博碩士論文 103326011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.226.72.118
姓名 廖健捷(Chien-Chieh Liao)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 利用移動式平台量測台灣北部都會區道路上細懸浮微粒在時間與空間上的變化
(Using a Mobile Platform to Characterize Spatial and Temporal Variation of On-road Fine Particles in Northern Taiwan Urban City)
相關論文
★ 熱昇華廢棄相紙資源化研究★ 地勤公司從業人員搬運作業肌肉骨骼傷害風險評估
★ 高階製程安全管理架構★ In Situ Measurements of CCN Activity and Aerosol Optical Properties at Biomass Burning Source and Receptor Regions
★ 以COMSOL Multiphysics模擬氣懸微粒於靜電集塵式細胞株暴露系統中之運動軌跡★ 社區改造碳排放及減量計算分析與探討
★ 中小型燃煤鍋爐粒狀污染物、硫氧化物及氮氧化物經串聯控制設備後之去除效率探討研究-以桃園市為例★ 整合填充型水洗技術於潔淨室外氣空調箱 以去除酸鹼氣態分子污染物之研究
★ 固定污染源揮發性有機物(VOCs)自廠係數建置-以某矽晶圓製造廠為例★ 高層建築大樓室內空氣品質之探討-以某企業大樓為例
★ 公路交通運輸對於山谷地形郊區空氣品質之影響★ 以沸石轉輪焚化系統處理變壓器塗裝作業VOCs效率探討
★ 以數值模擬分析狹縫型虛擬衝擊器之效能★ 研究微粒帶電性質與呼吸毒性之關聯: 以小鼠暴露奈米黑碳微粒實驗為例
★ 靜電集塵式ALI暴露系統之設計、開發與評估★ 以石英晶體微天平量測細懸浮微粒PM2.5質量濃度之可行性探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2022-7-28以後開放)
摘要(中) 道路交通排放為都市環境中細懸浮微粒的重要貢獻來源。暴露於懸浮微粒環境中將可能對人體健康造成負面效應,而都市居民在通勤過程中易受道路上車輛污染排放的影響。超細懸浮微粒(UFP)和黑碳微粒(BC)為機動車輛排放的指標粒狀污染物之一,在道路環境中的濃度常呈現劇烈的時間與空間變化。傳統固定測站可能因涵蓋密度不足,以至於無法有效的捕捉機動車輛排放在道路環境上的時空變化,並有效推估其對於用路人的暴露劑量,故移動式監測方法逐漸受到重視。本研究建置一移動式即時監測系統用於調查台灣北部都會區道路上機動車輛的污染排放資訊,量測台灣北部都會區道路上PM2.5質量濃度、超細懸浮微粒(UFP)之平均幾何粒徑(GMD)與數目濃度(NC)、肺部沉積表面積(LDSA)、黑碳(BC)以及一氧化碳(CO),並探討其在空間與時間的變化。在冬季期間,交通尖峰時刻在繁忙道路上懸浮微粒粒徑約為32.89±6.59 [nm]、UFP數目濃度約為61228±38320 [#/cm3]、PM2.5約為23±8 [μg/m3]、BC約為3.93±2.24 [μg/m3]、LDSA約為229.29±119.99 [μm2/cm3]以及CO約為2.44±2.07 [ppm];在夏季期間微粒粒徑約為39.53±9.62 [nm]、UFP數目濃度約為30318±15844 [cm3]、PM2.5約為18±9 [μg/m3]、BC約為3.93±2.24 [μg/m3]、LDSA約為148.33±87.3 [μm2/cm3]以及CO約為3.46±2.74 [ppm]。量測結果發現PM2.5與道路上交通量沒有一致的變動關係,在道路上各個暫停點所測得的濃度沒有顯著的差異,在一日中亦無明顯變化,較不受到交通尖峰時刻的影響。實驗地區道路整體黑碳平均濃度沒有受到尖峰時刻與季節變化影響,實驗地區整體黑碳濃度屬於較穩定的狀態。但各個暫停點的黑碳BC濃度變化則明顯受交通量變化影響,在空間分佈上高濃度集中在高車流量的道路上。UFP數目濃度容易受到道路上車輛所影響,此外LDSA、CO與UFP數目濃度在道路中的空間變化與交通量有相似的變動趨勢。然而,除道路上車輛數目以外,街道類型與結構也會影響微粒特性在道路環境中的濃度變化。本研究進一步計算LDSA與SMPS所估計微粒表面積濃度的比值(LDSA/SA),此可作為微粒的不規則狀的指標。無論在冬季或夏季LDSA/SA在兩條實驗路徑上沒有發現顯著的差異。LDSA/SA最低值發生在夏季中午,同時比起其他時段UFP數目濃度、LDSA與BC也伴隨著最低的濃度值。車流量與車種組成相關性分析顯示UFP數目濃度和LDSA與三種類型的車輛有顯著的相關性。CO和GMD也發現顯著的相關性,但是GMD的相關係數(r)呈現負值,而CO僅與轎車與機車有顯著相關。
摘要(英) On-road vehicle emission is an important source of contribution for PM2.5 in urban areas.The negative health effects of exposure to PM2.5 and other Traffic related air pollutants(TRAP) is well confirmed.For city dwekkers and cimuters can be exposed to higher concentrations of vehicle emissions. Ultrafine particles (UFP) and Black carbon (BC) are the typical surrogates for vehicle emissions, and they could vary dramatically in space and time within urban microenvironment. This exhibits great challenges for