博碩士論文 103326017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:18.206.48.142
姓名 戴肇寬(ZHAO-KUAN DAI)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 應用高壓蒸氣技術製備抗菌輕質材料及其 特性評估研究
(Characterization of anti-fungal lightweight material manufactured by autoclaving technique)
相關論文
★ 大學生對綠建材認知與態度之研究★ 封閉鉛礦場對於鄰近居民健康及環境之影響研究 以泰國甘差那布里府之克里汐灣採礦場為例
★ 塑膠廢棄物催化裂解產能效率與裂解油物種特性變化之評估研究★ 加速碳酸鹽反應對都市垃圾焚化灰渣捕捉二氧化碳之可行性評估研究
★ 應用無機聚合物技術探討都市垃圾焚化飛灰 無害化之可行性研究★ 動畫與教學介入對桃園市某國小六年級學童環境行動影響之研究
★ 下水污泥與工業區廢水污泥共同蒸氣氣化產能效率與重金屬分佈特性之研究★ 應用自製催化劑評估廢車破碎殘餘物氣化產能效率及污染物排放特性
★ 應用熱裂解技術評估廢車破碎殘餘物轉換能源效率及重金屬排放特性★ 應用揮發性有機物自動採樣技術評估工業區異味污染物來源及指紋之可行性研究
★ 評估傳統濕式洗滌塔對印刷電路板防焊製程之揮發性有機氣體去除效率之研究★ 污水處理廠逸散微粒之物理、化學及生物特性分析
★ 台北都會區PM1.0微粒物理特徵描述與含碳氣膠來源分析★ 以無人飛行載具(UAV)平台探討空氣污染物之垂直分佈特徵及搭載之氣膠儀器性能評估
★ 淨水污泥與漿紙污泥煅燒灰共同製備輕質化 材料之抗菌特性評估研究★ 評估機械處理(MT)技術製備一般事業廢棄物固態衍生燃料之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2022-8-22以後開放)
摘要(中) 本研究應用高壓蒸氣技術,控制鈣矽比(0.6~1.49)、蒸氣壓力(0.4~0.8MPa)及反應時間(4~12hr),並以市售奈米級二氧化鈦作為抗菌之調質劑(添加配比介於0~5%),探討含鈣矽化合物之泥渣類廢棄物轉換為抗菌輕質化材料之可行性,研究對象分別為漿紙污泥氣化後之飛灰、漿紙污泥煅燒後之飛灰及淨水污泥。研究結果顯示,控制鈣矽比為0.9、蒸氣壓力0.8 MPa 及反應時間8小時之條件下,以氣化灰製備之材料具有較低之視密度(1.61 g/cm3)及較高之抗壓強度(32.4 kgf/cm2),而以煅燒灰製備之材料,其視密度約為1.63 g/cm3,而抗壓強度稍低於氣化灰製備之材料,約為31.9 kgf/cm2。在添加二氧化鈦之調質試驗結果顯示,調整不同鈣矽比(0.6~1.49)及二氧化鈦添加比例(0~5%)條件下,以氣化灰製備之材料,具有低視密度(1.61~1.64 g/cm3)、高視孔隙率(53.0~57.3%)及高抗壓強度(34.7~85.5 kgf/cm2)等材料特性,符合相關高壓蒸氣養護輕質氣泡混凝土之產品規範。
以氣化灰製備材料之環境安全性分析結果可知,材料之鉛、硒、鋅、鉻、砷、銅、鎘、鋇、鎳等重金屬TCLP濃度均符合法規標準。至於抗菌試驗之分析結果,經過14天之試驗後,輕質化材料表面之Penicillium funiculosum覆蓋率,由添加0% TiO2之66.36%降至添加5% TiO2之20.47%。另根據ASTM G21-09之材料抗黴目視等級評估規範,於14天照光試驗條件之抗菌等級,為第二級,此係本研究製備之輕質化材料添加二氧化鈦後,可透過光催化作用抑制Penicillium funiculosum生長,不僅降低Penicillium funiculosum之生長速率,更可減少該菌之生長面積,達到抑菌之效果。整體而言,本研究應用高壓蒸氣技術製備之抗菌輕質化材料極具未來應用與發展之潛力。
摘要(英)
This study investigates the characterization of antifungal lightweight material produced from water purification sludge, ash derived from paper mill sludge gasification and combustion by autoclaving technique with controlled Ca/Si ratio 0.6~1.49, steam pressure 0.4~0.8 MPa and reaction time 4~12 hr. Commercialized nano-titanium dioxide (0~5%) was used as an antifungal modifier. In the case of Ca/Si ratio 0.9, steam pressure 0.8 MPa and reaction time 8 hr, the experimental results indicated that the lightweight material produced from gasification ash have a lower bulk density (1.61 g/cm3) and higher compressive strength (32.4 kgf/cm2). However, the lightweight material produced from combustion ash have a relatively high bulk density (1.63 g/cm3) and low compressive strength (31.9 kgf/cm2). In order to enhance the quality and performance of lightweight materials, in the case of 0~5% titanium dioxide addition and Ca/Si ratio controlled between 0.6 and 1.49, the characteristics results indicated that the lightweight materials produced from gasification ash have a lower bulk density (1.61~1.64 g/cm3), higher apparent porosity (53.0~57.3%) and higher compressive strength (34.7~85.5kgf/cm2). It was in compliance with relevant criteria of autoclaving lightweight concrete.
