博碩士論文 103326005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.215.182.36
姓名 黃敬慈(Ching-Tzu Huang)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 利用土壤植栽與固相微萃取探討植作對非離子態有機污染物之吸收模式
(Using pot experiments and SPME to investigate plant uptake of nonionic organic contaminants)
相關論文
★ 埔心溪補助灌溉水水質與渠道底泥重金屬含量調查分析★ 桃園航空城三所國小周界大氣PAHs濃度探討
★ 無塵室揮發性有機氣體異味調查探討 -以某晶圓級封裝廠為例★ 以紫外光/二氧化鈦光催化降解程序去除水溶液相內分泌干擾物質壬基苯酚之研究
★ 異化性鐵還原狀態下非生物性汞氧化還原 作用及其對地下水水質之影響★ 水溶液相中多壁奈米碳管分散懸浮與抑菌效果之相關性探討
★ 鄰近汞排放源之水稻田受現地地質化學與微生物影響之甲基汞生成與累積作用-以北投垃圾焚化爐為例★ 以淨水污泥灰及廢玻璃為矽鋁源合成MCM-41並應用於重鉻酸鹽吸附之研究
★ 鄰近汞排放源之水稻田受現地地質化學與微生物影響之甲基汞生成與累積作用 -以台中火力發電廠為例★ 細胞固定化影響厭氧氨氧化程序脫氮效能之研究
★ 藉由非抗性模式細菌對鎘之攝取機制探討量子點的生態毒性潛勢★ 利用生物性聚合物交聯所成穿透式網絡結構穩定污染土壤中之重金屬(鉛、鉻、鎘)
★ 蚯蚓處理加速堆肥廚餘去化可行性評估-以臺北市為例★ 氣相層析三段四極柱串聯質譜儀應用於多溴二苯醚環境樣品之分析
★ 吸附汞之三價鐵礦於生物還原溶解過程中元素汞的生成與移動潛勢★ 掩埋場滲出水環境之汞甲基化潛勢探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究嘗試以土耕方式探討Chiou等人於2001年所提出的「有效土壤污染濃度」以及植作在土壤環境中對於有機污染物攝取的「分配限制模型」(partition-limited model),並同時試著評估以固相微萃取(solid phase microextraction, SPME)此等被動採樣方法作為代表有機污染物於土壤介質之「生物有效性」(bioavailability)的可行性。植栽試驗的進行乃是將根系作物-白蘿蔔、胡蘿蔔、櫻桃蘿蔔,及葉菜類作物-青江菜,栽種於以壤土為基底混合腐植土/泥炭土所調配而成具有不同土壤有機質含量與不同有機污染物濃度的試驗土壤,待收成後分析土壤與植體食用部位的污染物含量,藉此探討分配模式中各參數與植作所受之實際污染程度間的關聯性為何,以了解土壤、污染物與植作三者間的交互作用,盼能合理預測污染物在土壤宿命中的行為與傳輸作用,進而作為場址整治時植生復育技術的選用以及預警的參考資訊。有機污染物包括多溴二苯醚(BDE-47, 77, 99, 100, 209)、六氯苯(HCB),以及加保扶(carbofuran)。兩次植栽實驗的結果顯示:(1)以土壤有機質標準化後所得的污染濃度(Com)與傳統的土壤全量污染濃度(Cs)相比,前者更能代表植作攝取污染物的程度 (亦即實際的污染強度),且在相同Cs污染濃度下多數植栽於低有機質土壤中的植作所累積的污染物濃度會高於栽種於高有機質土壤所測得的植體污染濃度,與「有效土壤污染濃度」之概念相呼應;(2)植體中所含低溴PBDEs的比例普遍高於土壤,暗示著溴數越低之PBDEs越易被根部吸收進而累積於植體;(3)青江菜比櫻桃蘿蔔更易攝取/累積BDE-209與carbofuran,顯示植體組成中的脂肪較其他組成分更具有主導親脂性溶質的吸收,使得非離子態有機污染物在植體的累積程度與其脂質含量有關;(4)模式計算所得之pt 值(準平衡因子)皆< 1,顯示植栽作物對於試驗用之目標污染物以被動傳輸為主要攝取方式,且pt值皆與污染物的Kow呈反比關係,代表污染物脂溶性越高,則pt值越小,越不易達到系統的分配平衡;(5)藉植作攝取BDE-209與HCB的濃度作為人體攝食途徑以評估攝入人體內的風險性時發現,當植作pt值越高且攝食量提高情況下,人體暴露在此環境下的風險也隨之提高,故或許可利用量測植作pt值作為預測風險的參考依據;(6)最後,SPME試驗因結果未能呈現同於實際植栽測得的濃度趨勢需再進一步測試其試驗方法,選擇適合吸附平衡之材質,且根據分配平衡理論推算的數值與植作實測值間的差異仍需進一步的探討。以上這些結果可看出,雖然本研究的植栽試驗無法直接從數據表明Com與Cpt之間的關係,但整體所觀察到的趨勢仍舊可以與「有效土壤污染濃度」以及「分配限制模型」背後的理論基礎相呼應。
摘要(英) This study intended to explore the concept of “SOM-based contamination effects of organic compounds with common soils” as well as the “partition-limited” model deciphering uptake of organic contaminants by the root of plants/crops proposed by Chiou in 2001 (DOI: 10.1021/es0017561) using pot experiments, and evaluate the feasibility of applying solid-phase microextraction (SPME), one