estimating human exposure and the resulting potential health effects. Conventional stationary monitoring stations/networks are not enough to effectively capture TRAPs spatial characteristics.Mobile monitoring approaches have been conducted to address poorly represented by ambient stationary monitoring.In this study, a mobile real-time monitoring system was established to characterize the on-road vehicle emissions along the selected route in different period and season, including particulate matter(PM2.5), UFP size distributions, lung deposition surface area(LDSA) , Black carbon(BC) and carbon monoxide (CO) in an urban city of northern Taiwan. The results showed that the concentration of particles in the experimental area were significant differences in the season.In the winter rush hour, the particle GMD was about 32.89 ± 6.59 [nm], the number of UFP was about 61228±38320 [#/cm3], PM2.5 was about 23±8 [μg/m3], BC was about 3.93±2.24 [μg/m3], the LDSA was about 229.29±119.99 [μm2/cm3] and the CO was about 2.44±2.07 [ppm], in the summer, the GMD was about 39.53±9.62 [nm], the number of UFP was about 30318±1584 [#/cm3], PM2.5 was about 18±9 [μg/m3], BC was about 3.93±2.24 [μg/m3], the LDSA was about 148.33±87.3 [μm2/cm3] and the CO is about 3.46±2.74 [ppm] on the busy road. PM2.5 variation was not in agreement with the traffic fluxes and no significant difference among 14 points in 2 routes and in the day.The variation of BC between each point was partially related to traffic flux, like P1 and P7 with higher traffic fluxes and BC level.However, the overall average concentration of BC was not affected by rush hour and seasonal variations show that on road BC in study area was relatively stable.The UFP number conc. , LDSA and CO in R1 exceed 2 times higher than R2, in cause of the R1 with higher traffic flux than R2.The UFP NC,LDSA and CO had same trend and were agreement with the traffic flux in each point. Traffic-related pollutants levels not only depend on the traffic flux, but also the local topography, such as road intersection or buildings environment around the street.The LDSA/SA ratio indicated that the particle’s irregular level, the ratio was not significant difference between R1 and R2 no matter summer and winter showed that on road PM’s characteristic was same in all time.The LDSA/SA ratio in summer noon was lowest level and the UFP、LDSA and BC identically had lowest level in all season and period of day. The number and LDSA conc. had significant correlation with all three types of vehicles. Significant correlations were also found for CO and GMD, however, GMD’s R shows a negative value.