According to the analysis results of environmental safety of lightweight material produced from gasification ash, it was shown that the tested toxic metals concentrations by toxicity characteristics leaching procedure (TCLP) were lower than the regulation thresholds in Taiwan. As the analysis results of the 14 days antifungal test, the lightweight materials surface coverage rate of Penicillium was decreased from 66.36% to 20.47% with titanium dioxide addition ratio increasing from 0% to 5%. Based on ASTM G21-09 standard method, in the case of light test after 14 days, the visible rating of the lightweight material was second grade. That is, adding titanium dioxide can inhibit Penicillium growth by photocatalytic. It can decrease the Penicillium growth rate and reduce surface coverage of lightweight material. In summary, the antifungal lightweight materials produced from gasification ash have been proven successfully by autoclaving technique. It has a good potential for building materials application and development in the future.
關鍵字(中) ★ 高壓蒸氣技術
★ 漿紙污泥
★ 氣化飛灰
★ 淨水污泥
★ 抗菌輕質化材料
關鍵字(英) ★ Autoclaving
★ paper mill sludge
★ gasification ash
★ water purification sludge
★ antifungal lightweight materials
論文目次
目錄
摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 viii
表目錄 xi
第一章 前言 1
第二章 文獻回顧 4
2-1 淨水污泥之處理現況及物化特性 4
2-1-1 淨水污泥之產量及處理概況 4
2-1-2 淨水污泥之物化特性 5
2-2 漿紙污泥及漿紙污泥灰之處理現況及物化特性 8
2-2-1 漿紙污泥及漿紙污泥灰之產量及處理現況 8
2-2-2 漿紙污泥及漿紙污泥灰之物化特性 9
2-3 高壓蒸氣技術之機制原理與應用 16
2-3-1 高壓蒸氣技術之原理 16
2-3-2 操作條件對高壓蒸氣技術之影響 17
2-3-3 奈米顆粒對混凝土之影響 22
2-3-4 高壓蒸氣技術之研究與應用實績 28
2-4 國內廢棄物轉換為輕質化材料之相關研究 35
2-5 二氧化鈦應用於抗菌材料之研究成果 37
2-5-1 二氧化鈦之光催化原理與機制 37
2-5-2 影響真菌生長之因素 38
2-5-3 奈米光觸媒應用於建材之抗菌成效 39
第三章 研究材料與方法 43
3-1 實驗材料 43
3-2 實驗操作條件 44
3-2-1 預先試驗 44
3-2-2 調質試驗 45
3-2-3 實驗設備 47
3-3 實驗設備及分析方法 48
3-3-1 分析項目與方法 49
第四章 結果與討論 56
4-1 研究材料基本特性分析 56
4-1-1 原料之粒徑分析 56
4-1-2 原料之化學組成 58
4-1-3 熱重損失之分析結果 60
4-1-4 原料之物種鑑定及微觀結構 61
4-2 抗菌輕質化材料之材料特性分析 63
4-2-1 預先試驗分析結果 63
4-2-2 調質條件對抗菌輕質化材料特性之影響 70
4-2-3 抗菌輕質化材料之微觀結構及物種鑑定分析 79
4-3 抗菌輕質化材料之環境安全性評及抗菌成效評估 93
4-3-1 抗菌輕質化材料之毒性溶出試驗分析結果 93
4-3-2輕質化材料之抗菌分析結果 95
第五章 結論與建議 111
5-1 結論 111
5-2 建議 113
參考文獻 114
參考文獻

Albayrak, M., Yörükoğlu, A., Karahan, S., Atlıhan, S., Aruntaş, H. Y., Girgin, İ., 2007. Influence of zeolite additive on properties of autoclaved aerated concrete.Building and environment, 42(9), 3161-3165.
