博碩士論文 103326025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.145.173.130
姓名 宋昆霖(SONG KUN LIN)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 2017年台灣麥寮、大城地區細懸浮微粒(PM2.5)金屬元素成分特性與季節變化
相關論文
★ 台灣北部地區大氣氣膠有機酸特性★ 北部氣膠超級測站近七年氣膠特性變化探討
★ 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性★ 鹿林山大氣氣膠含水量探討及乾氣膠光學特性
★ 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性★ 鹿林山大氣背景站不同氣團氣膠光學特性
★ 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究★ 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討
★ 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化★ 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響
★ 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析★ 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性
★ 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定★ 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析
★ 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估★ 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-9-5以後開放)
摘要(中) 本文配合2017年「細懸浮微粒(PM2.5)化學成分監測及分析計畫」在雲林縣麥寮(冬季)、彰化縣大城(春、夏、秋季)環保署測站以手動和自動監測解析PM2.5金屬元素濃度的特性及季節變化,推論污染來源。
結果顯示,PM2.5濃度以秋季>冬季>春季>夏季,總金屬元素濃度不論是手動或自動儀器,四季主要金屬元素都是Al、Fe、Na、Mg、K、Ca、Pb,這些元素顯示出雲林麥寮大城地區受到當地交通排放、海水、鄰近六輕工業區內的煉鋼廠(台塑重工內)以及燃煤電廠影響。金屬元素Cu、Zn、Mo、Cd、Pb、Sb、Se、Sn、Tl的富集度高達百倍,污染源可能為:交通排放、燃煤燃燒、金屬加工、鋅冶金、燃油燃燒,另外,四季地殼元素Igeo指數的Cu、Zn、Sn、Pb、V、Zn、Pb、V和Ni元素都大於1,表示有中等程度污染,可能污染來源為: 交通排放、燃煤燃燒、金紙燃燒、金屬加工。
PMF (Positive Matrix Factorization, PMF)受體模式推估顯示,麥寮、大城測站主要污染源以「燃油燃燒」、「船舶排放」、「海鹽」、「化石燃料燃燒」、「工業區混合來源」、「石化工業」為主。結合雙變量條件機率函數推論污染來向,大城站春季以「燃油燃燒、船舶排放」占比最高;燃油燃燒可能來自西濱快速道路,船舶排放可能從北方較遠海面傳輸過來。「化石燃料燃燒」占比最高為春季,可能受西濱快速道路影響,「石化工業區」占比最高為夏季,可能從六輕工業區傳輸過來。
最後,本文比較四種來源推論方法,發現PMF是唯一可以量化來源貢獻的方法。
摘要(英) This study collaborated with the “2017 PM2.5 chemical composition monitoring and analysis study” to resolve characteristics, seasonal variations, and pollution sources of PM2.5 metal elements from manual and automatic monitoring at the Mailiao, Yunlin County (Winter) and Dacheng, Changhua County (Spring, Summer, Autumn) in 2017.
The results showed that PM2.5 mass concentrations varied from high to low in the order of Autumn> Winter> Spring> Summer. The predominant metal elements in mass concentration are Al, Fe, Na, Mg, K, Ca, and Pb. Related sources of these metal elements can be derived from local traffic emissions, sea salt, steel manufacturing plant within Formosa Plastics Corporation, and coal-fired power plants of the neighboring Sixth Naphtha Cracker Complex (SNCC). The enrichment factors of metal elements could be as high as 100 folds for Cu, Zn, Mo, Cd, Pb, Sb, Se, Sn, and Tl. The potential sources were traffic emissions, coal combustion, metal processing, zinc metallurgy, and oil combustion. In addition, the crustal element Igeo indices for Cu, Zn, Sn, Pb, V, Zn, Pb, V, and Ni were greater than one indicating moderate polluting at least. Potential sources were traffic emissions, coal combustion, joss paper burning, and metal processing.
PMF (Positive Matrix Factorization, PMF) source apportionment showed that “Oil combustion”, “Ship emissions”, “Sea-salt”, “Fossil fuel combustion”, “Industrial mixed sources”, and “Petrochemical industry” were predominant sources at the Mailiao and Dacheng areas. Combining with the conditional bivariate probability function for source orientation, this study showed that “Oil combustion” and “Ship emissions” had the highest probability in spring. The “Oil combustion” might be from the West Coast Expressway, and “Ship emissions” could be transported from farther northern sea waters. “Fossil fuel combustion” might be influenced by the West Coast Expressway with the highest proportion in spring. In contrast, the “petrochemical industry” was transported from the SNCC and had the highest proportion in summer.
Finally, this study compared four source inference methods to find that PMF was the only method to apportion source contributions quantitatively.