關鍵字(中) ★ 移動量測
★ 交通相關污物
★ 超細懸浮微粒
★ 細懸浮微粒
★ 時空變化
關鍵字(英) ★ Mobile monitoring
★ Traffic-related air pollution
★ Ultrafine particle
★ Particulate matter
★ Spatial-temporal variance
論文目次 目錄

摘要 II
英文摘要 III
致謝 V
目錄 VI
圖目錄 VIII
表目錄 X
第一章 前言 1
1.1 研究緣起 1
1.2 研究動機 2
1.3 研究目的 4
第二章 文獻回顧 5
2.1 機動車輛排放微粒特性 5
2.1.1 微粒粒徑分佈與數目濃度 5
2.1.2 懸浮微粒表面積濃度 7
2.1.3 交通相關污染物黑碳 8
2.2 移動式量測 9
第三章 研究方法 11
3.1 實驗地點 11
3.2 移動式監測系統 13
3.3 監測儀器原理與數據校正 15
3.3.1 PM2.5的質量濃度 15
3.3.2 微粒粒徑分佈 (PSD) 17
3.3.3 肺部沉積表面積濃度量 (LDSA) 17
3.3.4 黑碳 (Black Carbon) 17
3.3.5 超細懸浮微粒(UFP)數目濃度 19
3.3.6 一氧化碳 (CO) 19
3.4 實驗設計與量測策略 20
第四章 結果與討論 22
4.1 交通量與污染物分析 22
4.1.1 實驗地區交通量與車種組成 22
4.1.2 各暫停點交通量與污染物變化 23
4.2 微粒特性在時空上的變化 30
4.2.1 超細懸浮微粒 (UFP) 30
4.2.2 肺部沉積表面積 (LDSA) 34
4.2.3 細懸浮微粒 (PM2.5) 40
4.2.4 黑碳 (BC) 44
4.2.5 一氧化碳 (CO) 49
第五章 結論 53
參考文獻 55
參考文獻






[1] Z. Tan, Y. Wang, C. Ye, Y. Zhu, Y. Li, P. Liang, et al., ”Evaluating vehicle emission control policies using on-road mobile measurements and continuous wavelet transform: A case study during the Asia-Pacific Economic Cooperation Forum, China 2014,” Atmospheric Chemistry and Physics Discussions, pp. 1-39, 2016.
[2] HEI, Traffic-related air pollution: a critical review of the literature on emissions, exposure, and health effects: Health Effects Institute, 2010.
[3] Z. Bagieński, ”Traffic air quality index,” Science of The Total Environment, vol. 505, pp. 606-614, 2/1/ 2015.
[4] F. Karagulian, C. A. Belis, C. F. C. Dora, A. M. Prüss-Ustün, S. Bonjour, H. Adair-Rohani, et al., ”Contributions to cities′ ambient particulate matter (PM): A systematic review of local source contributions at global level,” Atmospheric Environment, vol. 120, pp. 475-483, 11// 2015.
[5] M. Matti Maricq, ”Chemical characterization of particulate emissions from diesel engines: A review,” Journal of Aerosol Science, vol. 38, pp. 1079-1118, 11// 2007.
[6] WHO, Review of evidence on health aspects of air pollution - REVIHAAP project: Technical report. Regional Office for Europe: World Health Organisation, 2013.
[7] L. W. Stanek, J. D. Sacks, S. J. Dutton, and J. J. B. Dubois, ”Attributing health effects to apportioned components and sources of particulate matter: An evaluation of collective results,” Atmospheric Environment, vol. 45, pp. 5655-5663, Oct 2011.
[8] HEI, Understanding the health effects of ambient ultrafine particles. Boston, MA: Health Effects Institute, 2013.
[9] W. J. Shaughnessy, M. M. Venigalla, and D. Trump, ”Health effects of ambient levels of respirable particulate matter (PM) on healthy, young-adult population,” Atmospheric Environment, vol. 123, pp. 102-111, 2015.
[10] P. S. Gilmour, A. Ziesenis, E. R. Morrison, M. A. Vickers, E. M. Drost, I. Ford, et al., ”Pulmonary and systemic effects of short-term inhalation exposure to ultrafine carbon black particles,” Toxicology and Applied Pharmacology, vol. 195, pp. 35-44, 2/15/ 2004.
[11] M. Pascal, G. Falq, V. Wagner, E. Chatignoux, M. Corso, M. Blanchard, et al., ”Short-term impacts of particulate matter (PM10, PM10–2.5, PM2.5) on mortality in nine French cities,” Atmospheric Environment, vol. 95, pp. 175-184, 10// 2014.
[12] C. A. Pope III, R. T. Burnett, M. J. Thun, E. E. Calle, D. Krewski, K. Ito, et al., ”Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution,” Jama, vol. 287, pp. 1132-1141, 2002.
[13] C. A. Pope and D. W. Dockery, ”Health effects of fine particulate air pollution: Lines that Connect,” Journal of the Air & Waste Management Association, vol. 56, pp. 709-742, 2006.
[14] IARC, ”IARC: Outdoor air pollution a leading environmental cause of cancer deaths,” 2013.
