., Enhanced Allele-Specific PCR Discrimination in SNP Genotyping Using 30 Locked Nucleic Acid (LNA) Primers. HUMAN MUTATION, 2003. 22: p. 79^85.
38. Daniel A. Di, G. and K. Garry C., Strong positional preference in the interaction of LNA oligonucleotides with DNA polymerase and proofreading exonuclease activities. Nucleic Acids Research, 2004. 32.
39. Hughesman, C.B., R.F.B. Turner, and C.A. Haynes, Role of the Heat Capacity Change in Understanding and Modeling Melting Thermodynamics of Complementary Duplexes Containing Standard and Nucleobase-Modified LNA. Biochemistry, 2011. 50(23): p. 5354-5368.
40. Doench, J.G. and P.A. Sharp, Specificity of microRNA target selection in translational repression. Genes & Development, 2004. 18(5): p. 504-511.
41. Summerton, J. and D. WELLER, Morpholino antisense oligomers: design, preparation, and properties. Antisense and Nucleic Acid Drug Development, 1997. 7(3): p. 187-195.
42. Summerton, J., Morpholino antisense oligomers: the case for an RNase H-independent structural type. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression, 1999. 1489(1): p. 141-158.
43. Zhang, G.-J., et al., Morpholino-functionalized silicon nanowire biosensor for sequence-specific label-free detection of DNA. Biosensors and Bioelectronics, 2010. 25(11): p. 2447-2453.
44. Koole, L.H., et al., Synthesis of phosphate-methylated DNA fragments using 9-fluorenylmethoxycarbonyl as transient base protecting group. The Journal of Organic Chemistry, 1989. 54(7): p. 1657-1664.
45. Kuijpers, W., et al., Synthesis of well-defined phosphate-methylated DNA fragments: the application of potassium carbonate in methanol as deprotecting reagent. Nucleic acids research, 1990. 18(17): p. 5197-5205.
46. van Genderen, M.H., L.H. Koole, and H.M. Buck, Hybridization of phosphate?methylated DNA and natural oligonucleotides. Implications for protein?induced DNA duplex destabilization. Recueil des Travaux Chimiques des Pays-Bas, 1989. 108(1): p. 28-35.
47. Coenen, A., et al., Optimization of the separation of the Rp and Sp diastereomers of phosphate-methylated DNA and RNA dinucleotides. Journal of Chromatography A, 1992. 596(1): p. 59-66.
48. Miller, P.S., et al., Syntheses and properties of adenine and thymine nucleoside alkyl phosphotriesters, the neutral analogs of dinucleoside monophosphates. Journal of the American Chemical Society, 1971. 93(24): p. 6657.
49. Miller, P.S., L.T. Braiterman, and P.O. Ts′o, Effects of a trinucleotide ethyl phosphotriester, Gmp (Et) Gmp (Et) U, on mammalian cells in culture. Biochemistry, 1977. 16(9): p. 1988-1996.
50. Buck, H.M., A conformational BZ DNA study monitored with phosphatemethylated DNA as a model for epigenetic dynamics focused on 5-(hydroxy) methylcytosine. 2013.
51. 陳奕儒, 探討中性 DNA 與一般 DNA 雜交反應熱力學 與結合機制之研究, 2016, 國立中央大學.
52. 林仲恩, 利用SPRi探討中性DNA探針相較於一般DNA探針在低鹽雜交環境下之優勢, 2016, 國立中央大學.
53. 蔡致勤, 使用不帶電中性核酸探針於矽奈米線場效電晶體檢測去氧核醣核酸與微核醣核酸之研究, 2016, 國立中央大學.
54. Rogers, Y. and H. Muller, A framework for designing sensor-based interactions to promote exploration and reflection in play. International Journal of Human-Computer Studies, 2006. 64(1): p. 1-14.
55. Wu, P., S.-i. Nakano, and N. Sugimoto, Temperature dependence of thermodynamic properties for DNA/DNA and RNA/DNA duplex formation. European Journal of Biochemistry, 2002. 269(12): p. 2821-2830.
56. Kurreck, J., et al., Design of antisense oligonucleotides stabilized by locked nucleic acids. Nucleic Acids Research, 2002. 30(9): p. 1911-1918.
57. Kaur, H., J. Wengel, and S. Maiti, Thermodynamics of DNA?RNA Heteroduplex Formation:? Effects of Locked Nucleic Acid Nucleotides Incorporated into the DNA Strand. Biochemistry, 2008. 47(4): p. 1218-1227.
58. Kumar, N. and S. Maiti, Role of Locked Nucleic Acid Modified Complementary Strand in Quadruplex/Watson?Crick Duplex Equilibrium. The Journal of Physical Chemistry B, 2007. 111(42): p. 12328-12337.
