博碩士論文 103326030 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:34.207.78.157
姓名 林乃芸(Nai-Yun Lin)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 2015~2017年台灣都會區細懸浮微粒(PM2.5)金屬元素濃度時間及空間變化
相關論文
★ 台灣北部地區大氣氣膠有機酸特性★ 北部氣膠超級測站近七年氣膠特性變化探討
★ 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性★ 鹿林山大氣氣膠含水量探討及乾氣膠光學特性
★ 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性★ 鹿林山大氣背景站不同氣團氣膠光學特性
★ 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究★ 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討
★ 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化★ 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響
★ 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析★ 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性
★ 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定★ 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析
★ 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估★ 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 細懸浮微粒(氣動粒徑小於或等於2.5 μm的粒狀物質, PM2.5)對於環境及民眾健康有重大的影響,本文分析「104-105年細懸浮微粒(PM2.5)化學成分監測專案工作計畫」及「細懸浮微粒(PM2.5)化學成分監測及分析計畫」於2015年7月至2017年12月在板橋、忠明、嘉義、斗六、小港、花蓮環保署空氣品質監測站採集的化學成分數據,探討PM2.5質量濃度及金屬元素季節變化趨勢、金屬元素可能來源、高PM2.5濃度(>35 μg m-3)與低濃度(<35 μg m-3)金屬元素占比差異,推論金屬元素健康效應;同時,使用正矩陣因子法(Positive Matrix Factorization, PMF)推估污染來源並結合風向及條件機率函數(Conditional Probability Function, CPF)輔助判別當地污染源貢獻。
研究結果發現板橋及花蓮站PM2.5質量濃度變化,都是春季最高,忠明為秋季,斗六、嘉義及小港則是冬季最高,濃度最低季節除了板橋是秋季最低外,其他測站都是夏季。於六個測站中,Al、Fe、Na、Mg、K、Ca、Zn屬於高濃度群,這些元素主要貢獻來源可能有塵土(Al、Fe及Ca)、海鹽(Na及Mg)、交通(Fe、Na、Ca及Zn)、煉鋼(Fe及Zn)、廢棄物焚化(Al、Fe、Ca及Zn)等。中間濃度群金屬元素多與人為活動有關,如:燃煤、燃油等工業污染源及交通活動,低濃度群則與工業鍋爐排放和化石燃料燃燒有關。值得一提的是,釩元素(V)在各站各季節都是以小港站濃度最高,V是燃油的特徵元素,表示小港站在各站中受燃油燃燒的貢獻最高。
在採集的金屬元素中,Ni、Cr、Cd、As為國際癌症研究署歸類的第一級人類致癌物,Pb為第二B級人類致癌物,本文計算這些金屬元素吸入途徑的人類暴露濃度,推估結果以Pb為各站所有元素暴露量最高,Ni與Cr次之,Ni、Cr、Cd暴露濃度以小港站較高,As、Pb則為嘉義站,元素致癌風險數值介於10-5~10-7,各站以小港站的致癌風險較高,值得注意。
PMF受體模式結合CPF推估顯示,各站以燃油或燃煤燃燒、交通排放、工業排放、塵土、海水飛沫為主。比較採樣期間各站高PM2.5濃度與低濃度的成分占比,發現六站中只有Ba的占比在高濃度時略高於低濃度的現象,Ba的來源可能有輪胎和剎車磨損、鋼鐵廠及塵土,其他在低濃度時有較高占比的元素為Na、Mg、Ca、Ti、Mn、Ni、V,主要為塵土及工業污染的指標物種。
金屬元素在PM2.5濃度占比雖低,但它們往往攜帶著污染來源特徵,少數金屬元素又有致癌性,因此,PM2.5金屬元素的解析有其重要性。
摘要(英) PM2.5 (particulate matter with aerodynamic diameter less than or equal to 2.5 μm) plays a significant role in the environment and public health. This study analyzed the data collected at the Banqiao, Zhongming, Douliu, Chiayi, Xiaogang, and Hualien stations in the “2015-2016 PM2.5 chemical composition monitoring and analysis study” and “PM2.5 chemical composition monitoring and analysis study” in 2017. The objectives included the investigations on the variation trends of PM2.5 mass and metal element concentrations, potential sources of metal elements, differences of metal element proportions in high and low PM2.5, and the assessments of the health risk of metal elements. Additionally, this study executed source apportionments using Positive Matrix Factorization (PMF) and verified local source contributions by coupling Conditional Probability Function (CPF) with wind direction.