[15] L. Morawska, N. D. Bofinger, L. Kocis, and A. Nwankwoala, ”Submicrometer and supermicrometer particles from diesel vehicle emissions,” Environmental Science & Technology, vol. 32, pp. 2033-2042, 1998/07/01 1998.
[16] Z. D. Ristovski, L. Morawska, N. D. Bofinger, and J. Hitchins, ”Submicrometer and supermicrometer particulate emission from spark ignition vehicles,” Environmental Science & Technology, vol. 32, pp. 3845-3852, 1998/12/01 1998.
[17] N. Englert, ”Fine particles and human health—A review of epidemiological studies,” Toxicology Letters, vol. 149, pp. 235-242, 4/1/ 2004.
[18] A. Nel, T. Xia, L. Madler, and N. Li, ”Toxic potential of materials at the nanolevel,” Science, vol. 311, pp. 622-627, Feb 3 2006.
[19] G. Oberdörster, E. Oberdörster, and J. Oberdörster, ”Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles,” Environmental Health Perspectives, vol. 113, pp. 823-839, 2005.
[20] R. C. Sullivan and S. C. Pryor, ”Quantifying spatiotemporal variability of fine particles in an urban environment using combined fixed and mobile measurements,” Atmospheric Environment, vol. 89, pp. 664-671, 2014.
[21] S. D. Forestieri, S. Collier, T. Kuwayama, Q. Zhang, M. J. Kleeman, and C. D. Cappa, ”Real-time black carbon emission factor measurements from light duty vehicles,” Environmental Science & Technology, vol. 47, pp. 13104-13112, 2013/11/19 2013.
[22] K. Wittmaack, ”In search of the most relevant parameter for quantifying lung inflammatory response to nanoparticle exposure: particle number, surface area, or what?,” Environmental Health Perspectives, vol. 115, p. 187, 2007.
[23] T. Stoeger, C. Reinhard, S. Takenaka, A. Schroeppel, E. Karg, B. Ritter, et al., ”Instillation of six different ultrafine carbon particles indicates a surface area threshold dose for acute lung inflammation in mice,” Environmental Health Perspectives, vol. 114, pp. 328-333, 2006.
[24] G. Oberdörster, E. Oberdörster, and J. Oberdörster, ”Concepts of nanoparticle dose metric and response metric,” Environmental Health Perspectives, vol. 115, pp. A290-A290, 2007.
[25] H. Burtscher, ”Physical characterization of particulate emissions from diesel engines: A review,” Journal of Aerosol Science, vol. 36, pp. 896-932, 2005.
[26] J. Löndahl, A. Massling, E. Swietlicki, E. V. Bräuner, M. Ketzel, J. Pagels, et al., ”Experimentally determined human respiratory tract deposition of airborne particles at a busy street,” Environmental Science & Technology, vol. 43, pp. 4659-4664, 2009/07/01 2009.
[27] L. Isella, B. Giechaskiel, and Y. Drossinos, ”Diesel-exhaust aerosol dynamics from the tailpipe to the dilution tunnel,” Journal of Aerosol Science, vol. 39, pp. 737-758, Sep 2008.
[28] C.-Y. Hsu, M.-Y. Lin, H.-C. Chiang, M.-J. Chen, T.-Y. Lin, and Y.-C. Chen, ”Using a mobile measurement to characterize number, surface area, and mass concentrations of ambient fine particles with spatial variability during and after a PM episode,” Aerosol and Air Quality Research, vol. 16, pp. 1416-1426, 2016.
[29] M. Hatzopoulou, S. Weichenthal, H. Dugum, G. Pickett, L. Miranda-Moreno, R. Kulka, et al., ”The impact of traffic volume, composition, and road geometry on personal air pollution exposures among cyclists in Montreal, Canada,” J Expo Sci Environ Epidemiol, vol. 23, pp. 46-51, Jan-Feb 2013.
[30] M. M. Patel, S. N. Chillrud, J. C. Correa, M. Feinberg, Y. Hazi, K. C. Deepti, et al., ”Spatial and temporal variations in traffic-related particulate matter at New York City high schools,” Atmospheric Environment, vol. 43, pp. 4975-4981, 10// 2009.
[31] P. L. Kinney, M. Aggarwal, M. E. Northridge, N. Janssen, and P. Shepard, ”Airborne concentrations of PM (2.5) and diesel exhaust particles on Harlem sidewalks: a community-based pilot study,” Environmental Health Perspectives, vol. 108, p. 213, 2000.