關鍵字(中) ★ 細懸浮微粒(PM2.5)
★ PM2.5質量濃度
★ PM2.5金屬元素成分
★ 金屬元素比值
★ CBPF
關鍵字(英)
論文目次 摘要 I
Abstract II
目錄 IV
圖目錄 VII
表目錄 IX
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 3
第二章 文獻回顧 4
2.1細懸浮微粒(PM2.5)的重要性 4
2.1.1細懸浮微粒(PM2.5)對環境的影響 4
2.1.2細懸浮微粒(PM2.5)對人體的影響 5
2.2 PM2.5形成機制 6
2.3 PM2.5組成來源 7
2.3.1 PM2.5水溶性離子 7
2.3.2 PM2.5金屬元素成分 8
2.3.3金屬元素比值 10
2.4受體模式正矩陣因子法PMF (Positive Matrix Factorization)應用 11
2.5雙變量條件機率函數 (CBPF) 14
第三章 研究方法 16
3.1 研究架構 16
3.2 採樣地點與時間 17
3.2.2採樣地點 18
3.3.1 BGI PQ200 PM2.5質量濃度採樣器 19
3.2.3採樣時間 20
3.3.2 Xact® 625i(X射線螢光光譜儀分析原理) 21
3.4 採樣濾紙選擇與前處理程序 24
3.4.1 質量濃度秤重分析 24
3.4.2 氣膠金屬元素成分檢驗分析方法 25
3.5正矩陣因子法Positive Matrix Factorization (PMF) 31
3.5.1 PMF預處理程序 32
3.5.2 PMF操作流程 33
3.6 雙變量條件機率函數CBPF(Conditional bivariate probability function) 37
3.7 富集因子方法EF (Enrichment Factor) 38
3.8地積累指數(Geoaccumulation index) 39
第四章 結果與討論 40
4.1 麥寮、大城地區PM2.5和金屬元素濃度變化趨勢 40
4.1.1 麥寮、大城地區PM2.5成分濃度時間變化 40
4.1.2 麥寮、大城地區PM2.5和金屬元素濃度時間變化 54
4.1.3 PM2.5和金屬元素總濃度季節變化 56
4.1.4台灣北中南六站金屬元素總濃度季節變化 60
4.2地殼元素及金屬元素推估麥寮、大城地區污染來源 69
4.2.1手動儀器金屬元素EF值 69
4.2.2金屬元素Igeo指數 71
4.3手動儀器金屬元素比值及污染來源推估 72
4.4稀土(鑭系)元素及釩元素推估煉油廠來源貢獻 75
4.5 PMF受體模式推估PM2.5污染來源 81
4.6 雙變量條件機率函數CBPF法 87
4.6.1 PMF因子圖推估污染來源 88
4.6.2冬季麥寮地區CBPF推估污染來源 94
4.6.3春季大城地區CBPF推估污染來源 98
4.6.4夏季大城地區CBPF推估污染來源 102
4.6.5秋季大城地區CBPF推估污染來源 106
4.7污染來源推估方法比較 111
第五章 結論 114
5.1結論 114
5.2建議 115
參考文獻 116
附錄 125
參考文獻 Affum, H.A., 2015. Numerical simulation of dispersion of emissions from Tema Oil Refinery in Ghana. University of Ghana.
Ali, M.F., Abbas, S., 2006. A review of methods for the demetallization of residual fuel oils. Fuel Processing Technology 87, 573-584.
Amoatey, P., Omidvarborna, H., Baawain, M.S., Al-Mamun, A., 2019. Emissions and exposure assessments of SOX, NOX, PM10/2.5 and trace metals from oil industries: A review study (2000–2018). Process Safety and Environmental Protection 123, 215-228.
Andreae, M., Rosenfeld, D., 2008. Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth-Science Reviews 89, 13-41.
Avise, J., Chen, J., Lamb, B., Wiedinmyer, C., Guenther, A., Salathé, E., Mass, C., 2009. Attribution of projected changes in summertime US ozone and PM2. 5 concentrations to global changes. Atmospheric Chemistry and Physics 9, 1111-1124.
Bari, M.A., Kindzierski, W.B., Roy, P., 2020. Identification of ambient SO2 sources in industrial areas in the lower Athabasca oil sands region of Alberta, Canada. Atmospheric Environment 231, 117505.
Behera, S.N., Cheng, J., Huang, X., Zhu, Q., Liu, P., Balasubramanian, R., 2015. Chemical composition and acidity of size-fractionated inorganic aerosols of 2013-14 winter haze in Shanghai and associated health risk of toxic elements. Atmospheric Environment 122, 259-271.
Borai, E., El-Sofany, E., Abdel-Halim, A., Soliman, A., 2002. Speciation of hexavalent chromium in atmospheric particulate samples by selective extraction and ion chromatographic determination. TrAC Trends in Analytical Chemistry 21, 741-745.
Bozlaker, A., Buzcu-Güven, B., Fraser, M.P., Chellam, S., 2013. Insights into PM10 sources in Houston, Texas: Role of petroleum refineries in enriching lanthanoid metals during episodic emission events. Atmospheric Environment 69, 109-117.
Bozlaker, A., Prospero, J.M., Price, J., Chellam, S., 2019. Identifying and quantifying the impacts of Advected North African dust on the concentration and composition of airborne fine particulate matter in Houston and Galveston, Texas. Journal of Geophysical Research: Atmospheres 124, 12282-12300.
Carslaw, D., 2015. The openair manual–open-source tools for analysing air pollution data. Manual for version 1.1–4, King′s College London.
Carslaw, D.C., Beevers, S.D., 2013. Characterising and understanding emission sources using bivariate polar plots and k-means clustering. Environmental modelling & software 40, 325-329.
Celo, V., Dabek-Zlotorzynska, E., Zhao, J., Bowman, D., 2012. Concentration and source origin of lanthanoids in the Canadian atmospheric particulate matter: a case study. Atmospheric Pollution Research 3, 270-278.
Cesari, D., Genga, A., Ielpo, P., Siciliano, M., Mascolo, G., Grasso, F., Contini, D., 2014. Source apportionment of PM2. 5 in the harbour–industrial area of Brindisi (Italy): Identification and estimation of the contribution of in-port ship emissions. Science of the Total Environment 497, 392-400.