The results showed that the Banqiao and Hualien stations were with the highest PM2.5 seasonal concentrations in spring, while the Zhongming station was in autumn and the Douliu, Chiayi, and Xiaogang stations were in winter. In contrast, the lowest PM2.5 seasonal concentration was in autumn for the Banqiao station and summer for other stations. Among the six stations, Al, Fe, Na, Mg, K, Ca, and Zn belonged to the high concentration group. Major contribution sources of these metal elements can be derived from crustal material (Al, Fe, and Ca), sea salt (Na and Mg), transportation activities (Fe, Na, Ca, and Zn), steel refinery (Fe and Zn), and waste incineration (Al, Fe, Ca and Zn). The metal elements in the medium concentration group were mostly associated with anthropogenic activities, for example, coal and oil burning related industrial sources and transportation activities. For the metal elements in the low concentration group, industrial boilers and fossil fuel burning were major contributing sources. The highest concentration of vanadium (V) in all stations and seasons was at the Xiaogang station. Consequently, the Xiaogang station is under the influence of emissions of oil burning significantly in all stations, as V is the tracer element of oil burning.
Among the analyzed metal elements, Ni, Cr, Cd, and As are classified into group 1 and group 2B human carcinogens for Pb by the International Agency for Research on Cancer. This study computed the human exposure via inhalation pathway to find that Pb exposure was the highest followed by Ni and Cr in all stations. The exposure of Ni, Cr, and Cd ranked the highest at the Xiaogang station, while As and Pb reached the highest at the Chiayi station. The cancer risk of the elements lied in the range from 10-7 to 10-5. The Xiaogang station is noted to have the highest cancer risk among all stations.
The combination of PMF with CPF on source apportionment of metal elements resulted in identifying sources of oil (coal) burning, transportation activities, industrial discharge, crustal materials, and sea salt. Comparing high PM2.5 concentration (>35 μg m-3) with low concentration (<35 μg m-3) samples, Ba was the sole metal element with slightly greater PM2.5 proportion. The sources of Ba included tire and brake wearing, steel-making, and crustal materials. In contrast, Na, Mg, Ca, Ti, Mn, Ni, and V were with greater PM2.5 proportion in the low PM2.5 samples. They are tracers of industrial pollution and crustal materials.
Although metal elements are low in PM2.5 mass proportion, they tend to carry over polluting source characteristics and few of them are carcinogens. Therefore, the analysis of PM2.5 metal elements is of importance.