[32] T. S. Lena, V. Ochieng, M. Carter, J. Holguín-Veras, and P. L. Kinney, ”Elemental carbon and PM(2.5 )levels in an urban community heavily impacted by truck traffic,” Environmental Health Perspectives, vol. 110, pp. 1009-1015, 2002.
[33] A. Bassok, P. M. Hurvitz, C.-H. C. Bae, and T. Larson, ”Measuring neighbourhood air pollution: the case of Seattle′s international district,” Journal of Environmental Planning and Management, vol. 53, pp. 23-39, 2010.
[34] J. J. Buonocore, H. J. Lee, and J. I. Levy, ”The influence of traffic on air quality in an urban neighborhood: a community-university partnership,” Am J Public Health, vol. 99, pp. S629-S635, 2009.
[35] L. T. Padró-Martínez, A. P. Patton, J. B. Trull, W. Zamore, D. Brugge, and J. L. Durant, ”Mobile monitoring of particle number concentration and other traffic-related air pollutants in a near-highway neighborhood over the course of a year,” Atmospheric Environment, vol. 61, pp. 253-264, 2012.
[36] C. H. Yu, Z.-H. Fan, P. J. Lioy, A. Baptista, M. Greenberg, and R. Laumbach, ”A novel mobile monitoring approach to characterize spatial and temporal variation in traffic-related air pollutants in an urban community,” Atmospheric Environment, 2016.
[37] P. Kumar, L. Morawska, W. Birmili, P. Paasonen, M. Hu, M. Kulmala, et al., ”Ultrafine particles in cities,” Environment International, vol. 66, pp. 1-10, 2014.
[38] D. B. Kittelson, ”Engines and nanoparticles: A review,” Journal of Aerosol Science, vol. 29, pp. 575-588, 6/1/ 1998.
[39] D. Westerdahl, S. Fruin, T. Sax, P. M. Fine, and C. Sioutas, ”Mobile platform measurements of ultrafine particles and associated pollutant concentrations on freeways and residential streets in Los Angeles,” Atmospheric Environment, vol. 39, pp. 3597-3610, 6// 2005.
[40] L. Pirjola, P. Paasonen, D. Pfeiffer, T. Hussein, K. Hämeri, T. Koskentalo, et al., ”Dispersion of particles and trace gases nearby a city highway: Mobile laboratory measurements in Finland,” Atmospheric Environment, vol. 40, pp. 867-879, 2// 2006.
[41] A. Schladitz, J. Leníček, I. Beneš, M. Kováč, J. Skorkovský, A. Soukup, et al., ”Air quality in the German–Czech border region: A focus on harmful fractions of PM and ultrafine particles,” Atmospheric Environment, vol. 122, pp. 236-249, 12// 2015.
[42] N. S. Holmes, ”A review of particle formation events and growth in the atmosphere in the various environments and discussion of mechanistic implications,” Atmospheric Environment, vol. 41, pp. 2183-2201, 2007.
[43] J. J. N. Lingard, E. L. Agus, D. T. Young, G. E. Andrews, and A. S. Tomlin, ”Observations of urban airborne particle number concentrations during rush-hour conditions: analysis of the number based size distributions and modal parameters,” Journal of Environmental Monitoring, vol. 8, pp. 1203-1218, 2006.
[44] P. Kumar, A. Robins, S. Vardoulakis, and R. Britter, ”A review of the characteristics of nanoparticles in the urban atmosphere and the prospects for developing regulatory controls,” Atmospheric Environment, vol. 44, pp. 5035-5052, 12// 2010.
[45] M. Kulmala, H. Vehkamäki, T. Petäjä, M. Dal Maso, A. Lauri, V. M. Kerminen, et al., ”Formation and growth rates of ultrafine atmospheric particles: A review of observations,” Journal of Aerosol Science, vol. 35, pp. 143-176, 3// 2004.
[46] D. B. Kittelson, W. F. Watts, and J. P. Johnson, ”Nanoparticle emissions on Minnesota highways,” Atmospheric Environment, vol. 38, pp. 9-19, 1// 2004.
[47] C.-P. Chio and C.-M. Liao, ”Assessment of atmospheric ultrafine carbon particle-induced human health risk based on surface area dosimetry,” Atmospheric Environment, vol. 42, pp. 8575-8584, 12// 2008.