of the passive sampling methods commonly used in studies of the aquatic system, to serve as a surrogate for bioavailability of organic pollutants in soil matrix. Experiments were carried out by cultivating root crops (i.e., white radish, carrot, and cherry radish) and leafy vegetables (i.e., pak-choi) in soil prepared by mixing loam and peat to form soil with varying soil organic matter (SOM) contents that contained different levels of organic compounds including PBDEs (i.e., BDE-47, 77, 99, 100, 209), hexachlorobenzene (HCB), and carbofuran. Concentrations of PBDEs, HCB, and carbofuran in soil and the edible part of harvested crops and vegetables were measured in order to probe the association between the organic contamination level and the soil contamination intensity. Results of the experiments showed that: (i) compared to the concentration in whole soil (Cs), not only did the SOM-based index (Com) provide better association with concentrations of target organic contaminants uptake and accumulation in plants (Cpt), contamination intensity in plants was higher in soil with low-SOM than with high-SOM for most of the plants under the same Cs, consistent with the “effective soil contamination” concept; (ii) the proportion of low-bromine PBDEs in carrots was generally higher than that in soil, suggesting that PBDEs with lower Kow were more easily taken up by plant roots; (iii) uptake of BDE-209 and carbofuran was relatively high in pak-choi to cherry radish, indicating that lipid was the major plant composition governing the accumulation of non-ionized organic pollutants in crops; (iv) all the values of pt (i.e., the quasi-equilibrium factor) obtained from this study were < 1, suggesting that passive transport indeed was the principal uptake pathway of hydrophobic organic compounds in plants; (v) elevated pt corresponded to higher exposure risks, implying that pt may potentially be used as an useful index for risk assessment; (vi) SPME unfortunately provided poor relationship between the soil contamination level and the contamination intensity in terms of adsorption quantity on fibers, which might be due to inappropriate operation and selection of the fiber adsorbent. Overall, results of this study reflected the concept of “SOM-based contamination effects of organic compounds with common soils” and agreed well with the trend predicted by “the partition-limited uptake model”.