Chan, C., Xu, X., Li, Y., Wong, K., Ding, G., Chan, L., Cheng, X., 2005. Characteristics of vertical profiles and sources of PM2. 5, PM10 and carbonaceous species in Beijing. Atmospheric Environment 39, 5113-5124.
Chang, S.-C., Lin, T.-H., Young, C.-Y., Lee, C.-T., 2011. The impact of ground-level fireworks (13 km long) display on the air quality during the traditional Yanshui Lantern Festival in Taiwan. Environmental monitoring and assessment 172, 463-479.
Cheng, Y., Lee, S., Ho, K., Chow, J., Watson, J., Louie, P., Cao, J., Hai, X., 2010. Chemically-speciated on-road PM2. 5 motor vehicle emission factors in Hong Kong. Science of the Total Environment 408, 1621-1627.
Christoforidis, A., Stamatis, N., 2009. Heavy metal contamination in street dust and roadside soil along the major national road in Kavala′s region, Greece. Geoderma 151, 257-263.
Costa, D.L., Dreher, K.L., 1997. Bioavailable transition metals in particulate matter mediate cardiopulmonary injury in healthy and compromised animal models. Environmental health perspectives 105, 1053-1060.
Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Dentener, F., van Aardenne, J.A., Monni, S., Doering, U., Olivier, J.G., Pagliari, V., 2018. Gridded emissions of air pollutants for the period 1970–2012 within EDGAR v4. 3.2. Earth Syst. Sci. Data 10, 1987-2013.
Dai, Q.-L., Bi, X.-H., Wu, J.-H., Zhang, Y.-F., Wang, J., Xu, H., Yao, L., Jiao, L., Feng, Y.-C., 2014. Characterization and source identification of heavy metals in ambient PM10 and PM2. 5 in an integrated iron and steel industry zone compared with a background site. Aerosol and Air Quality Research 15, 875-887.
Demokritou, P., Kavouras, I.G., Ferguson, S.T., Koutrakis, P., 2001. Development and laboratory performance evaluation of a personal multipollutant sampler for simultaneous measurements of particulate and gaseous pollutants. Aerosol Science & Technology 35, 741-752.
Divrikli, U., Soylak, M., Elci, L., Dogan, M., 2003. The investigation of trace heavy metal concentrations in the street dust samples collected from Kayseri, Turkey. Journal of Trace and Microprobe Techniques 21, 713-720.
Duong, T.T., Lee, B.-K., 2011. Determining contamination level of heavy metals in road dust from busy traffic areas with different characteristics. Journal of environmental management 92, 554-562.
Dzubay, T.G., Stevens, R.K., Gordon, G.E., Olmez, I., Sheffield, A.E., Courtney, W.J., 1988. A composite receptor method applied to Philadelphia aerosol. Environmental science & technology 22, 46-52.
Ellouz, F., Masmoudi, M., Quisefit, J., Medhioub, K., 2013. Characteristics of trace elements in aerosols collected in Northern Tunisia. Physics and Chemistry of the Earth, Parts A/B/C 55, 35-42.
Faiz, Y., Tufail, M., Javed, M.T., Chaudhry, M., 2009. Road dust pollution of Cd, Cu, Ni, Pb and Zn along islamabad expressway, Pakistan. Microchemical Journal 92, 186-192.
Favez, O., Sciare, J., Cachier, H., Alfaro, S.C., Abdelwahab, M.M., 2008. Significant formation of water‐insoluble secondary organic aerosols in semi‐arid urban environment. Geophysical Research Letters 35.
Feng, Y., Penner, J.E., 2007. Global modeling of nitrate and ammonium: Interaction of aerosols and tropospheric chemistry. Journal of Geophysical Research: Atmospheres 112.
Font, A., de Hoogh, K., Leal-Sanchez, M., Ashworth, D.C., Brown, R.J., Hansell, A.L., Fuller, G.W., 2015. Using metal ratios to detect emissions from municipal waste incinerators in ambient air pollution data. Atmospheric environment 113, 177-186.
Garçon, G., Dagher, Z., Zerimech, F., Ledoux, F., Courcot, D., Aboukais, A., Puskaric, E., Shirali, P., 2006. Dunkerque City air pollution particulate matter-induced cytotoxicity, oxidative stress and inflammation in human epithelial lung cells (L132) in culture. Toxicology in vitro 20, 519-528.
Garza-Galindo, R., Morton-Bermea, O., Hernández-Álvarez, E., Ordoñez-Godínez, S.L., Amador-Muñoz, O., Beramendi-Orosco, L.E., Retama, A., Miranda, J., Rosas-Pérez, I., 2019. Spatial and temporal distribution of metals in PM2. 5 during 2013: Assessment of wind patterns to the impacts of geogenic and anthropogenic sources. Environmental monitoring and assessment 191, 1-17.
Guo, S., Hu, M., Wang, Z., Slanina, J., Zhao, Y., 2010. Size-resolved aerosol water-soluble ionic compositions in the summer of Beijing: implication of regional secondary formation. Atmospheric Chemistry and Physics 10, 947-959.
Han, J., Han, B., Li, P., Kong, S., Bai, Z., Han, D., Dou, X., Zhao, X., 2013. Chemical characterizations of PM10 profiles for major emission Sources in Xining, Northwestern China. Aerosol and Air Quality Research 14, 1017-1027.