[48] F. Wang, S. Cernuschi, S. Ozgen, G. Ripamonti, R. Vecchi, G. Valli, et al., ”UFP and BC at a mid-sized city in Po valley, Italy: Size-resolved partitioning between primary and newly formed particles,” Atmospheric Environment, vol. 142, pp. 120-131, 2016.
[49] C. Reche, M. Viana, M. Brines, N. Perez, D. Beddows, A. Alastuey, et al., ”Determinants of aerosol lung-deposited surface area variation in an urban environment,” Sci Total Environ, vol. 517, pp. 38-47, Jun 1 2015.
[50] H. Kuuluvainen, T. Ronkko, A. Jarvinen, S. Saari, P. Karjalainen, T. Lande, et al., ”Lung deposited surface area size distributions of particulate matter in different urban areas,” Atmospheric Environment, vol. 136, pp. 105-113, Jul 2016.
[51] A. H. Miguel and A. D. A. Hansen, ”High-time resolution measurements of black carbon particles in the exhaust emissions of a diesel engine during acceleration, deceleration and cruise conditions,” Journal of the Brazilian Chemical Society, vol. 23, pp. 1140-1145, Jun 2012.
[52] X. Zheng, Y. Wu, S. Zhang, R. W. Baldauf, K. M. Zhang, J. Hu, et al., ”Joint measurements of black carbon and particle mass for heavy-duty diesel vehicles using a portable emission measurement system,” Atmospheric Environment, vol. 141, pp. 435-442, 9// 2016.
[53] Y. Tan, E. M. Lipsky, R. Saleh, A. L. Robinson, and A. A. Presto, ”Characterizing the spatial variation of air pollutants and the contributions of high emitting vehicles in Pittsburgh, PA,” Environmental Science & Technology, vol. 48, pp. 14186-14194, 2014/12/16 2014.
[54] S. D. Adar and J. D. Kaufman, ”Cardiovascular disease and air pollutants: Evaluating and improving epidemiological data implicating traffic exposure,” Inhalation Toxicology, vol. 19, pp. 135-149, 2007.
[55] R. D. Williams and L. D. Knibbs, ”Daily personal exposure to black carbon: A pilot study,” Atmospheric Environment, vol. 132, pp. 296-299, 2016.
[56] J. Cai, B. Yan, J. Ross, D. Zhang, P. L. Kinney, M. S. Perzanowski, et al., ”Validation of microAeth® as a black carbon monitor for fixed-site measurement and optimization for personal exposure characterization,” Aerosol and Air Quality Research, vol. 14, pp. 1-9, 2014.
[57] T. C. Bond, S. J. Doherty, D. W. Fahey, P. M. Forster, T. Berntsen, B. J. DeAngelo, et al., ”Bounding the role of black carbon in the climate system: A scientific assessment,” Journal of Geophysical Research: Atmospheres, vol. 118, pp. 5380-5552, 2013.
[58] A. M. Nienow and J. T. Roberts, ”Heterogeneous chemistry of carbon aerosols,” Annu. Rev. Phys. Chem., vol. 57, pp. 105-128, 2006.
[59] H. Song, J. Shang, T. Zhu, L. Zhao, and J. H. Ye, ”Heterogeneous oxidation of SO2 by ozone on the surface of black carbon particles,” Gaodeng Xuexiao Huaxue Xuebao/Chemical Journal of Chinese Universities, vol. 33, pp. 2295-2302, // 2012.
[60] C. Han, Y. Liu, and H. He, ”Role of organic carbon in heterogeneous reaction of NO2 with Soot,” Environmental Science & Technology, vol. 47, pp. 3174-3181, 2013/04/02 2013.
[61] Q. Li, J. Shang, and T. Zhu, ”Physicochemical characteristics and toxic effects of ozone-oxidized black carbon particles,” Atmospheric Environment, vol. 81, pp. 68-75, 2013.
[62] R. Baldauf, E. Thoma, M. Hays, R. Shores, J. Kinsey, B. Gullett, et al., ”Traffic and meteorological impacts on near-road air quality: Summary of methods and trends from the Raleigh near-road study,” Journal of the Air & Waste Management Association, vol. 58, pp. 865-878, 2008.
[63] Y. Zhu, J. Pudota, D. Collins, D. Allen, A. Clements, A. DenBleyker, et al., ”Air pollutant concentrations near three Texas roadways, Part I: Ultrafine particles,” Atmospheric Environment, vol. 43, pp. 4513-4522, 2009.