ASTM, G. 1987. G21: Standard Practice for Determining Resistance of Synthetic Polymeric Materials to Fungi. RUBBER SHEET Section, 9661, 2.
Bai, J., Chaipanich, A., Kinuthia, J. M., O′farrell, M., Sabir, B. B., Wild, S., Lewis, M. H., 2003. Compressive strength and hydration of wastepaper sludge ash–ground granulated blastfurnace slag blended pastes. Cement and Concrete Research, 33(8), 1189-1202.
Baspinar, M. S., Demir, I., Kahraman, E., Gorhan, G., 2014. Utilization potential of fly ash together with silica fume in autoclaved aerated concrete production. Korean Society of Civil Engineers (KSCE), Journal of Civil Engineering, 18(1), 47-52.
Chiang, K. Y., Chou, P. H., Hua, C. R., Chien, K. L., Cheeseman, C., 2009. Lightweight bricks manufactured from water treatment sludge and rice husks. Journal of Hazardous Materials, 171(1), 76-82.
Cicek, T., Tanrıverdi, M., 2007. Lime based steam autoclaved fly ash bricks. Construction and Building Materials, 21(6), 1295-1300.
De la Villa, R. V., Frías, M., de Rojas, M. I. S., Vegas, I., & García, R. 2007. Mineralogical and morphological changes of calcined paper sludge at different temperatures and retention in furnace. Applied Clay Science, 36(4), 279-286.
Dunster, A. M., 2007. Paper sludge and paper sludge ash in Portland cement manufacture. MinRes Case Study, Building Research Establishment, Garston.
Du, B., Zhou, C., Dan, Z., Luan, Z., Duan, N., 2014. Preparation and characteristics of steam-autoclaved bricks produced from electrolytic manganese solid waste. Construction and Building Materials, 50, 291-299.
El-Didamony, H., Khalil, K. A., Heikal, M., 2014. Physico-chemical and surface characteristics of some granulated slag–fired drinking water sludge composite cement pastes. Housing and Building National Research Center of Journal, 10(1), 73-81.
Fang, Y., Gu, Y., Kang, Q., Wen, Q., Dai, P., 2011. Utilization of copper tailing for autoclaved sand–lime brick. Construction and Building Materials, 25(2), 867-872.
Ferrandiz-Mas, V., Bond, T., Garcia-Alcocel, E., Cheeseman, C. R., 2014. Lightweight mortars containing expanded polystyrene and paper sludge ash. Construction and Building Materials, 61, 285-292.
Frías, M., Rodríguez, O., Nebreda, B., García, R., & Villar-Cociña, E. 2010. Influence of activation temperature of kaolinite-based clay wastes on pozzolanic activity and kinetic parameters. Advances in Cement Research, 22(3), 135-142.
Frias M, Vigil R, Garcia R, Rodriguez O, Goni S, Vegas I. 2012. Evolution of mineralogical phases produced during the pozzolanic reaction of different metakaolinite by-products: influence of the activation process. Appl Clay Sci; 56: 48–52.
Furlani, E., Brückner, S., Minichelli, D., Maschio, S., 2008. Synthesis and characterization of ceramics from coal fly ash and incinerated paper mill sludge. Ceramics International, 34(8), 2137-2142.
García, R., de la Villa, R. V., Vegas, I., Frías, M., & de Rojas, M. S. 2008. The pozzolanic properties of paper sludge waste. Construction and Building Materials, 22(7), 1484-1490.
García, R., de la Villa, R. V., Rodríguez, O., & Frías, M., 2010. Study of hydrated phases present in calcined paper sludge (metakaolinite)/saturated CaO dissolution system cured at 40°C and 28 days of reaction. Materials Science and Engineering: A, 527(16), 3936-3941.