He, K., Yang, F., Ma, Y., Zhang, Q., Yao, X., Chan, C.K., Cadle, S., Chan, T., Mulawa, P., 2001. The characteristics of PM2. 5 in Beijing, China. Atmospheric Environment 35, 4959-4970.
Heintzenberg, J., 1989. Fine particles in the global troposphere A review. Tellus B 41, 149-160.
Hidemori, T., Nakayama, T., Matsumi, Y., Kinugawa, T., Yabushita, A., Ohashi, M., Miyoshi, T., Irei, S., Takami, A., Kaneyasu, N., 2014. Characteristics of atmospheric aerosols containing heavy metals measured on Fukue Island, Japan. Atmospheric Environment 97, 447-455.
Hleis, D., Fernández-Olmo, I., Ledoux, F., Kfoury, A., Courcot, L., Desmonts, T., Courcot, D., 2013. Chemical profile identification of fugitive and confined particle emissions from an integrated iron and steelmaking plant. Journal of hazardous materials 250, 246-255.
Hsu, S.-C., Liu, S.C., Lin, C.-Y., Hsu, R.-T., Huang, Y.-T., Chen, Y.-W., 2004. Metal compositions of PM10 and PM2. 5 aerosols in Taipei during spring, 2002. Terr. Atmos. Ocean. Sci 15, 925-948.
Hsu, Y.-C., Lai, M.-H., Wang, W.-C., Chiang, H.-L., Shieh, Z.-X., 2008. Characteristics of water-soluble ionic species in Fine (PM2. 5) and Coarse Particulate Matter (PM10–2.5) in Kaohsiung, Southern Taiwan. Journal of the Air & Waste Management Association 58, 1579-1589.
Huang, R.-J., Cheng, R., Jing, M., Yang, L., Li, Y., Chen, Q., Chen, Y., Yan, J., Lin, C., Wu, Y., 2018. Source-specific health risk analysis on particulate trace elements: coal combustion and traffic emission as major contributors in wintertime Beijing. Environmental science & technology 52, 10967-10974.
Huang, X., Liu, Z., Liu, J., Hu, B., Wen, T., Tang, G., Zhang, J., Wu, F., Ji, D., Wang, L., 2017. Chemical characterization and source identification of PM 2.5 at multiple sites in the Beijing–Tianjin–Hebei region, China. Atmospheric Chemistry and Physics 17, 12941-12962.
Inguaggiato, C., Burbano, V., Rouwet, D., Garzón, G., 2017. Geochemical processes assessed by Rare Earth Elements fractionation at “Laguna Verde” acidic-sulphate crater lake (Azufral volcano, Colombia). Applied geochemistry 79, 65-74.
Jacob, D.J., Winner, D.A., 2009. Effect of climate change on air quality. Atmospheric environment 43, 51-63.
Jia, C., Mao, X., Huang, T., Liang, X., Wang, Y., Shen, Y., Jiang, W., Wang, H., Bai, Z., Ma, M., 2016. Non-methane hydrocarbons (NMHCs) and their contribution to ozone formation potential in a petrochemical industrialized city, Northwest China. Atmospheric Research 169, 225-236.
Kanellopoulos, P.G., Kotsaki, S.P., Chrysochou, E., Koukoulakis, K., Zacharopoulos, N., Philippopoulos, A., Bakeas, E., 2022. PM2. 5-bound organosulfates in two Eastern Mediterranean cities: The dominance of isoprene organosulfates. Chemosphere 297, 134103.
Karar, K., Gupta, A., Kumar, A., Biswas, A.K., 2006. Characterization and identification of the sources of chromium, zinc, lead, cadmium, nickel, manganese and iron in PM10 particulates at the two sites of Kolkata, India. Environmental Monitoring and Assessment 120, 347-360.
Kaur, S., Nieuwenhuijsen, M., 2009. Determinants of personal exposure to PM2. 5, ultrafine particle counts, and CO in a transport microenvironment. Environmental Science & Technology 43, 4737-4743.
Keene, W.C., Khalil, M.A.K., Erickson III, D.J., McCulloch, A., Graedel, T.E., Lobert, J.M., Aucott, M.L., Gong, S.L., Harper, D.B., Kleiman, G., 1999. Composite global emissions of reactive chlorine from anthropogenic and natural sources: Reactive Chlorine Emissions Inventory. Journal of Geophysical Research: Atmospheres 104, 8429-8440.
Kfoury, A., Ledoux, F., Roche, C., Delmaire, G., Roussel, G., Courcot, D., 2016. PM2. 5 source apportionment in a French urban coastal site under steelworks emission influences using constrained non-negative matrix factorization receptor model. Journal of Environmental Sciences 40, 114-128.
Khan, M.B., Masiol, M., Formenton, G., Di Gilio, A., de Gennaro, G., Agostinelli, C., Pavoni, B., 2016. Carbonaceous PM2. 5 and secondary organic aerosol across the Veneto region (NE Italy). Science of the Total Environment 542, 172-181.
Khokhryakov, V.F., Suslova, K.G., Vostrotin, V.V., Romanov, S.A., Eckerman, K.F., Krahenbuhl, M.P., Miller, S.C., 2005. Adaptation of the ICRP Publication 66 respiratory tract model to data on plutonium biokinetics for Mayak workers. Health physics 88, 125-132.
