博碩士論文 103326001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:3.138.68.161
姓名 陳俊翔(Jun-Xiang Chen)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 結合錳基觸媒及非熱電漿技術提升SCR活性之研究
(Combining nonthermal plasma with Mn-based catalyst for higher SCR activity)
相關論文
★ 國內汽車業表面塗裝製程VOCs減量技術探討★ 光電廠溫室效應氣體排放量推估-以龍潭廠區為例
★ 受苯、甲苯與1,2-二氯乙烷污染場址之案例研究★ TFT-LCD產業揮發性有機物(VOCs)空氣污染之減量與防制之研究
★ 膠帶製造業VOCs排放與防制效率之探討★ 校園環境噪音對國三學生煩擾度及學習成就的影響-以桃園縣某國中為例
★ 醫療業從業人員職業災害分析探討-以某區域醫院為例★ 面板製程之有害物暴露評估-以A廠為例
★ 更換低噪音工具以改善廠房噪音之研究-以汽車製造A廠為例★ 以高溫熔融還原法回收不銹鋼集塵灰中鉻與鎳之效益探討
★ 以介電質放電技術轉化四氟甲烷及六氟乙烷之初步探討★ 垃圾焚化爐空氣污染控制設備影響戴奧辛排放特性之初步探討
★ 以活性碳吸附煙道排氣中戴奧辛之初步研究★ 以低溫電漿去除揮發性有機物之研究
★ 北台灣大氣環境中戴奧辛濃度之分布特性研究★ 介電質放電技術控制小型重油鍋爐氮氧化物排放之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 氮氧化物(NOx)排放及其衍生之二次污染已成為全球重要的空氣汙染問題,對人體健康及環境造成深遠的影響,包含酸雨、光化學煙霧、水體品質、能見度降低及人體呼吸系統疾病等。於去除氮氧化物技術中,以SCR技術具有高轉化效率,但典型之SCR觸媒卻只在250~400oC溫度區間有好的轉化效果,於較低溫度下,無法有效轉化NOx,因此仍有改善空間。本研究以錳觸媒為基底,旨在探討於低溫條件對NO之去除效率,並結合非熱電漿進一步使錳基觸媒行fast-SCR反應以提升NO轉化效率。
本研究分為兩主軸,其一為利用含浸法製備錳基觸媒,並以Ce、Ni和Cu金屬改質觸媒活性相,分別製備10 wt.% MnCe/TiO2、10 wt.% MnCeNi/TiO2及10 wt.% MnCeCu/TiO2等三種觸媒,比較三種觸媒之活性與基本物化特性,並藉由操作參數瞭解觸媒的適用性。研究結果顯示10 wt.% MnCeNi/TiO2觸媒可於150oC達100% NO轉化效率,而10% wt. MnCe/TiO2及10% wt. MnCeCu/TiO2則需200oC才可將NO完全轉化,因此以10% wt. MnCeNi/TiO2觸媒進行後續實驗。其二為使用非熱電漿進行氣體組成調整,使氣流中之NO及NO2濃度略等量,以達fast-SCR反應條件,結果顯示於15.5 kV和10kHz之操作條件可使氣流中300 ppm NO有效轉化成165 ppm NO及153 ppm NO2,並於電漿系統下游端串接10 wt.% MnCeNi/TiO2觸媒,於100oC即可有效將NO完全轉化。在同時含有CO、CO2、C2H4、水氣及二氧化硫的氣體組成,可藉由電漿觸媒系統於100oC達90%NO轉化效率,整體而言,非熱電漿結合本研究改質之錳基觸媒具有於低溫下有效還原氮氧化物之效果,具實際應用潛力。
摘要(英) Nitrogen oxides (NOx) has been regarded as one of the most serious air pollutants. It not only causes adverse environmental effects such as acid rain, photochemical smog, deterioration of visibility and water quality, but also harms human respiratory system. Among de-NOx technologies, selective catalytic reduction (SCR) is considered as the best control technology for NOx removal. However, SCR typically needs to be operated at a temperature window ranging from 250 to 400oC. If the system is operated at lower temperatures, NOx could not be reduced effectively. The aim of this study is to develop a low-temperature de-NOx technique via plasma catalysis and fast-SCR for effective NO reduction. This study could be divided into 2 aspects: (1) Mn-catalysts modified (including 10 wt.% MnCe/TiO2, 10 wt.% MnCeNi/TiO2 and 10 wt.% MnCeCu/TiO2) for de-NOx, (2) combining plasma catalysis and fest-SCR for de-NOx. Experimental results indicate that NO conversion achieved with 10 wt.% MnCeNi/TiO2 reaches 100% at 150oC, while 10 wt.% MnCe/TiO2 and 10 wt.% MnCeCu/TiO2 need to be operated at ?200oC for complete conversion. MnCeNi/TiO2 is further applied for plasma catalysis system due to its higher activities. Results indicate that 300 ppm NO could be converted into 165 ppm NO and 153 ppm NO2 with the applied voltage of 15.5 kV and frequency of 10 kHz and 100% NO conversion is achieved at 100oC by fast-SCR. Moreover, NO conversion still maintains 90% at 100oC with plasma catalysis system as CO, CO2, C2H4, SO2 and H2O(g) are introduced into the stream gas simultaneously. Overall, this study demonstrates that combining nonthermal plasma with Mn-based catalyst is effective in reducing NOx emission at a low temperature and has good potential for industrial application.