關鍵字(中) ★ 非離子態有機污染物
★ 受分配限制的植作吸收模式
★ 植栽試驗
關鍵字(英) ★ non-ionic organic pollutants
★ the partition-limited model plant uptake model
★ pot experiments
論文目次 摘要 I
Abstract III
致謝 V
目錄 VI
圖目錄 IX
表目錄 XII
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 4
2.1 有機污染物於土壤中的傳輸 4
2.1.1 土壤吸持理論 4
2.1.2 土壤污染強度之理論推衍 7
2.1.3 土壤有機質的效應 9
2.2 植作對有機污染物的攝取 11
2.2.1 既有植作吸收模式之架構檢視 11
2.2.2 以分配作用為主(partition-limited)的植作吸收模式 15
2.2.3 植作脂質對於植作攝取/累積有機污染物之影響 20
2.3 固相微萃取 24
2.3.1 可替代植體以做為估算有效土壤污染濃度之化學性方法 24
2.3.2 固相微萃取簡介 25
2.3.3 固相微萃取纖維PDMS-水分配平衡常數 27
2.4 非離子態有機污染物 30
2.4.1 加保扶 30
2.4.2 多溴二苯醚 32
2.4.3 六氯苯 35
第三章 研究方法 37
3.1 研究流程與步驟 37
3.2 植栽試驗 38
3.2.1 土壤前處理 38
3.2.2 製備含不同有機質比例之土壤 38
3.2.3 污染土壤製備 39
3.2.4 植栽植作 41
3.2.5 植作組成分析 44
3.3 SPME 試驗 44
3.4 實驗設備及分析方法 46
3.4.1 實驗設備 46
3.4.2 分析方法 47
3.4.3 健康風險評估方法 50
3.5 實驗材料 52
第四章 結果與討論 54
4.1 第一次植栽試驗 54
4.1.1 植栽試驗土壤製備 54
4.1.2 植作生長及收成情形 56
4.1.3 污染物於植作體內的濃度 61
4.2 第二次植栽試驗 68
4.2.1 植栽試驗土壤製備 68
4.2.2 植作生長及收成情形 69
4.2.3 污染物於植作體內的濃度 76
4.3 植作組成分分析 82
4.4 分配限制模型探討 84
4.5 健康風險評估 88
4.6 固相微萃取濃度 93
第五章 結論與建議 97
5.1 結論 97
5.2 建議 99
參考文獻 100
附錄 107

參考文獻 Alcock, R.E., 2003. Health risks of persistent organic pollutants from long-range transboundary air pollution. Joint WHO/Convention Task Force on the Health Aspects of Air Pollution.
Arnot, J.A., Mackay, D., 2008. Policies for chemical hazard and risk priority setting: can persistence, bioaccumulation, toxicity, and quantity information be combined? ACS Publications.
Arthur, C.L., Pawliszyn, J., 1990. Solid phase microextraction with thermal desorption using fused silica optical fibers. Analytical chemistry 62, 2145-2148.
Barbour, J.P., Smith, J.A., Chiou, C.T., 2005. Sorption of aromatic organic pollutants to grasses from water. Environmental science & technology 39, 8369-8373.
Brand, E., Otte, P., Lijzen, J., 2007. CSOIL 2000 an exposure model for human risk assessment of soil contamination. A model description.
Briggs, G.G., Bromilow, R.H., Evans, A.A., 1982. Relationships between lipophilicity and root uptake and translocation of non?ionised chemicals by barley. Pest Management Science 13, 495-504.
Bromilow, R.H., Chamberlain, K., 1995. Principles governing uptake and transport of chemicals. Lewis Publishers: London.
Carter, L.J., Harris, E., Williams, M., Ryan, J.J., Kookana, R.S., Boxall, A.B., 2014. Fate and uptake of pharmaceuticals in soil–plant systems. Journal of agricultural and food chemistry 62, 816-825.
Chang, M.-l., Wang, M.-j., Kuo, D.T.F., Shih, Y.-h., 2013. Sorption of selected aromatic compounds by vegetables. Ecological engineering 61, 74-81.
Chiou, C.T., 2002. Partition and adsorption of organic contaminants in environmental systems. John Wiley & Sons.
Chiou, C.T., Peters, L.J., Freed, V.H., 1979. A physical concept of soil-water equilibria for nonionic organic compounds. Science 206, 831-832.