Kittner, N., Fadadu, R.P., Buckley, H.L., Schwarzman, M.R., Kammen, D.M., 2018. Trace metal content of coal exacerbates air-pollution-related health risks: the case of lignite coal in Kosovo. Environmental science & technology 52, 2359-2367.
Kotchenruther, R.A., 2017. The effects of marine vessel fuel sulfur regulations on ambient PM2. 5 at coastal and near coastal monitoring sites in the US. Atmospheric Environment 151, 52-61.
Kulkarni, P., Chellam, S., Fraser, M., 2008. Quantification of fine particle emissions from petroleum refining operations in Houston, TX using rare earth elements as markers, 101st Air and Waste Management Association Annual Conference and Exhibition 2008, pp. 1792-1796.
Kulkarni, P., Chellam, S., Fraser, M.P., 2006. Lanthanum and lanthanides in atmospheric fine particles and their apportionment to refinery and petrochemical operations in Houston, TX. Atmospheric Environment 40, 508-520.
Kulkarni, P., Chellam, S., Fraser, M.P., 2007. Tracking petroleum refinery emission events using lanthanum and lanthanides as elemental markers for PM2. 5. Environmental science & technology 41, 6748-6754.
Kyllönen, K., Karlsson, V., Ruoho-Airola, T., 2009. Trace element deposition and trends during a ten year period in Finland. Science of the Total Environment 407, 2260-2269.
Lai, H., Kendall, M., Ferrier, H., Lindup, I., Alm, S., Hänninen, O., Jantunen, M., Mathys, P., Colvile, R., Ashmore, M., 2004. Personal exposures and microenvironment concentrations of PM2. 5, VOC, NO2 and CO in Oxford, UK. Atmospheric Environment 38, 6399-6410.
Ledoux, F., Kfoury, A., Delmaire, G., Roussel, G., El Zein, A., Courcot, D., 2017. Contributions of local and regional anthropogenic sources of metals in PM2. 5 at an urban site in northern France. Chemosphere 181, 713-724.
Lee, C.J., Martin, R.V., Henze, D.K., Brauer, M., Cohen, A., Donkelaar, A.v., 2015. Response of global particulate-matter-related mortality to changes in local precursor emissions. Environmental science & technology 49, 4335-4344.
Lee, P.-K., Youm, S.-J., Jo, H.Y., 2013. Heavy metal concentrations and contamination levels from Asian dust and identification of sources: a case-study. Chemosphere 91, 1018-1025.
Lim, S.S., Vos, T., Flaxman, A.D., Danaei, G., Shibuya, K., Adair-Rohani, H., AlMazroa, M.A., Amann, M., Anderson, H.R., Andrews, K.G., 2012. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. The lancet 380, 2224-2260.
Lin, N.-Y., 2019. 2015~ 2017 年台灣都會區細懸浮微粒 (PM2. 5) 金屬元素濃度時間及空間變化. National Central University.
Lin, Y.-C., Hsu, S.-C., Lin, S.-H., Huang, Y.-T., 2020. Metallic elements emitted from industrial sources in Taiwan: Implications for source identification using airborne PM. Atmospheric Pollution Research 11, 766-775.
Lin, Y.-C., Tsai, C.-J., Wu, Y.-C., Zhang, R., Chi, K.-H., Huang, Y.-T., Lin, S.-H., Hsu, S.-C., 2015. Characteristics of trace metals in traffic-derived particles in Hsuehshan Tunnel, Taiwan: size distribution, potential source, and fingerprinting metal ratio. Atmospheric Chemistry and Physics 15, 4117-4130.
Loska, K., Wiechuła, D., Korus, I., 2004. Metal contamination of farming soils affected by industry. Environment international 30, 159-165.
Luo, Y., Zhou, X., Zhang, J., Xiao, Y., Wang, Z., Zhou, Y., Wang, W., 2018. PM2. 5 pollution in a petrochemical industry city of northern China: Seasonal variation and source apportionment. Atmospheric Research 212, 285-295.
Mbengue, S., Alleman, L.Y., Flament, P., 2014. Size-distributed metallic elements in submicronic and ultrafine atmospheric particles from urban and industrial areas in northern France. Atmospheric Research 135, 35-47.
Mbengue, S., Alleman, L.Y., Flament, P., 2017. Metal-bearing fine particle sources in a coastal industrialized environment. Atmospheric Research 183, 202-211.
Mokhtar, M.M., Taib, R.M., Hassim, M.H., 2014. Understanding selected trace elements behavior in a coal-fired power plant in Malaysia for assessment of abatement technologies. Journal of the Air & Waste Management Association 64, 867-878.
Moreno, T., Karanasiou, A., Amato, F., Lucarelli, F., Nava, S., Calzolai, G., Chiari, M., Coz, E., Artíñano, B., Lumbreras, J., 2013. Daily and hourly sourcing of metallic and mineral dust in urban air contaminated by traffic and coal-burning emissions. Atmospheric Environment 68, 33-44.
Moreno, T., Pérez, N., Querol, X., Amato, F., Alastuey, A., Bhatia, R., Spiro, B., Hanvey, M., Gibbons, W., 2010a. Physicochemical variations in atmospheric aerosols recorded at sea onboard the Atlantic–Mediterranean 2008 Scholar Ship cruise (Part II): Natural versus anthropogenic influences revealed by PM10 trace element geochemistry. Atmospheric Environment 44, 2563-2576.