關鍵字(中) ★ 氮氧化物
★ 選擇性觸媒還原法
★ 非熱電漿
★ 電漿催化
關鍵字(英) ★ NOx
★ SCR
★ nonthermal plasma
★ plasma catalysis
論文目次 中文摘要 I
Abstract II
目錄 III
圖目錄 VI
表目錄 VIII
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 3
第二章 文獻回顧 5
2.1 氮氧化物之特性、危害及污染源 5
2.1.1. 氮氧化物之基本特性 5
2.1.2. 氮氧化物來源 7
2.1.3. 氮氧化物造成之危害 7
2.2 氮氧化物生成機制 9
2.3 氮氧化物控制技術 13
2.3.1. 燃燒前處理 (Precombustion Treatment) 13
2.3.2. 燃燒程序修正 (Combustion Modification) 13
2.3.3. 燃燒後處理 (Post Combustion Removal ) 16
2.4 選擇性觸媒還原法(SCR) 19
2.4.1. SCR介紹 19
2.4.2. SCR商業化觸媒 21
2.4.3. 低溫SCR觸媒 22
2.4.4. 觸媒表面之酸位基 27
2.4.5. SCR應用於柴油引擎排氣處理 28
2.5 Fast-SCR 30
2.6 反應動力探討 32
2.6.1. 觸媒異相反應模式 32
2.6.2. Arrhenius 方程式 33
2.7 電漿 34
2.7.1. 電漿簡介與其生成原理 34
2.7.2. 電漿性質與種類 36
2.7.3. 雙階段NTP結合觸媒之SCR反應 41
2.8 文獻總結 45
第三章 研究方法與設備 47
3.1 研究流程與架構 47
3.2 預備實驗 49
3.2.1. 觸媒製備 49
3.2.2. 觸媒材料之物化特性分析 50
3.3 實驗系統 54
3.4 實驗分析方法 56
3.4.1. 反應器 56
3.4.2. 實驗藥品與氣體 57
3.4.3. 分析系統 58
3.5 研究方法 60
3.6 實驗結果之計算 64
第四章 結果與討論 65
4.1 觸媒物化特性 65
4.1.1. BET氮氣吸脫附測試 65
4.1.2. XRD晶相分析 66
4.1.3. FE-SEM分析 66
4.1.4. SEM-EDS 元素分析 67
4.1.5. ESCA (XPS) 特性分析 68
4.1.6. H2-TPR 72
4.1.7. TGA之分析 73
4.2 Mn-based catalyst 測試 75
4.2.1. 溫度對於SCR反應之影響 75
4.2.2. 氧含量對於SCR反應之影響 76
4.2.3. 空間流速對SCR反應之變化 77
4.2.4. 觸媒之長效性測試 78
4.2.5. 水氣與二氧化硫對觸媒之影響 79
4.3 觸媒之動力分析 81
4.4 電漿輔助系統 84
4.4.1. 電漿輔助之SCR成效 85
4.4.2. 放電電壓對NO2/NO比值之影響 89
4.4.3. 放電頻率對NO2/NO比值之影響 89
4.4.4. 不同氧氣含量對NO2/NO比值之影響 91
4.4.5. 不同NO入口濃度對電漿放電之影響 92
4.4.6. 不同進氣組成之影響 93
4.4.7. 模擬柴油引擎氣氛 99
第五章 結論與建議 102
5.1 結論 102
5.2 建議 103
參考文獻 104
參考文獻 Alemany L.J., Lietti L., Ferlazzo N., Forzatti P., Busca G., Giamello E. and Bregani F. "Reactivity and physicochemical characterization of V2O5-WO3/TiO2 De-NOx catalysts." Journal of Catalysis 155(1): pp. 117-130. 1995
Amores J.G., Escribano V.S., Ramis G., Busca G. "An FT-IR study of ammonia adsorption and oxidation over anatase-supported metal oxides. " Applied Catalysis B: Environmental (13) : pp. 45-58. 1997
Angelos K. "NOx emissions controls gas and oil-fired boilers." ABBC-E Services Inc. 1994
Bebar L., Kermes V., Stehlik P., Canek J., Oral F, "Low NOx burners-prediction of emissions concentration based on design, measurements and modelling." Waste Management 22 : pp. 443-451. 2002
Broer S. and Hammer T. "Selective catalytic reduction of nitrogen oxides by combining a non-thermal plasma and a V2O5-WO3/TiO2 catalyst." Applied Catalysis B: Environmental 28(2): pp. 101-111. 2000
Casagrande L., Lietti L., Nova I., Forzatti P. and Baiker A. "SCR of NO by NH3 over TiO2-supported V2O5–MoO3 catalysts: reactivity and redox behavior." Applied Catalysis B: Environmental 22(1): pp. 63-77. 1999
Casanova M., Schermanz K., Llorca J. and Trovarelli A. "Improved high temperature stability of NH3-SCR catalysts based on rare earth vanadates supported on TiO2WO3SiO2." Catalysis Today 184(1): pp. 227-236. 2012
Chae J.O. "Non-thermal plasma for diesel exhaust treatment." Journal of Electrostatics 57(3–4): pp. 251-262. 2003