Giannantonio, D. J., Kurth, J. C., Kurtis, K. E., & Sobecky, P. A. 2009. Effects of concrete properties and nutrients on fungal colonization and fouling. International Biodeterioration & Biodegradation, 63(3), 252-259.
Gluth, G. J., Lehmann, C., Rübner, K., Kühne, H. C., 2014. Reaction products and strength development of wastepaper sludge ash and the influence of alkalis. Cement and Concrete Composites, 45, 82-88.
Goñi, S., Frias, M., Vegas, I., García, R., de la Villa, R. V., 2012. Quantitative correlations among textural characteristics of C–S–H gel and mechanical properties: Case of ternary Portland cements containing activated paper sludge and fly ash. Cement and Concrete Composites, 34(8), 911-916.
Graziani, L., Quagliarini, E., Osimani, A., Aquilanti, L., Clementi, F., Yéprémian, C., & D′Orazio, M. 2013. Evaluation of inhibitory effect of TiO2 nanocoatings against microalgal growth on clay brick façades under weak UV exposure conditions. Building and Environment, 64, 38-45.
Holt, E., Raivio, P., 2005. Use of gasification residues in aerated autoclaved concrete. Cement and Concrete Research, 35(4), 796-802.
Huang, H. L., Lin, C. C., & Hsu, K. 2015. Comparison of resistance improvement to fungal growth on green and conventional building materials by nano-metal impregnation. Building and Environment, 93, 119-127.
Huang, C. H., & Wang, S. Y., 2013. Application of water treatment sludge in the manufacturing of lightweight aggregate. Construction and Building Materials, 43, 174-183.
Huang, X. Y., Ni, W., Cui, W. H., Wang, Z. J., Zhu, L. P., 2012. Preparation of autoclaved aerated concrete using copper tailings and blast furnace slag. Construction and Building Materials, 27(1), 1-5.
Jing, Z., Matsuoka, N., Jin, F., Hashida, T., Yamasaki, N., 2007. Municipal incineration bottom ash treatment using hydrothermal solidification. Waste Management, 27(2), 287-293.
Kerienė, J., Kligys, M., Laukaitis, A., Yakovlev, G., Špokauskas, A., Aleknevičius, M., 2013. The influence of multi-walled carbon nanotubes additive on properties of non-autoclaved and autoclaved aerated concretes. Construction and Building Materials, 49, 527-535.
Kizinievic, O., Zurauskiene, R., Kizinievic, V., Zurauskas, R., 2013. Utilisation of sludge waste from water treatment for ceramic products. Construction and Building Materials, 41, 464-473.
Kong, D., Su, Y., Du, X., Yang, Y., Wei, S., & Shah, S. P., 2013. Influence of nano-silica agglomeration on fresh properties of cement pastes. Construction and Building Materials, 43, 557-562.
Konstantinou, I. K., & Albanis, T. A. 2004. Worldwide occurrence and effects of antifouling paint booster biocides in the aquatic environment: a review. Environment International, 30(2), 235-248.
Kunchariyakun, K., Asavapisit, S., Sombatsompop, K., 2015. Properties of autoclaved aerated concrete incorporating rice husk ash as partial replacement for fine aggregate. Cement and Concrete Composites, 55, 11-16.
Li, H., Zhang, M. H., Ou, J. P., 2007. Flexural fatigue performance of concrete containing nano-particles for pavement. International Journal of Fatigue, 29(7), 1292-1301.
Li, H., Zhang, M. H., Ou, J. P., 2006. Abrasion resistance of concrete containing nano-particles for pavement. Wear, 260(11), 1262-1266.
Linsebigler, A. L., Lu, G., & Yates Jr, J. T. 1995. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chemical Reviews, 95(3), 735-758.
Liu, J., Li, Q., & Xu, S. 2015. Influence of nanoparticles on fluidity and mechanical properties of cement mortar. Construction and Building Materials, 101, 892-901.
Markowska-Szczupak, A., Wang, K., Rokicka, P., Endo, M., Wei, Z., Ohtani, B., & Kowalska, E. 2015.The effect of anatase and rutile crystallites isolated from titania P25 photocatalyst on growth of selected mould fungi. Journal of Photochemistry and Photobiology B: Biology, 151, 54-62.