59. Sugimoto, N., et al., Thermodynamic Parameters To Predict Stability of RNA/DNA Hybrid Duplexes. Biochemistry, 1995. 34(35): p. 11211-11216.
60. Koshkin, A.A., et al., LNA (locked nucleic acid): an RNA mimic forming exceedingly stable LNA: LNA duplexes. Journal of the American Chemical Society, 1998. 120(50): p. 13252-13253.
61. McTigue, P.M., R.J. Peterson, and J.D. Kahn, Sequence-dependent thermodynamic parameters for locked nucleic acid (LNA)-DNA duplex formation. Biochemistry, 2004. 43(18): p. 5388-5405.
62. Kierzek, E., et al., Contributions of stacking, preorganization, and hydrogen bonding to the thermodynamic stability of duplexes between RNA and 2′-O-methyl RNA with locked nucleic acids. Biochemistry, 2009. 48(20): p. 4377-4387.
63. Zippelius, A., et al., Analytical Variables of Reverse Transcription-Polymerase Chain Reaction-based Detection of Disseminated Prostate. Clinical Cancer Research, 2000. 6: p. 2741–2750.
64. Cline, J., J.C. Braman, and H.H. Hogrefe, PCR fidelity of pfu DNA polymerase and other thermostable DNA polymerases. Nucleic Acids Research, 1996. 24(18): p. 3546-3551.
65. Rolfs, A., et al., PCR principles and reaction components., in PCR: Clinical Diagnostics and Research1992, Springer-Verlag: New York:. p. 1-21.
66. Stoneking, M., Single nucleotide polymorphisms: From the evolutionary past. Nature, 2001. 409(6822): p. 821-822.
67. Mandelkern, M., et al., The dimensions of DNA in solution. Journal of molecular biology, 1981. 152(1): p. 153-161.
68. Ugozzoli, L.A., et al., Real-time genotyping with oligonucleotide probes containing locked nucleic acids. Analytical Biochemistry, 2004. 324(1): p. 143-152.
69. Chakravarti, A., Single nucleotide polymorphisms:... to a future of genetic medicine. Nature, 2001. 409(6822): p. 822-823.
70. Chou, L., et al., Unlabeled oligonucleotide probes modified with locked nucleic acids for improved mismatch discrimination in genotyping by melting analysis. Biotechniques, 2005. 39(5): p. 644.
71. Du, H., et al., Sensitivity and specificity of metal surface-immobilized “molecular beacon” biosensors. Journal of the American Chemical Society, 2005. 127(21): p. 7932-7940.
72. You, Y., et al., Design of LNA probes that improve mismatch discrimination. Nucleic Acids Res, 2006. 34(8): p. e60.
73. Clanton-Arrowood, K., J. McGurk, and S.J. Schroeder, 3′ Terminal Nucleotides Determine Thermodynamic Stabilities of Mismatches at the Ends of RNA Helices?. Biochemistry, 2008. 47(50): p. 13418-13427.
74. Ohmichi, T., et al., Long RNA Dangling End Has Large Energetic Contribution to Duplex Stability. Journal of the American Chemical Society, 2002. 124(35): p. 10367-10372.
75. Johnson, S.J. and L.S. Beese, Structures of mismatch replication errors observed in a DNA polymerase. Cell, 2004. 116(6): p. 803-816.
76. Xiang-jun, H., et al., Increasing specificity of real time PCR to detect microRNA through primer design and annealing temperature increase. journal of Peking University (Health Science), 2009. 41: p. 691-698.
77. Boyerinas, B., et al., The role of let-7 in cell differentiation and cancer. Endocrine-related cancer, 2010. 17(1): p. F19-F36.
78. Rychlik, W., W.J. Spencer, and R.E. Rhoads, Optimization of the annealing temperature for DNA amplification in vitro. Nucleic Acids Research, 1990. 18(21): p. 6409-6412.
79. Johnson, L.A., et al., Optimizing a PCR protocol for cpn60-based microbiome profiling of samples variously contaminated with host genomic DNA. BMC Research Notes, 2015. 8(1): p. 1-9.
80. Choi, H., et al., Highly Specific Detection of Five Exotic Quarantine Plant Viruses using RT-PCR. The Plant Pathology Journal, 2013. 29(1): p. 99-104.
81. Ventura, A., et al., Targeted deletion reveals essential and overlapping functions of the miR-17~92 family of miRNA clusters. Cell, 2008. 132(5): p. 875-886.
指導教授 陳文逸(Wen-Yih Chen) 審核日期 2017-1-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明