Chang J.S., Looy P.C., Nagai K., Yoshioka T., Aoki S. and Maezawa A. "Preliminary pilot plant tests of a corona discharge-electron beam hybrid combustion flue gas cleaning system." IEEE Transactions on Industry Applications 32(1): pp. 131-137. 1996
Cheng K., Liu J., Zhang T., Li J., Zhao Z., Wei Y., Jiang G. and Duan A. "Effect of Ce doping of TiO2 support on NH3-SCR activity over V2O5-WO3/CeO2-TiO2 catalyst." Journal of Environmental Sciences 26(10): pp. 2106-2113. 2014
Cho B.K., Lee J.H., Crellin C.C., Olson K.L., Hilden D.L., Kim M.K., Kim P.S., Heo I., Oh S.H. and Nam I.S. "Selective catalytic reduction of NOx by diesel fuel: Plasma-assisted HC/SCR system." Catalysis Today 191(1): pp. 20-24. 2012
Cimino S., Lisi L. and Tortorelli M. "Low temperature SCR on supported MnOx catalysts for marine exhaust gas cleaning: Effect of KCl poisoning." Chemical Engineering Journal 283: pp. 223-230. 2016
Dudnikov V. and Dudnikov A. "Radio frequency discharge with control of plasma potential distributiona." Review of Scientific Instruments 83(2): pp. 02-720. 2012
Eliasson B. and Kogelschatz U. "Modeling and applications of silent discharge plasmas." IEEE Transactions on Plasma Science 19(2): pp. 309-323. 1991
Fang D., Xie J., Hu H., Yang H., He F. and Fu Z. "Identification of MnOx species and Mn valence states in MnOx/TiO2 catalysts for low temperature SCR." Chemical Engineering Journal (271): pp. 23-30. 2015
Fenimore C.P. "Quenched carbon monoxide in fuel-lean flame gas.” Combustion and Flame." (22): pp. 343-351. 1974
Foix M., Guyon C., Tatoulian M. and Da Costa P. "Study of the use of fluidized bed plasma reactors for the treatment of alumina supported palladium catalyst: Application for SCR NOx by CH4 in stationary sources." Catalysis Communications 12(1): pp. 20-24. 2010
Fu S.l., Song Q. and Yao Q. "Mechanism study on the adsorption and reactions of NH3, NO, and O2 on the CaO surface in the SNCR deNOx process." Chemical Engineering Journal 285: pp. 137-143. 2016
Grossale A., Nova I., Tronconi E., Chatteriee D. Weibel M. "The chemistry of the NO/NO2-NH3 fast SCR reaction over Fe-ZSM5 investigated by transient reactionn analysis" Journal of Catalysis 256 : pp 312-322. 2008
Hans B. and Janssen. F. "Formation and control of nitrogen oxides." Catalysis Today (2): pp. 369-379. 1988
Iwasaki M. and Shinjoh H. "A comparative study of “standard”, “fast” and “NO2” SCR reactions over Fe/zeolite catalyst." Applied Catalysis A: General 390(1–2): pp. 71-77. 2010
Jin R., Liu Y., Wang Y., Cen W., Wu Z., Wang H. and Weng X. "The role of cerium in the improved SO2 tolerance for NO reduction with NH3 over Mn-Ce/TiO2 catalyst at low temperature." Applied Catalysis B: Environmental (148–149): pp. 582-588. 2014
Kang M., Kim D., Park E., Kim J., Yie J., Kim S., Hopeweeks L. and Eyring E. "Two-stage catalyst system for selective catalytic reduction of NOx by NH3 at low temperatures." Applied Catalysis B: Environmental 68(1-2): pp. 21-27. 2006