Maury-Ramirez, A., De Muynck, W., Stevens, R., Demeestere, K., & De Belie, N. 2013. Titanium dioxide based strategies to prevent algal fouling on cementitious materials. Cement and Concrete Composites, 36, 93-100.
Masa, Production of sand lime brick and fitting piexe: Purpose built using proven technology. Website:www.masa-group.com, 2016。
Melo, C. R., Angioletto, E., Riella, H. G., Peterson, M., Rocha, M. R., Melo, A. R & Strugale, S. 2012. Production of metakaolin from industrial cellulose waste. Journal of Thermal Analysis and Calorimetry, 109(3), 1341-1345.
Mindess, S., Young, J. F., & Darwin, D., 2003. Concrete. USA: Pearson Education
Mozaffari, E., Kinuthia, J. M., Bai, J., Wild, S., 2009. An investigation into the strength development of wastepaper sludge ash blended with ground granulated blastfurnace slag. Cement and Concrete Research, 39(10), 942-949.
Melo, C. R., Angioletto, E., Riella, H. G., Peterson, M., Rocha, M. R., Melo, A. R., & Strugale, S., 2012. Production of metakaolin from industrial cellulose waste. Journal of Thermal Analysis and Calorimetry, 109(3), 1341-1345.
Mostafa, N. Y., 2005. Influence of air-cooled slag on physicochemical properties of autoclaved aerated concrete. Cement and Concrete Research, 35(7), 1349-1357.
Moritz, M., & Geszke-Moritz, M. 2012. The application of nanomaterials in detection and removal of environmental pollutants. Przemysl Chemiczny, 91(12), 2375-2381.
Monteiro, S. N., Alexandre, J., Margem, J. I., Sánchez, R., & Vieira, C. M. F. 2008. Incorporation of sludge waste from water treatment plant into red ceramic. Construction and Building Materials, 22(6), 1281-1287.
Narayanan, N., Ramamurthy, K., 2000. Structure and properties of aerated concrete: a review. Cement and Concrete Composites, 22(5), 321-329.
Nazari, A., & Riahi, S., 2011. The effects of SiO2 nanoparticles on physical and echanical properties of high strength compacting concrete. Composites Part B: Engineering, 42(3), 570-578.
Pera, J., Amrouz, A., 1998. Development of highly reactive metakaolin from paper sludge. Advanced Cement Based Materials, 7(2), 49-56.
Pottier, A., Chanéac, C., Tronc, E., Mazerolles, L., & Jolivet, J. P. 2001. Synthesis of brookite TiO2 nanoparticles by thermolysis of TiCl4 in strongly acidic aqueous media. Journal of Materials Chemistry, 11(4), 1116-1121.
Rahmat, M. N., Kinuthia, J. M., 2011. Effects of mellowing sulfate-bearing clay soil stabilized with wastepaper sludge ash for road construction. Engineering Geology,117(3), 170-179.
Richardson, I. G., 2008. The calcium silicate hydrates. Cement and Concrete Research, 38(2), 137-158.
Rodríguez Largo, O., Vigil de la Villa, R., Sánchez de Rojas, M. I., & Frías, M. 2009. Novel use of kaolin wastes in blended cements. Journal of the American Ceramic Society, 92(10), 2443-2446.
Rodríguez, N. H., Ramírez, S. M., Varela, M. B., Guillem, M., Puig, J., Larrotcha, E., Flores, J., 2010. Re-use of drinking water treatment plant (DWTP) sludge: characterization and technological behaviour of cement mortars with atomized sludge additions. Cement and Concrete Research, 40(5), 778-786.
Russ, W., Mörtel, H., Meyer-Pittroff, R., Babeck, A., 2006. Kieselguhr sludge from the deep bed filtration of beverages as a source for silicon in the production of calcium silicate bricks. Journal of the European Ceramic Society, 26(13), 2547-2559.
Sales, A., de Souza, F. R., 2009. Concretes and mortars recycled with water treatment sludge and construction and demolition rubble. Construction and Building Materials, 23(6), 2362-2370.
Santa, R. A. A. B., Bernardin, A. M., Riella, H. G., Kuhnen, N. C., 2013. Geopolymer synthetized from bottom coal ash and calcined paper sludge. Journal of Cleaner Production, 57, 302-307.