Moreno, T., Querol, X., Alastuey, A., de la Rosa, J., de la Campa, A.M.S., Minguillón, M., Pandolfi, M., González-Castanedo, Y., Monfort, E., Gibbons, W., 2010b. Variations in vanadium, nickel and lanthanoid element concentrations in urban air. Science of the Total Environment 408, 4569-4579.
Moreno, T., Querol, X., Alastuey, A., Gibbons, W., 2008a. Identification of FCC refinery atmospheric pollution events using lanthanoid- and vanadium-bearing aerosols. Atmospheric Environment 42, 7851-7861.
Moreno, T., Querol, X., Alastuey, A., Gibbons, W., 2008b. Identification of FCC refinery atmospheric pollution events using lanthanoid-and vanadium-bearing aerosols. Atmospheric Environment 42, 7851-7861.
Moreno, T., Querol, X., Alastuey, A., Pey, J., Minguillon, M.C., Perez, N., Bernabé, R.M., Blanco, S., Cardenas, B., Gibbons, W., 2008c. Lanthanoid geochemistry of urban atmospheric particulate matter. Environmental science & technology 42, 6502-6507.
Morera-Gómez, Y., Elustondo, D., Lasheras, E., Alonso-Hernández, C.M., Santamaría, J.M., 2018. Chemical characterization of PM10 samples collected simultaneously at a rural and an urban site in the Caribbean coast: Local and long-range source apportionment. Atmospheric Environment 192, 182-192.
Morishita, M., Keeler, G.J., Kamal, A.S., Wagner, J.G., Harkema, J.R., Rohr, A.C., 2011. Identification of ambient PM2. 5 sources and analysis of pollution episodes in Detroit, Michigan using highly time-resolved measurements. Atmospheric Environment 45, 1627-1637.
Morselli, L., Passarini, F., Bartoli, M., 2002. The environmental fate of heavy metals arising from a MSW incineration plant. Waste Management 22, 875-881.
Moustafa, M., Mohamed, A., Ahmed, A.-R., Nazmy, H., 2015. Mass size distributions of elemental aerosols in industrial area. Journal of advanced research 6, 827-832.
Mozurkewich, M., 1993. The dissociation constant of ammonium nitrate and its dependence on temperature, relative humidity and particle size. Atmospheric Environment. Part A. General Topics 27, 261-270.
MÜLLER, G., 1981. Sedimente als Kriterien für den Gütezustand eines Gewässers: Eine Bestandsaufnahme der Schwermetallbelastung des Neckars und seiner Nebenflüsse, Neckar-Umwelt-Symposium. 1, pp. 14-24.
Nakatsubo, R., Oshita, Y., Aikawa, M., Takimoto, M., Kubo, T., Matsumura, C., Takaishi, Y., Hiraki, T., 2020. Influence of marine vessel emissions on the atmospheric PM2. 5 in Japan’s around the congested sea areas. Science of The Total Environment 702, 134744.
Ogulei, D., Hopke, P.K., Zhou, L., Paatero, P., Park, S.S., Ondov, J.M., 2005. Receptor modeling for multiple time resolved species: the Baltimore supersite. Atmospheric Environment 39, 3751-3762.
Okuda, T., Katsuno, M., Naoi, D., Nakao, S., Tanaka, S., He, K., Ma, Y., Lei, Y., Jia, Y., 2008. Trends in hazardous trace metal concentrations in aerosols collected in Beijing, China from 2001 to 2006. Chemosphere 72, 917-924.
Oravisjärvi, K., Timonen, K., Wiikinkoski, T., Ruuskanen, A., Heinänen, K., Ruuskanen, J., 2003. Source contributions to PM2. 5 particles in the urban air of a town situated close to a steel works. Atmospheric Environment 37, 1013-1022.
Paatero, P., 1997. Least squares formulation of robust non-negative factor analysis. Chemometrics and intelligent laboratory systems 37, 23-35.
Pey, J., Querol, X., Alastuey, A., 2009. Variations of levels and composition of PM10 and PM2. 5 at an insular site in the Western Mediterranean. Atmospheric Research 94, 285-299.
Phillips, B.N., Royalty, T., Dawson, K., Reed, R., Petters, M., Meskhidze, N., 2018. Hygroscopicity‐and Size‐Resolved Measurements of Submicron Aerosol on the East Coast of the United States. Journal of Geophysical Research: Atmospheres 123, 1826-1839.
Police, S., Sahu, S.K., Pandit, G.G., 2016. Chemical characterization of atmospheric particulate matter and their source apportionment at an emerging industrial coastal city, Visakhapatnam, India. Atmospheric Pollution Research 7, 725-733.
Reff, A., Bhave, P.V., Simon, H., Pace, T.G., Pouliot, G.A., Mobley, J.D., Houyoux, M., 2009. Emissions inventory of PM2. 5 trace elements across the United States. Environmental science & technology 43, 5790-5796.
Reff, A., Eberly, S.I., Bhave, P.V., 2007. Receptor modeling of ambient particulate matter data using positive matrix factorization: review of existing methods. Journal of the Air & Waste Management Association 57, 146-154.
Rovira, J., Sierra, J., Nadal, M., Schuhmacher, M., Domingo, J.L., 2018. Main components of PM10 in an area influenced by a cement plant in Catalonia, Spain: Seasonal and daily variations. Environmental research 165, 201-209.
Schaumann, F., Borm, P.J., Herbrich, A., Knoch, J., Pitz, M., Schins, R.P., Luettig, B., Hohlfeld, J.M., Heinrich, J., Krug, N., 2004. Metal-rich ambient particles (particulate matter2. 5) cause airway inflammation in healthy subjects. American journal of respiratory and critical care medicine 170, 898-903.