關鍵字(中) ★ 細懸浮微粒(PM2.5)
★ PM2.5化學成分
★ PMF
★ 金屬元素
★ 健康風險
關鍵字(英) ★ PM2.5
★ PM2.5 chemical composition
★ PMF
★ Metal elements
★ Health risk
論文目次 摘要 I
Abstract III
致謝 V
目錄 VI
圖目錄 IX
表目錄 XI
第一章 前言 1
1-1 研究緣起 1
1-2 研究目的 3
第二章 文獻回顧 4
2-1 細懸浮微粒(PM2.5)的重要性 4
2-1-1 細懸浮微粒(PM2.5)對人體的危害 4
2-1-2 細懸浮微粒(PM2.5)對環境的影響 5
2-2 細懸浮微粒(PM2.5)形成機制 6
2-3 細懸浮微粒(PM2.5)的化學組成 7
2-3-1 PM2.5氣膠水溶性離子組成 7
2-3-2 PM2.5氣膠碳成分來源 8
2-3-3 PM2.5金屬元素成分 9
2-4 台灣都會區細懸浮微粒(PM2.5)特性 13
2-5 受體模式正矩陣因子法PMF (Positive Matrix Factorization)應用 15
2-6 PM2.5元素成分的危害性 18
第三章 研究方法 20
3-1 研究架構 20
3-2 採樣地點與時間 21
3-2-1 採樣地點 22
3-2-2 採樣時間 24
3-3 PM2.5質量濃度採樣器 25
3-4 PM2.5質量濃度分析方法 27
3-4-1 質量濃度秤重分析 27
3-4-2 氣膠金屬元素成分檢驗分析方法 28
3-5 正矩陣因子法PMF (Positive Matrix Factorization) 35
3-5-1 輸入資料處理 36
3-5-2 PMF操作流程 37
3-6 條件機率函數CPF (Conditional probability function)推估方法 41
3-7 健康風險評估 42
第四章 結果與討論 43
4-1 金屬元素濃度變化趨勢 43
4-1-1 金屬元素季節變化 43
4-1-2 金屬元素總濃度季節變化 53
4-1-3 金屬元素總濃度在PM2.5占比季節變化 58
4-1-4 個別金屬元素空間變化 69
4-2 金屬元素濃度相關性及發散係數分析 (Coefficient of divergence) 75
4-3 金屬元素健康風險評估 79
4-4 金屬元素比值與污染來源推估 81
4-5 PMF受體模式推估都會區PM2.5污染來源 84
4-5-1 板橋站污染來源推估 85
4-5-2 忠明站污染來源推估 93
4-5-3 斗六站污染來源推估 100
4-5-4 嘉義站污染來源推估 107
4-5-5 小港站污染來源推估 114
4-5-6 花蓮站污染來源推估 121
4-5-7 各個測站PMF推估因子貢獻比例比較 127
4-6 六站事件日元素探討 128
第五章 結論與建議 134
5-1 結論 134
5-2 建議 136
參考文獻 137
附錄一 事件成因 153
附錄二 受體模式檢測結果 161
附錄三 口試委員意見答覆 162
參考文獻 Aldabe, J., Elustondo, D., Santamaría, C., Lasheras, E., Pandolfi, M., Alastuey, A., Querol, X., Santamaría, J.M., 2011. Chemical characterisation and source apportionment of PM2.5 and PM10 at rural, urban and traffic sites in Navarra (North of Spain). Atmospheric Research 102, 191-205.
Almeida, S., Pio, C., Freitas, M., Reis, M., Trancoso, M., 2005. Source apportionment of fine and coarse particulate matter in a sub-urban area at the Western European Coast. Atmospheric Environment 39, 3127-3138.
Arditsoglou, A., Samara, C., 2005. Levels of total suspended particulate matter and major trace elements in Kosovo: a source identification and apportionment study. Chemosphere 59, 669-678.
Bae, M.-S., Demerjian, K.L., Schwab, J.J., 2006. Seasonal estimation of organic mass to organic carbon in PM 2.5 at rural and urban locations in New York state. Atmospheric Environment 40, 7467-7479.
Behera, S.N., Sharma, M., Aneja, V.P., Balasubramanian, R., 2013. Ammonia in the atmosphere: a review on emission sources, atmospheric chemistry and deposition on terrestrial bodies. Environ Sci Pollut Res Int 20, 8092-8131.
Bell, M.L., Davis, D.L., 2001. Reassessment of the lethal London fog of 1952: novel indicators of acute and chronic consequences of acute exposure to air pollution. Environmental health perspectives 109, 389.
Birmili, W., Allen, A.G., Bary, F., Harrison, R.M., 2006. Trace metal concentrations and water solubility in size-fractionated atmospheric particles and influence of road traffic. Environmental Science & Technology 40, 1144-1153.
Bosco, M., Varrica, D., Dongarra, G., 2005. Case study: inorganic pollutants associated with particulate matter from an area near a petrochemical plant. Environmental Research 99, 18-30.
Brown, S.G., Eberly, S., Paatero, P., Norris, G.A., 2015. Methods for estimating uncertainty in PMF solutions: examples with ambient air and water quality data and guidance on reporting PMF results. Sci Total Environ 518-519, 626-635.