Segui, P., Aubert, J. E., Husson, B., Measson, M., 2012. Characterization of wastepaper sludge ash for its valorization as a component of hydraulic binders. Applied Clay Science, 57, 79-85.
Singh, L. P., Karade, S. R., Bhattacharyya, S. K., Yousuf, M. M., & Ahalawat, S., 2013. Beneficial role of nano ilica in cement based materials–A review. Construction and Building Materials, 47, 1069-1077.
Song, Y., Guo, C., Qian, J., Ding, T., 2015. Effect of the Ca-to-Si ratio on the properties of autoclaved aerated concrete containing coal fly ash from circulating fluidized bed combustion boiler. Construction and Building Materials, 83, 136-142.
Stark, K., Plaza, E., Hultman, B., 2006. Phosphorus release from ash, dried sludge and sludge residue from supercritical water oxidation by acid or base. Chemosphere , 62(5), 827-832.
Sutcu, M., Akkurt, S., 2009. The use of recycled paper processing residues in making porous brick with reduced thermal conductivity. Ceramics International, 35(7), 2625-2631.
Tran, T. H., Govin, A., Guyonnet, R., Grosseau, P., Lors, C., Garcia-Diaz, E.,& Ruot, B. 2012. Influence of the intrinsic characteristics of mortars on biofouling by Klebsormidium flaccidum. International Biodeterioration & Biodegradation,70, 31-39.
Toya, T., Kameshima, Y., Nakajima, A., Okada, K., 2006. Preparation and properties of glass-ceramics from kaolin clay refining waste (Kira) and paper sludge ash. Ceramics International, 32(7), 789-796.
Vegas, I., Gaitero, J. J., Urreta, J., García, R., Frías, M., 2014. Aging and durability of ternary cements containing fly ash and activated paper sludge. Construction and Building Materials, 52, 253-260.
Wajima, T., Haga, M., Kuzawa, K., Ishimoto, H., Tamada, O., Ito, K., . Rakovan, J. F., 2006. Zeolite synthesis from paper sludge ash at low temperature with addition of diatomite. Journal of hazardous materials, 132(2), 244-252.
Wong, H. S., Barakat, R., Alhilali, A., Saleh, M., Cheeseman, C. R., 2015. Hydrophobic concrete using waste paper sludge ash. Cement and Concrete Research, 70, 9-20.
Wongkeo, W., Thongsanitgarn, P., Pimraksa, K., Chaipanich, A., 2012. Compressive strength, flexural strength and thermal conductivity of autoclaved concrete block made using bottom ash as cement replacement materials. Materials and Designing, 35, 434-439.
Wu, D., Long, M., Zhou, J., Cai, W., Zhu, X., Chen, C., Wu, Y., 2009. Synthesis and characterization of self-cleaning cotton fabrics modified by TiO2 through a facile approach. Surface & Coatings Technology 203, 3728-3733.
Yamashita, H., Nishiguchi, H., Kamada, N., Anpo, M., Teraoka, Y., Hatano, H., & Schiavello, M. 1994. Photocatalytic reduction of CO2 with H2O on TiO2 and Cu/TiO2 catalysts. Research on Chemical Intermediates, 20(8), 815-823.
Yan, S., Sagoe-Crentsil, K., & Shapiro, G. 2012. Properties of cement mortar incorporating de-inking waste-water from waste paper recycling. Construction and Building Materials, 29, 51-55.
Yang, J., Liu, W., Zhang, L., Xiao, B., 2009. Preparation of load-bearing building materials from autoclaved phosphogypsum. Construction and Building Materials, 23(2), 687-693.
Yang, J., Shi, Y., Yang, X., Liang, M., Li, Y., Li, Y., Ye, N., 2013. Durability of autoclaved construction materials of sewage sludge–cement–fly ash–furnace slag. Construction and Building Materials, 48, 398-405.
Yazici, H., 2007. The effect of curing conditions on compressive strength of ultra high strength concrete with high volume mineral admixtures. Building and Environment, 42(5). 2083-2089.
Yen, C. L., Tseng, D. H., Lin, T. T., 2011. Characterization of eco-cement paste produced from waste sludges. Chemosphere, 84(2), 220-226.
Zamora, R. R., Ayala, F. E., López, M. S., Barceló, O. G., Gómez, R. W., Mazariego, J. P.,& Schouwenaars, R., 2016. Optimisation and analysis of the synthesis of a cellular glass-ceramic produced from water purification sludge and clay. Applied Clay Science, 123, 232-238.