Shafer, M.M., Toner, B.M., Overdier, J.T., Schauer, J.J., Fakra, S.C., Hu, S., Herner, J.D., Ayala, A., 2012. Chemical speciation of vanadium in particulate matter emitted from diesel vehicles and urban atmospheric aerosols. Environmental science & technology 46, 189-195.
She, H., Cheng, P.-H., Yuan, C.-S., Yang, Z.-M., Ie, I.-R., 2020. Chemical characteristics, spatiotemporal distribution, and source apportionment of PM2. 5 surrounding industrial complexes in Southern Kaohsiung. Aerosol and Air Quality Research 20, 557-575.
Shijie, L.P.H.Z.L., Ouohua, Y.Y.F., 1994. STUDY ON ELEMENTAL CONCENTRATIONS AND SIZE DISTRIBUTION OF MARINE ATMOSPHERIC PARTICLES OVER NEAR-CHINA OCEAN [J]. Environmental Chemistry 6.
Smolka-Danielowska, D., 2010. Rare earth elements in fly ashes created during the coal burning process in certain coal-fired power plants operating in Poland–Upper Silesian Industrial Region. Journal of Environmental Radioactivity 101, 965-968.
Spada, N.J., Cheng, X., White, W.H., Hyslop, N.P., 2018. Decreasing vanadium footprint of bunker fuel emissions. Environmental science & technology 52, 11528-11534.
Stojić, A., Stojić, S.S., Mijić, Z., Šoštarić, A., Rajšić, S., 2015. Spatio-temporal distribution of VOC emissions in urban area based on receptor modeling. Atmospheric Environment 106, 71-79.
Su, J., Zhao, P., Ding, J., Du, X., Dou, Y., 2021. Insights into measurements of water-soluble ions in PM2. 5 and their gaseous precursors in Beijing. Journal of Environmental Sciences 102, 123-137.
Sun, G., Li, Z., Liu, T., Chen, J., Wu, T., Feng, X., 2017. Rare earth elements in street dust and associated health risk in a municipal industrial base of central China. Environmental geochemistry and health 39, 1469-1486.
Taiwo, A., Beddows, D., Calzolai, G., Harrison, R.M., Lucarelli, F., Nava, S., Shi, Z., Valli, G., Vecchi, R., 2014. Receptor modelling of airborne particulate matter in the vicinity of a major steelworks site. Science of the total environment 490, 488-500.
Taylor, S., 1964a. Abundance of chemical elements in the continental crust: a new table. Geochimica et cosmochimica acta 28, 1273-1285.
Taylor, S., 1964b. Abundance of chemical elements in the continental crust: a new table.
Taylor, S.R., McLennan, S.M., 1985. The continental crust: its composition and evolution.
Tian, H., Wang, Y., Xue, Z., Cheng, K., Qu, Y., Chai, F., Hao, J., 2010. Trend and characteristics of atmospheric emissions of Hg, As, and Se from coal combustion in China, 1980-2007. Atmospheric Chemistry and Physics 10, 11905-11919.
Tian, S., Liang, T., Li, K., Wang, L., 2018. Source and path identification of metals pollution in a mining area by PMF and rare earth element patterns in road dust. Science of The Total Environment 633, 958-966.
Titos, G., Jefferson, A., Sheridan, P., Andrews, E., Lyamani, H., Alados-Arboledas, L., Ogren, J., 2014. Aerosol light-scattering enhancement due to water uptake during the TCAP campaign. Atmospheric Chemistry and Physics 14, 7031-7043.
Trebs, I., Metzger, S., Meixner, F.X., Helas, G., Hoffer, A., Rudich, Y., Falkovich, A.H., Moura, M.A., da Silva Jr, R.S., Artaxo, P., 2005. The NH4+‐NO3−‐Cl−‐SO42−‐H2O aerosol system and its gas phase precursors at a pasture site in the Amazon Basin: How relevant are mineral cations and soluble organic acids? Journal of Geophysical Research: Atmospheres 110.
Uria-Tellaetxe, I., Carslaw, D.C., 2014. Conditional bivariate probability function for source identification. Environmental modelling & software 59, 1-9.
Wang, X., Zhang, R., Yu, W., 2019. The effects of PM2. 5 concentrations and relative humidity on atmospheric visibility in Beijing. Journal of Geophysical Research: Atmospheres 124, 2235-2259.
Wang, Z., Wang, C., Lu, P., Zhu, W., 2001. Concentrations and flux of rare earth elements in a semifield plot as influenced by their agricultural application. Biological trace element research 84, 213-226.
Weckwerth, G., 2001. Verification of traffic emitted aerosol components in the ambient air of Cologne (Germany). Atmospheric environment 35, 5525-5536.
Wu, Y.-S., Fang, G.-C., Lee, W.-J., Lee, J.-F., Chang, C.-C., Lee, C.-Z., 2007. A review of atmospheric fine particulate matter and its associated trace metal pollutants in Asian countries during the period 1995–2005. Journal of hazardous materials 143, 511-515.
Xie, R., Seip, H.M., Wibetoe, G., Nori, S., McLeod, C.W., 2006. Heavy coal combustion as the dominant source of particulate pollution in Taiyuan, China, corroborated by high concentrations of arsenic and selenium in PM10. Science of the total environment 370, 409-415.