Chiou, C.T., Porter, P.E., Schmedding, D.W., 1983. Partition equilibriums of nonionic organic compounds between soil organic matter and water. Environmental Science & Technology 17, 227-231.
Chiou, C.T., Sheng, G., Manes, M., 2001. A Partition-Limited Model for the Plant Uptake of Organic Contaminants from Soil and Water. Environmental Science & Technology 35, 1437-1444.
Chitescu, C.L., Nicolau, A.I., Stolker, A.A.M., 2013. Uptake of oxytetracycline, sulfamethoxazole and ketoconazole from fertilised soils by plants. Food Additives & Contaminants: Part A 30, 1138-1146.
Chow, K.L., Man, Y.B., Tam, N.F.Y., Liang, Y., Wong, M.H., 2015. Uptake and transport mechanisms of decabromodiphenyl ether (BDE-209) by rice (Oryza sativa). Chemosphere 119, 1262-1267.
Collins, C., Fryer, M., Grosso, A., 2006. Plant uptake of non-ionic organic chemicals. Environmental science & technology 40, 45-52.
Crocker, D., 2005. Estimating the exposure of birds and mammals to pesticides in long-term risk assessments. Ecotoxicology 14, 833-851.
Dettenmaier, E., Doucette, W., Bugbee, B., 2009. Chemical hydrophobicity and uptake by plant roots. Environmental Science & Technology 43, 324-329.
Doong, R.-a., Chang, S.-m., 2000. Determination of distribution coefficients of priority polycyclic aromatic hydrocarbons using solid-phase microextraction. Analytical chemistry 72, 3647-3652.
Edwards, C., Beck, S., Lichtenstein, E., 1957. Bioassay of aldrin and lindane in soil. Journal of Economic Entomology 50, 622-626.
Elliott, J., Langelier, K., Mineau, P., Wilson, L., 1996. Poisoning of bald eagles and red-tailed hawks by carbofuran and fensulfothion in the Fraser Delta of British Columbia, Canada. Journal of Wildlife Diseases 32, 486-491.
Evangelou, V., 1998. Environmental soil and water chemistry: principles and applications.
Florence, C., Philippe, L., Magalie, L.-J., 2015. Organochlorine (chlordecone) uptake by root vegetables. Chemosphere 118, 96-102.
Fu, Q., Wu, X., Ye, Q., Ernst, F., Gan, J., 2016. Biosolids inhibit bioavailability and plant uptake of triclosan and triclocarban. Water Research 102, 117-124.
Gao, Y., Zhu, L., Ling, W., 2005. Application of the partition-limited model for plant uptake of organic chemicals from soil and water. Science of the total environment 336, 171-182.
Gomez-Eyles, J.L., Jonker, M.T.O., Hodson, M.E., Collins, C.D., 2012. Passive Samplers Provide a Better Prediction of PAH Bioaccumulation in Earthworms and Plant Roots than Exhaustive, Mild Solvent, and Cyclodextrin Extractions. Environmental Science & Technology 46, 962-969.
Han, B.-C., Jeng, W., Chen, R.-Y., Fang, G., Hung, T., Tseng, R., 1998. Estimation of target hazard quotients and potential health risks for metals by consumption of seafood in Taiwan. Archives Of environmental contamination and toxicology 35, 711-720.
Harris, C.R., Sans, W., 1967. Absorption of organochlorine insecticide residues from agricultural soils by root crops. Journal of agricultural and food chemistry 15, 861-863.
Hayes, A.W., Kruger, C.L., 2014. Hayes′ principles and methods of toxicology. CRC Press.
Hites, R.A., 2004. Polybrominated diphenyl ethers in the environment and in people: a meta-analysis of concentrations. Environmental science & technology 38, 945-956.
Hou, F., Zhao, L., Liu, F., 2016. Determination of Chlorothalonil Residue in Cabbage by a Modified QuEChERS-Based Extraction and Gas Chromatography–Mass Spectrometry. Food Analytical Methods 9, 656-663.
Howard, P.H., 1991. Handbook of environmental fate and exposure data: for organic chemicals, volume III pesticides. CRC press.