Zhang, Z., Qian, J., You, C., Hu, C., 2012. Use of circulating fluidized bed combustion fly ash and slag in autoclaved brick. Construction and Building Materials, 35, 109-116.
Zhang, R., Cheng, X., Hou, P., & Ye, Z. 2015. Influences of nano-TiO2 on the properties of cement-based materials: Hydration and drying shrinkage. Construction and Building Materials, 81, 35-41.
Zhao, F. Q., Zhao, J., Liu, H. J., 2009. Autoclaved brick from low-silicon tailings. Construction and Building Materials, 23(1), 538-541.
Zhao, Y. Q., Babatunde, A. O., Zhao, X. H., Li, W. C., 2009. Development of alum sludge-based constructed wetland: An innovative and cost effective system for wastewater treatment. Journal of Environmental Science and Health Part A, 44(8), 827-832.
山東東岳機械有限公司,網頁資料,http://www.dongyuejixie.cn,2016。
王鯤生,鄭欽仁,陳慶和,邱英嘉,林月婷,下水污泥灰物化特性影響輕質發泡材料之研究,第十七屆廢棄物處理技術研討會,中華民國環境工程學會,台中市,2002。
王鯤生,胡趙原,蔡振球,張孟弘,下水污泥灰成型壓力與骨材輕質化特性之相關性探究,第十七屆廢棄物處理技術研討會,中華民國環境工程學會,台中市,2002。
方彥志,室內牆壁裝修面材對黴菌生長影響之研究,碩士論文,國立台北科技大學建築系建築與都市設計研究所,2015。
行政院環境保護署,事業廢棄物申報及管理系統,網頁資料,網址: http://waste.epa.gov.tw,2016。
江康鈺,葛家賢,童翔新,陳雅馨,節能型輕質化材料之實廠應用可行性評估,行政院環境保護署環保創新科技研發計畫,EPA-103-U1U4-04-003,2014。
江康鈺,葛家賢,童翔新,吳志超,節能型輕質化材料之製備技術開發與應用評估,行政院環境保護署環保創新科技研發計畫,EPA-102-U1U4-04-005,2014。
江康鈺,顏慧茹,簡光勵,應用礦物型膨化劑製備輕質化材料之可行性評估研究,第二十二屆廢棄物處理技術研討會,中華民國環境工程學會,屏東市,2010。
李雙安,王鯤生,陳凱原,吳天輝,陳虹屹,廢棄物添加多孔材料燒結被動調濕建材,第二十一屆廢棄物處理技術研討會,中華民國環境工程學會,雲林市,2009。
林凱隆,藍如潁,C級煤灰調質廢矽藻土製備保水性多孔陶瓷之特性研究,第二十四屆廢棄物處理技術研討會,中華民國環境工程學會,桃園市,2012。
吳衛國,用低鈣石灰生產灰砂磚及蒸壓粉煤灰磚技術,磚瓦,7,pp.23-23,2012。
陳詣欣,張祖恩,陳盈良,李祐承,彭信源,羅智豪,轉爐石粒徑對產製高壓蒸氣養護混凝土之影響,第二十四屆廢棄物處理技術研討會,中華民國環境工程學會,桃園市,2012。
詹家凱,范文彬,李如傑,戴文堅,劉建中,章裕民,垃圾焚化飛灰燒結骨材之研究,第二十二屆廢棄物處理技術研討會,中華民國環境工程學會,屏東市,2010。
經濟部水利署,自來水供水普及率,網頁資料,網址: https://www.wra.gov.tw/ct.asp,2017。
錢耀麗,趙立群,陳寧,建築廢棄物在長江淤砂蒸壓灰砂磚中的應用研究. 建築砌塊與砌塊建築,6,pp.46-49,2012。
顏慧茹,江康鈺,簡光勵,輕質化材料之製備與特性研究,第二十一屆廢棄物處理技術研討會,中華民國環境工程學會,雲林市,2009。
羅時麒,姚志廷,100年建築廢棄物再生循環技術開發與推廣應用計畫,內政部營建署自行研究報告,2011。
指導教授 江康鈺(Kung-Yuh Chiang) 審核日期 2017-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明