Xie, S.-P., Deser, C., Vecchi, G.A., Collins, M., Delworth, T.L., Hall, A., Hawkins, E., Johnson, N.C., Cassou, C., Giannini, A., 2015. Towards predictive understanding of regional climate change. Nature Climate Change 5, 921-930.
Xu, Y., Lamarque, J.F., 2018. Isolating the meteorological impact of 21st century GHG warming on the removal and atmospheric loading of anthropogenic fine particulate matter pollution at global scale. Earth′s Future 6, 428-440.
Yan, G., Zhang, P., Yang, J., Zhang, J., Zhu, G., Cao, Z., Fan, J., Liu, Z., Wang, Y., 2021. Chemical characteristics and source apportionment of PM2. 5 in a petrochemical city: Implications for primary and secondary carbonaceous component. Journal of Environmental Sciences 103, 322-335.
Yan, Y., Chi, H.-f., Liu, J.-r., Hu, G.-r., Yu, R.-l., Huang, H.-b., Lin, C.-q., 2020a. Provenance and bioaccessibility of rare earth elements in atmospheric particles in areas impacted by the optoelectronic industry. Environmental Pollution 263, 114349.
Yan, Y., Chi, H.-f., Liu, J.-r., Hu, G.-r., Yu, R.-l., Huang, H.-b., Lin, C.-q., 2020b. Provenance and bioaccessibility of rare earth elements in atmospheric particles in areas impacted by the optoelectronic industry. Environmental Pollution, 114349.
Yan, Y., Yu, R.-l., Hu, G.-r., Wang, S.-s., Huang, H.-b., Cui, J.-y., Yan, Y., 2019. Characteristics and provenances of rare earth elements in the atmospheric particles of a coastal city with large-scale optoelectronic industries. Atmospheric Environment 214, 116836.
Yang, H.-H., Lee, K.-T., Hsieh, Y.-S., Luo, S.-W., Li, M.-S., 2014. Filterable and condensable fine particulate emissions from stationary sources. Aerosol and Air Quality Research 14, 2010-2016.
Yang, L., Zhou, X., Wang, Z., Zhou, Y., Cheng, S., Xu, P., Gao, X., Nie, W., Wang, X., Wang, W., 2012. Airborne fine particulate pollution in Jinan, China: Concentrations, chemical compositions and influence on visibility impairment. Atmospheric Environment 55, 506-514.
Yatkin, S., Bayram, A., 2008. Source apportionment of PM10 and PM2. 5 using positive matrix factorization and chemical mass balance in Izmir, Turkey. Science of the total environment 390, 109-123.
Yongming, H., Peixuan, D., Junji, C., Posmentier, E.S., 2006. Multivariate analysis of heavy metal contamination in urban dusts of Xi′an, Central China. Science of the total environment 355, 176-186.
Yu, Q., Chen, J., Qin, W., Ahmad, M., Zhang, Y., Sun, Y., Xin, K., Ai, J., 2022. Oxidative potential associated with water-soluble components of PM2. 5 in Beijing: the important role of anthropogenic organic aerosols. Journal of Hazardous Materials, 128839.
Zannoni, D., Valotto, G., Visin, F., Rampazzo, G., 2016. Sources and distribution of tracer elements in road dust: the Venice mainland case of study. Journal of geochemical exploration 166, 64-72.
Zhang, J., Wu, L., Fang, X., Li, F., Yang, Z., Wang, T., Mao, H., Wei, E., 2018a. Elemental composition and health risk assessment of PM10 and PM2. 5 in the roadside microenvironment in Tianjin, China. Aerosol Air Qual. Res 18, 1817-1827.
Zhang, R., Sun, X., Shi, A., Huang, Y., Yan, J., Nie, T., Yan, X., Li, X., 2018b. Secondary inorganic aerosols formation during haze episodes at an urban site in Beijing, China. Atmospheric Environment 177, 275-282.
Zhang, Y., Jiang, Z., He, M., Hu, B., 2007. Determination of trace rare earth elements in coal fly ash and atmospheric particulates by electrothermal vaporization inductively coupled plasma mass spectrometry with slurry sampling. Environmental Pollution 148, 459-467.
Zhao, R., Han, B., Lu, B., Zhang, N., Zhu, L., Bai, Z., 2015. Element composition and source apportionment of atmospheric aerosols over the China Sea. Atmospheric Pollution Research 6, 191-201.
Zhao, Y., Yang, J., Ma, S., Zhang, S., Liu, H., Gong, B., Zhang, J., Zheng, C., 2018. Emission controls of mercury and other trace elements during coal combustion in China: a review. International Geology Review 60, 638-670.
Zhu, Y., Zeng, G.-m., Zhang, Y., Tang, L., Chen, J., Cheng, M., Zhang, L.-h., He, L., Guo, Y., He, X.-x., 2014. Highly sensitive electrochemical sensor using a MWCNTs/GNPs-modified electrode for lead (II) detection based on Pb 2+-induced G-rich DNA conformation. Analyst 139, 5014-5020.
江姿穎, 2015. 鄰近六輕工業區孩童之空氣汙染暴露與過敏性疾病及支氣管炎相關性研究.
周文傑, 2007. 燃燒金紙與拜香所產生氣態污染物及飛灰中金屬成份之分布.
陳貞孜, 2012. 燃燒金紙, 拜香產生空氣污染物之評估
指導教授 李崇德 審核日期 2022-9-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明