[64] S. Kimbrough, R. W. Baldauf, G. S. Hagler, R. C. Shores, W. Mitchell, D. A. Whitaker, et al., ”Long-term continuous measurement of near-road air pollution in Las Vegas: seasonal variability in traffic emissions impact on local air quality,” Air Quality, Atmosphere & Health, vol. 6, pp. 295-305, 2013.
[65] Y. Zhu, W. C. Hinds, S. Kim, and C. Sioutas, ”Concentration and size distribution of ultrafine particles near a major highway,” Journal of the Air & Waste Management Association, vol. 52, pp. 1032-1042, 2002.
[66] M. R. Canagaratna, J. T. Jayne, D. A. Ghertner, S. Herndon, Q. Shi, J. L. Jimenez, et al., ”Chase studies of particulate emissions from in-use New York City vehicles,” Aerosol Science and Technology, vol. 38, pp. 555-573, 2004/06/01 2004.
[67] M. Zavala, S. C. Herndon, E. C. Wood, T. B. Onasch, W. B. Knighton, L. C. Marr, et al., ”Evaluation of mobile emissions contributions to Mexico city′s emissions inventory using on-road and cross-road emission measurements and ambient data,” Atmos. Chem. Phys., vol. 9, pp. 6305-6317, 2009.
[68] S. S. Park, K. Kozawa, S. Fruin, S. Mara, Y.-K. Hsu, C. Jakober, et al., ”Emission factors for high-emitting vehicles based on on-road measurements of individual vehicle exhaust with a mobile measurement platform,” Journal of the Air & Waste Management Association, vol. 61, pp. 1046-1056, 2011/10/01 2011.
[69] N. Hudda, S. Fruin, R. J. Delfino, and C. Sioutas, ”Efficient determination of vehicle emission factors by fuel use category using on-road measurements: downward trends on Los Angeles freight corridor I-710,” Atmos. Chem. Phys., vol. 13, pp. 347-357, 2013.
[70] K. Sun, L. Tao, D. J. Miller, M. A. Khan, and M. A. Zondlo, ”On-road ammonia emissions characterized by mobile, open-path measurements,” Environmental Science & Technology, vol. 48, pp. 3943-3950, 2014/04/01 2014.
[71] A. Rakowska, K. C. Wong, T. Townsend, K. L. Chan, D. Westerdahl, S. Ng, et al., ”Impact of traffic volume and composition on the air quality and pedestrian exposure in urban street canyon,” Atmospheric Environment, vol. 98, pp. 260-270, 2014.
[72] E. Dons, P. Temmerman, M. Van Poppel, T. Bellemans, G. Wets, and L. Int Panis, ”Street characteristics and traffic factors determining road users′ exposure to black carbon,” Sci Total Environ, vol. 447, pp. 72-9, Mar 1 2013.
[73] L. M. Zwack, C. J. Paciorek, J. D. Spengler, and J. I. Levy, ”Characterizing local traffic contributions to particulate air pollution in street canyons using mobile monitoring techniques,” Atmospheric Environment, vol. 45, pp. 2507-2514, 2011.
[74] W. Pattinson, I. Longley, and S. Kingham, ”Using mobile monitoring to visualise diurnal variation of traffic pollutants across two near-highway neighbourhoods,” Atmospheric Environment, vol. 94, pp. 782-792, 2014.
[75] S. Hankey and J. D. Marshall, ”On-bicycle exposure to particulate air pollution: Particle number, black carbon, PM2.5, and particle size,” Atmospheric Environment, vol. 122, pp. 65-73, 12// 2015.
[76] J. Van den Bossche, J. Peters, J. Verwaeren, D. Botteldooren, J. Theunis, and B. De Baets, ”Mobile monitoring for mapping spatial variation in urban air quality: Development and validation of a methodology based on an extensive dataset,” Atmospheric Environment, vol. 105, pp. 148-161, 2015.
[77] J. Peters, J. Theunis, M. Van Poppel, and P. Berghmans, ”Monitoring PM10 and ultrafine particles in urban environments using mobile measurements,” Aerosol and Air Quality Research, vol. 13, pp. 509-522, 2013.
[78] J. Peters, J. Van den Bossche, M. Reggente, M. Van Poppel, B. De Baets, and J. Theunis, ”Cyclist exposure to UFP and BC on urban routes in Antwerp, Belgium,” Atmospheric Environment, vol. 92, pp. 31-43, 2014.