Huang, H., Zhang, S., Christie, P., 2011. Plant uptake and dissipation of PBDEs in the soils of electronic waste recycling sites. Environmental Pollution 159, 238-243.
Huang, H., Zhang, S., Christie, P., Wang, S., Xie, M., 2010. Behavior of decabromodiphenyl ether (BDE-209) in the soil? plant system: Uptake, translocation, and metabolism in plants and dissipation in soil. Environmental science & technology 44, 663-667.
Hung, H.-W., Lin, T.-F., Chiou, C.T., 2010. Partition coefficients of organic contaminants with carbohydrates. Environmental science & technology 44, 5430-5436.
Hung, H.-W., Sheng, G.D., Lin, T.-F., Su, Y., Chiou, C.T., 2009. The organic contamination level based on the total soil mass is not a proper index of the soil contamination intensity. Environmental pollution 157, 2928-2932.
Jeffries, J., Martin, I., 2009. Updated technical background to the CLEA model. Environment Agency.
Jonker, M.T., van der Heijden, S.A., Kreitinger, J.P., Hawthorne, S.B., 2007. Predicting PAH bioaccumulation and toxicity in earthworms exposed to manufactured gas plant soils with solid-phase microextraction. Environmental science & technology 41, 7472-7478.
Karickhoff, S.W., Brown, D.S., Scott, T.A., 1979. Sorption of hydrophobic pollutants on natural sediments. Water research 13, 241-248.
Kile, D.E., Chiou, C.T., Zhou, H., Li, H., Xu, O., 1995. Partition of Nonpolar Organic Pollutants from Water to Soil and Sediment Organic Matters. Environmental Science & Technology 29, 1401-1406.
Kvesitadze, G., Khatisashvili, G., Sadunishvili, T., Kvesitadze, E., 2015. Plants for Remediation: Uptake, Translocation and Transformation of Organic Pollutants, Plants, Pollutants and Remediation. Springer, pp. 241-308.
Kvesitadze, G., Khatisashvili, G., Sadunishvili, T., Ramsden, J.J., 2006. Biochemical mechanisms of detoxification in higher plants: basis of phytoremediation. Springer Science & Business Media.
Lu, H., Cai, Q.-Y., Jones, K.C., Zeng, Q.-Y., Katsoyiannis, A., 2014. Levels of organic pollutants in vegetables and human exposure through diet: a review. Critical Reviews in Environmental Science and Technology 44, 1-33.
Lalah, J., Kaigwara, P., Getenga, Z., Mghenyi, J., Wandiga, S., 2001. The major environmental factors that influence rapid disappearance of pesticides from tropical soils in Kenya. Toxicological & Environmental Chemistry 81, 161-197.
Leslie, H.A., Ter Laak, T.L., Busser, F.J., Kraak, M.H., Hermens, J.L., 2002. Bioconcentration of organic chemicals: Is a solid-phase microextraction fiber a good surrogate for biota? Environmental science & technology 36, 5399-5404.
Leung, A.O., Luksemburg, W.J., Wong, A.S., Wong, M.H., 2007. Spatial distribution of polybrominated diphenyl ethers and polychlorinated dibenzo-p-dioxins and dibenzofurans in soil and combusted residue at Guiyu, an electronic waste recycling site in southeast China. Environmental science & technology 41, 2730-2737.
Li, H., Sheng, G., Chiou, C.T., Xu, O., 2005. Relation of organic contaminant equilibrium sorption and kinetic uptake in plants. Environmental science & technology 39, 4864-4870.
Lichtenstein, E., Shulz, K., 1965. Insecticide persistence and translocation, residues of aldrin and heptachlor in soils and their translocation into various crops. Journal of Agricultural and Food Chemistry 13, 57-63.
Lichtenstein, E.P., 1959. Plant absorption of insecticides, absorption of some chlorinated hydrocarbon insecticides from soils into various crops. Journal of Agricultural and Food Chemistry 7, 430-433.