Kim H.H. "Nonthermal plasma Processing for air-pollution control: A historical review, current issues, and future prospects." Plasma Processes and Polymers 1(2): pp. 91-110. 2004
Kong M., Liu Q., Wang X., Ren S., Yang J., Zhao D., Xi W. and Yao L. "Performance impact and poisoning mechanism of arsenic over commercial V2O5–WO3/TiO2 SCR catalyst." Catalysis Communications (72): pp. 121-126. 2015
Kwon D.W., Nam K.B. and Hong S.C. "The role of ceria on the activity and SO2 resistance of catalysts for the selective catalytic reduction of NOx by NH3." Applied Catalysis B: Environmental (166–167): pp. 37-44. 2015
Kyriienko P., Popovych N., Soloviev S., Orlyk S. and Dzwigaj S. "Remarkable activity of Ag/Al2O3/cordierite catalysts in SCR of NO with ethanol and butanol." Applied Catalysis B: Environmental (140–141): pp. 691-699. 2013
Ladislav B., Vit K., Petr S., Josef C. and Oral J. "Low NOx burners-prediction of emissions concentration based on design, measurements and modellin." Waste Management (22): pp. 443-451. 2002
Lee K.J., Kumar P.A., Maqbool M.S., Rao K.N., Song K.H. and Ha H.P. "Ceria added Sb-V2O5/TiO2 catalysts for low temperature NH3 SCR: Physico-chemical properties and catalytic activity." Applied Catalysis B: Environmental (142–143): pp. 705-717. 2013
Lee M.S., Su Kim S. and Chang Hong S. "Systematic mechanism study of the high temperature SCR of NOx by NH3 over a W/TiO2 catalyst." Chemical Engineering Science (79): pp. 177-185. 2012
Lei Z., Han B., Yang K. and Chen B. "Influence of H2O on the low-temperature NH3-SCR of NO over V2O5/AC catalyst: An experimental and modeling study." Chemical Engineering Journal (215–216): pp. 651-657. 2013
Lin C.H. and Bai H. "Adsorption behavior of moisture over a Vanadia/Titania catalyst:? A study for the selective catalytic reduction process." Industrial & Engineering Chemistry Research 43(19): pp. 5983-5988. 2004
Liu C., Chen L., Li J., Ma L., Arandiyan H., Du Y., Xu J. and Hao J. "Enhancement of activity and sulfur resistance of CeO2 supported on TiO2–SiO2 for the selective catalytic reduction of NO by NH3." Environmental Science & Technology 46(11): pp. 6182-6189. 2012
Liu Z., Li J. and Hao J. "Selective catalytic reduction of NOx with propene over SnO2/Al2O3 catalyst." Chemical Engineering Journal 165(2): pp. 420-425. 2010
Ma Z., Wu X., Feng Y., Si Z. and Weng D. "Effects of WO3 doping on stability and N2O escape of MnOx–CeO2 mixed oxides as a low-temperature SCR catalyst." Catalysis Communications (69): pp. 188-192. 2015
Ma Z., Wu X., Feng Y., Si Z., Weng D. and Shi L. "Low-temperature SCR activity and SO2 deactivation mechanism of Ce-modified V2O5–WO3/TiO2 catalyst." Progress in Natural Science: Materials International 25(4): pp. 342-352. 2015
Miessner.H., Francke K.P., Rudolph R. and Hammer T. "NOx removal in excess oxygen by plasma-enhanced selective catalytic reduction." Catalysis Today 75(1–4): pp. 325-330. 2002