[79] H. Wu, S. Reis, C. Lin, I. J. Beverland, and M. R. Heal, ”Identifying drivers for the intra-urban spatial variability of airborne particulate matter components and their interrelationships,” Atmospheric Environment, vol. 112, pp. 306-316, 7// 2015.
[80] S. Hu, S. E. Paulson, S. Fruin, K. Kozawa, S. Mara, and A. M. Winer, ”Observation of elevated air pollutant concentrations in a residential neighborhood of Los Angeles California using a mobile platform,” Atmospheric Environment, vol. 51, pp. 311-319, May 01 2012.
[81] E. A. Riley, L. Banks, J. Fintzi, T. R. Gould, K. Hartin, L. Schaal, et al., ”Multi-pollutant mobile platform measurements of air pollutants adjacent to a major roadway,” Atmospheric Environment, vol. 98, pp. 492-499, 12// 2014.
[82] G. Argyropoulos, C. Samara, D. Voutsa, A. Kouras, E. Manoli, A. Voliotis, et al., ”Concentration levels and source apportionment of ultrafine particles in road microenvironments,” Atmospheric Environment, vol. 129, pp. 68-78, 2016.
[83] S. Weichenthal, K. Van Ryswyk, R. Kulka, L. Sun, L. Wallace, and L. Joseph, ”In-vehicle exposures to particulate air pollution in canadian metropolitan areas: The uban transportation exposure study,” Environmental Science & Technology, vol. 49, pp. 597-605, 2015/01/06 2015.
[84] M. M. Maricq, ”Monitoring motor vehicle PM emissions: An evaluation of three portable low-cost aerosol instruments,” Aerosol Science and Technology, vol. 47, pp. 564-573, 2013/05/01 2013.
[85] T. Tritscher, M. Beeston, A. F. Zerrath, S. Elzey, T. J. Krinke, E. Filimundi, et al., ”Nanoscan SMPS – A novel, portable nanoparticle sizing and counting instrument,” Journal of Physics: Conference Series, vol. 429, p. 012061, 2013.
[86] T. W. Kirchstetter and T. Novakov, ”Controlled generation of black carbon particles from a diffusion flame and applications in evaluating black carbon measurement methods,” Atmospheric Environment, vol. 41, pp. 1874-1888, 2007.
[87] Z. Ning, M. Wubulihairen, and F. Yang, ”PM, NOx and butane emissions from on-road vehicle fleets in Hong Kong and their implications on emission control policy,” Atmospheric Environment, vol. 61, pp. 265-274, 2012/12/01/ 2012.
[88] I. Vouitsis, L. Ntziachristos, and Z. Samaras, ”Roadside and urban background measurements of ultrafine particles in Thessaloniki,” in European Aerosol Conference, Thessaloniki, 2008, pp. 24-29.
[89] M. Pikridas, J. Sciare, F. Freutel, S. Crumeyrolle, S. L. von der Weiden-Reinmüller, A. Borbon, et al., ”In situ formation and spatial variability of particle number concentration in a European megacity,” Atmos. Chem. Phys., vol. 15, pp. 10219-10237, 2015.
[90] M. Fierz, ”Lung‐deposited surface area measurements in Zürich,” in 15th ETH Conference, 2011.
[91] L. Ntziachristos, A. Polidori, H. Phuleria, M. D. Geller, and C. Sioutas, ”Application of a diffusion charger for the measurement of particle surface concentration in different environments,” Aerosol Science and Technology, vol. 41, pp. 571-580, 2007.
[92] A. A. Karner, D. S. Eisinger, and D. A. Niemeier, ”Near-roadway air quality: Synthesizing the findings from real-world data,” Environmental Science & Technology, vol. 44, pp. 5334-5344, 2010/07/15 2010.
[93] Y. Zhou and J. I. Levy, ”Factors influencing the spatial extent of mobile source air pollution impacts: a meta-analysis,” BMC public health, vol. 7, p. 89, 2007.
[94] S.-C. C. Lung, P.-K. Hsiao, T.-Y. Wen, C.-H. Liu, C. B. Fu, and Y.-T. Cheng, ”Variability of intra-urban exposure to particulate matter and CO from Asian-type community pollution sources,” Atmospheric Environment, vol. 83, pp. 6-13, 2014.
指導教授 蕭大智(Ta-Chih Hsiao) 審核日期 2017-7-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明