Ma, T., Luo, Y., Christie, P., Teng, Y., Liu, W., 2012. Removal of phthalic esters from contaminated soil using different cropping systems: A field study. European Journal of Soil Biology 50, 76-82.
Mayer, P., Vaes, W.H., Hermens, J.L., 2000a. Absorption of hydrophobic compounds into the poly (dimethylsiloxane) coating of solid-phase microextraction fibers: High partition coefficients and fluorescence microscopy images. Analytical Chemistry 72, 459-464.
Mayer, P., Vaes, W.H., Wijnker, F., Legierse, K.C., Kraaij, R., Tolls, J., Hermens, J.L., 2000b. Sensing dissolved sediment porewater concentrations of persistent and bioaccumulative pollutants using disposable solid-phase microextraction fibers. Environmental Science & Technology 34, 5177-5183.
McKone, T., 1993. CalTOX, a multimedia total exposure model for hazardous-waste sites. Part III: The Multiple Pathway Exposure Model. The Office of Scientific Affairs. Department of Toxic Substances Control. California Environmental Protection Agency. Sacremento, CA.
Menezes Filho, A., dos Santos, F.N., de Paula Pereira, P.A., 2010a. Development, validation and application of a methodology based on solid-phase micro extraction followed by gas chromatography coupled to mass spectrometry (SPME/GC–MS) for the determination of pesticide residues in mangoes. Talanta 81, 346-354.
Menezes Filho, A., dos Santos, F.N., Pereira, P.A.d.P., 2010b. Development, validation and application of a method based on DI-SPME and GC–MS for determination of pesticides of different chemical groups in surface and groundwater samples. Microchemical Journal 96, 139-145.
Mineau, P., Downes, C.M., Kirk, D.A., Bayne, E., Csizy, M., 2005. Patterns of bird species abundance in relation to granular insecticide use in the Canadian prairies. Ecoscience 12, 267-278.
Otieno, P.O., Lalah, J.O., Virani, M., Jondiko, I.O., Schramm, K.-W., 2010. Soil and water contamination with carbofuran residues in agricultural farmlands in Kenya following the application of the technical formulation Furadan. Journal of Environmental Science and Health Part B 45, 137-144.
Rahman, F., Langford, K.H., Scrimshaw, M.D., Lester, J.N., 2001. Polybrominated diphenyl ether (PBDE) flame retardants. Science of the Total Environment 275, 1-17.
Reichenberg, F., Mayer, P., 2006. Two complementary sides of bioavailability: accessibility and chemical activity of organic contaminants in sediments and soils. Environmental Toxicology and Chemistry 25, 1239-1245.
Reid, B.J., Stokes, J.D., Jones, K.C., Semple, K.T., 2000. Nonexhaustive cyclodextrin-based extraction technique for the evaluation of PAH bioavailability. Environmental Science & Technology 34, 3174-3179.
Simonich, S.L., Hites, R.A., 1994. Vegetation-atmosphere partitioning of polycyclic aromatic hydrocarbons. Environmental science & technology 28, 939-943.
Su, Y.-H., Zhu, Y.-G., 2007. Transport mechanisms for the uptake of organic compounds by rice (Oryza sativa) roots. Environmental pollution 148, 94-100.
Takaki, K., Wade, A.J., Collins, C.D., 2014. Assessment of plant uptake models used in exposure assessment tools for soils contaminated with organic pollutants. Environmental science & technology 48, 12073-12082.
Tao, S., Cui, Y.H., Xu, F.L., Li, B.G., Cao, J., Liu, W.X., Schmitt, G., Wang, X.J., Shen, W.R., Qing, B.P., Sun, R., 2004. Polycyclic aromatic hydrocarbons (PAHs) in agricultural soil and vegetables from Tianjin. Science of The Total Environment 320, 11-24.
Trapp, S., Matthies, M., 1995. Generic one-compartment model for uptake of organic chemicals by foliar vegetation. Environmental science & technology 29, 2333-2338.