Miller J.A. and Bowman C.T. "Mechanism and modeling of nitrogen chemistry in combustion." Progress in Energy and Combustion Science 15(4): pp. 287-338. 1989
Miyamoto A., Kobayashi K., Inomata M. and Murakami Y. "Nitrogen-15 tracer investigation of the mechanism of the reaction of nitric oxide with ammonia on vanadium oxide catalysts." The Journal of Physical Chemistry 86(15): pp. 2945-2950. 1982
Mrad R., Aissat A., Cousin R., Courcot D. and Siffert S. "Catalysts for NOx selective catalytic reduction by hydrocarbons (HC-SCR)." Applied Catalysis A: General 504: pp. 542-548. 2015
Nehra V., Kumar A. and Dwivedi. H.K. "Atmospheric non-thermal plasma source." International Journal of Engineering(2): pp. 53-68. 2008
Niu J., Yang X., Zhu A., Shi L., Sun Q., Xu Y. and Shi C. "Plasma-assisted selective catalytic reduction of NOx by C2H2 over Co-HZSM-5 catalyst." Catalysis Communications 7(5): pp. 297-301. 2006
Panagiotis G.S., Pavani M.S, Donovan A.P. and Jenkins R.G. "Manganese oxide catalysts supported on TiO2, Al2O3, and SiO2: A Comparison for low-temperature SCR of NO with NH3." Industrial & Engineering Chemistry Research: pp. 2006
Peng Y., Liu C., Zhang X. and Li J. "The effect of SiO2 on a novel CeO2–WO3/TiO2 catalyst for the selective catalytic reduction of NO with NH3." Applied Catalysis B: Environmental (140-141): pp. 276-282. 2013
Phil H.H., Reddy M.P., Kumar P.A., Ju L.K. and Hyo J.S. "SO2 resistant antimony promoted V2O5/TiO2 catalyst for NH3-SCR of NOx at low temperatures." Applied Catalysis B: Environmental (78): pp. 301-308. 2008
Prathap C. and Ray A. "Investigation of nitrogen dilution effects on the laminar burning velocity and flame stability of syngas fuel at atmospheric condition." Combustion and Flame (155): pp. 145-160. 2008
Putluru S.S.R., Schill L., Jensen A.D., Siret B., Tabaries F. and Fehrmann R. "Mn/TiO2 and Mn–Fe/TiO2 catalysts synthesized by deposition precipitation—promising for selective catalytic reduction of NO with NH3 at low temperatures." Applied Catalysis B: Environmental (165): pp. 628-635. 2015
Qi G., Yang R.T. and Chang R. "MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures." Applied Catalysis B: Environmental (51): pp. 93-106. 2004
Raizer Y.P., Allen J.E. and Kisin V.I. "Gas discharge physics." Springer-Verlag Berlin Heidelberg: pp. 8-33. 1991
Shen B., Wang Y., Wang F. and Liu T. "The effect of Ce–Zr on NH3-SCR activity over MnOx(0.6)/Ce0.5Zr0.5O2 at low temperature." Chemical Engineering Journal (236): pp. 171-180. 2014
Shi C., Zhang Z. C., Crocker M., Xu L., Wang C. Y., Au C. Y., Zhu A. M. "Non-thermal plasma-assisted NOx storage and reduction on a LaMn0.9Fe0.1O3 perovskite catalyst." Catalysis Today (211): pp. 96-103. 2013
Sultana A., Sasaki M., Suzuki K. and Hamada H. "Tuning the NOx conversion of Cu-Fe/ZSM-5 catalyst in NH3-SCR." Catalysis Communications (41): pp. 21-25. 2013