Urrestarazu Ramos, E., Meijer, S.N., Vaes, W.H., Verhaar, H.J., Hermens, J.L., 1998. Using solid-phase microextraction to determine partition coefficients to humic acids and bioavailable concentrations of hydrophobic chemicals. Environmental science & technology 32, 3430-3435.
Van der Wal, L., Jager, T., Fleuren, R.H., Barendregt, A., Sinnige, T.L., Van Gestel, C.A., Hermens, J.L., 2004a. Solid-phase microextraction to predict bioavailability and accumulation of organic micropollutants in terrestrial organisms after exposure to a field-contaminated soil. Environmental science & technology 38, 4842-4848.
Van der Wal, L., Van Gestel, C.A., Hermens, J.L., 2004b. Solid phase microextraction as a tool to predict internal concentrations of soil contaminants in terrestrial organisms after exposure to a laboratory standard soil. Chemosphere 54, 561-568.
Vieira, F.M.J., Martins, J.E.C., 2006. Porphyria cutanea tarda. Anais brasileiros de dermatologia 81, 573-584.
Vrkoslavova, J., Demnerova, K., Mackova, M., Zemanova, T., Macek, T., Haj?lova, J., Pulkrabova, J., Hradkova, P., Stiborova, H., 2010. Absorption and translocation of polybrominated diphenyl ethers (PBDEs) by plants from contaminated sewage sludge. Chemosphere 81, 381-386.
Williams, M., Martin, S., Kookana, R.S., 2015. Sorption and plant uptake of pharmaceuticals from an artificially contaminated soil amended with biochars. Plant and Soil 395, 75-86.
Yang, C.-Y., Chang, M.-l., Wu, S.C., Shih, Y.-h., 2016. Sorption equilibrium of emerging and traditional organic contaminants in leafy rape, Chinese mustard, lettuce and Chinese cabbage. Chemosphere 154, 552-558.
Yang, C.-Y., Chang, M.-l., Wu, S.C., Shih, Y.-h., 2017. Partition uptake of a brominated diphenyl ether by the edible plant root of white radish (Raphanus sativus L.). Environmental Pollution 223, 178-184.
Yang, Y., Hawthorne, S.B., Miller, D.J., Liu, Y., Lee, M.L., 1998. Adsorption versus absorption of polychlorinated biphenyls onto solid-phase microextraction coatings. Analytical chemistry 70, 1866-1869.
Zhang, Z., Yang, M.J., Pawliszyn, J., 1994. Solid-phase microextraction. A solvent-free alternative for sample preparation. Analytical chemistry 66, 844A-853A.
Zhu, L., Gao, Y., 2004. Prediction of phenanthrene uptake by plants with a partition-limited model. Environmental Pollution 131, 505-508.
Zhu, Y., Zhang, S., Zhu, Y.-G., Christie, P., Shan, X., 2007. Improved approaches for modeling the sorption of phenanthrene by a range of plant species. Environmental science & technology 41, 7818-7823.
Zou, M.-Y., Ran, Y., Gong, J., Mai, B.-X., Zeng, E.y., 2007. Polybrominated diphenyl ethers in watershed soils of the Pearl River Delta, China: occurrence, inventory, and fate. Environmental Science & Technology 41, 8262-8267.
王一雄, 1997. 土壤環境污染與農藥. 明文書局, 初版.
李茂榮, 陳崇宇, 李祖光, 2005. 固相為萃取技術於微量分析之應用. CHEMISTRY (THE CHINESE CHEM. SOC., TAIPEI) Vol 63, 329-342.
楊晴茹, 2014. 比較固相萃取法, 固相微萃取法及分散式液液微萃取結合氣相層析儀偵測水質中多種類型農藥.
謝明凱, 2004. 多氯聯苯於二仁溪之暴露途徑及利用固相微量萃取測定環境介質中之活性. 臺灣大學環境工程學研究所學位論文, 1-150.
指導教授 林居慶(Chu-Ching Lin) 審核日期 2017-4-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明