Sun C., Zhao N., Zhuang Z., Wang H., Liu Y., Weng X. and Wu Z. "Mechanisms and reaction pathways for simultaneous oxidation of NOx and SO2 by ozone determined by in situ IR measurements." Journal of Hazardous Materials (274): pp. 376-383. 2014
Tang X., Hao J., Xu W. and Li J. "Low temperature selective catalytic reduction of NOx with NH3 over amorphous MnOx catalysts prepared by three methods." Catalysis Communications (8): pp. 329-334. 2007
Thirupathi B. and Smirniotis P.G. "Co-doping a metal (Cr, Fe, Co, Ni, Cu, Zn, Ce, and Zr) on Mn/TiO2 catalyst and its effect on the selective reduction of NO with NH3 at low-temperatures." Applied Catalysis B: Environmental (110): pp. 195-206. 2011
Tonkyn R.G., Barlow S.E. and Hoard J.W. "Reduction of NOx in synthetic diesel exhaust via two-step plasma-catalysis treatment." Applied Catalysis B: Environmental (40): pp. 207-217. 2003
Van C.J., De G.J., Block C. and Vandecasteele C. "NOx reduction in waste incinerators by selective catalytic reduction (SCR) instead of selective non catalytic reduction (SNCR) compared from a life cycle perspective: a case study." Journal of Cleaner Production (112): pp. 4452-4460. 2016
Van D.R., Crociani G., Fontaine M., Hafker W., Goodsell P., Lsaak G., Marvill J., Sutherlan H.and Schipper H."Best available technigues to reduce emission form refineries-air." Concawe: pp. 17-26. 1999
Vandenbroucke, A.M., Morent, R., De Geyter, N., Leys, C.,"Non-thermal plasmas for non-catalytic and catalytic VOC abatement." Journal of Hazardous Materials (195): pp. 30-54. 2011
Waibel. R.T. "Ultralow NOx burners for industrial process heaters." John Zink company: pp. 19-22. 1993
Wan Y., Zhao W., Tang Y., Li L., Wang H., Cui Y., Gu J., Li Y. and Shi J. "Ni-Mn bi-metal oxide catalysts for the low temperature SCR removal of NO with NH3." Applied Catalysis B: Environmental (148-149): pp. 114-122. 2014
Yu J., Guo F., Wang Y., Zhu J., Liu Y., Su F., Gao S. and Xu G. "Sulfur poisoning resistant mesoporous Mn-base catalyst for low-temperature SCR of NO with NH3." Applied Catalysis B: Environmental (95): pp. 160-168. 2010
Yuan J.J. "Prediction of NOx emissions in recovery boilers-An introduction to NOx module." Process Simulations Ltd: pp. 1999
Zeldovich Y.B. "The oxidation of nitrogen in combustion and explosions." Acta Physicochimica USSR (21): pp. 577-268. 1947
Zhang R., Yang W., Luo N., Li P., Lei Z. and Chen B. "Low-temperature NH3-SCR of NO by lanthanum manganite perovskites: Effect of A-/B-site substitution and TiO2/CeO2 support." Applied Catalysis B: Environmental (146): pp. 94-104. 2014
Zou C., He Y., Song Y., Han Q., Liu Y., Guo F. and Zheng C. "The characteristics and mechanism of the NO formation during oxy-steam combustion." Fuel (158): pp. 874-883. 2015
行政院國家科學委員會,應用統計方法於現場高壓蒸氣鍋爐提昇能源效率且降低氮氧化物排放之製程最適化研究,pp. 2-4,2005
林克衛,柴油引擎氮氧化物防治技術SCR(urea)系統之介紹,財團法人車輛研究測試中心,2015
翁澤民,觸媒焚化處理氣相甲苯之研究,國立中山大學環境工程研究所,2004
高正雄,電漿化學,復漢出版社(台南),1991
中華民國鍋爐協會,鍋爐燃料與燃燒,pp. 67-87,1998
指導教授 張木彬(Moo-Been Chang) 審核日期 2017-1-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明