Buzcu, B., Fraser, M.P., Kulkarni, P., Chellam, S., 2003. Source identification and apportionment of fine particulate matter in Houston, TX, using positive matrix factorization. Environmental Engineering Science 20, 533-545.
Calvert, J.G., Stockwell, W.R., 1983. Acid generation in the troposphere by gas-phase chemistry. Environmental science & technology 17, 428A-443A.
Cancer, I.A.f.R.o., Organization, W.H., 2013. IARC: Outdoor air pollution a leading environmental cause of cancer deaths. No. 221. World Health Organization.
Canepari, S., Perrino, C., Olivieri, F., Astolfi, M.L., 2008. Characterisation of the traffic sources of PM through size-segregated sampling, sequential leaching and ICP analysis. Atmospheric Environment 42, 8161-8175.
Cao, J.-j., Wang, Q.-y., Chow, J.C., Watson, J.G., Tie, X.-x., Shen, Z.-x., Wang, P., An, Z.-s., 2012. Impacts of aerosol compositions on visibility impairment in Xi′an, China. Atmospheric Environment 59, 559-566.
Cass, G.R., 1998. Organic molecular tracers for particulate air pollution sources. TrAC Trends in Analytical Chemistry 17, 356-366.
Cess, R.D., 1983. Arctic aerosols: Model estimates of interactive influences upon the surface-atmosphere clearsky radiation budget. Atmospheric Environment (1967) 17, 2555-2564.
Chan, Y., Simpson, R., Mctainsh, G.H., Vowles, P.D., Cohen, D., Bailey, G., 1999. Source apportionment of visibility degradation problems in Brisbane (Australia) using the multiple linear regression techniques. Atmospheric Environment 33, 3237-3250.
Chang, S.-C., Lin, T.-H., Young, C.-Y., Lee, C.-T., 2011. The impact of ground-level fireworks (13 km long) display on the air quality during the traditional Yanshui Lantern Festival in Taiwan. Environmental Monitoring and Assessment 172, 463-479.
Cheng, M.-T., Chio, C.-P., Huang, C.-Y., Chen, J.-M., Wang, C.-F., Kuo, C.-Y., 2008. Chemical compositions of fine particulates emitted from oil-fired boilers. Environmental Engineering and Management 18, 355-362.
Cheng, Y., Lee, S., Gu, Z., Ho, K., Zhang, Y., Huang, Y., Chow, J.C., Watson, J.G., Cao, J., Zhang, R., 2015. PM2.5 and PM10-2.5 chemical composition and source apportionment near a Hong Kong roadway. Particuology 18, 96-104.
Chou, C., Lee, C.-T., T. Cheng, M., Yuan, C.-S., J Chen, S., L. Wu, Y., C. Hsu, W., C. Lung, S., Hsu, S.-C., Y Lin, C., C. Liu, S., 2010. Seasonal variation and spatial distribution of carbonaceous aerosols in Taiwan.
Chow, J.C., Watson, J.G., Edgerton, S.A., Vega, E., 2002. Chemical composition of PM2.5 and PM10 in Mexico City during winter 1997. Science of The Total Environment 287, 177-201.
Chow, J.C., Watson, J.G., Kuhns, H., Etyemezian, V., Lowenthal, D.H., Crow, D., Kohl, S.D., Engelbrecht, J.P., Green, M.C., 2004. Source profiles for industrial, mobile, and area sources in the Big Bend Regional Aerosol Visibility and Observational study. Chemosphere 54, 185-208.
Chow, J.C., Watson, J.G., Pritchett, L.C., Pierson, W.R., Frazier, C.A., Purcell, R.G., 1993. THE DRI THERMAL OPTICAL REFLECTANCE CARBON ANALYSIS SYSTEM - DESCRIPTION, EVALUATION AND APPLICATIONS IN UNITED-STATES AIR-QUALITY STUDIES. Atmospheric Environment Part a-General Topics 27, 1185-1201.
Christian, T.J., Yokelson, R., Cárdenas, B., Molina, L., Engling, G., Hsu, S.-C., 2010. Trace gas and particle emissions from domestic and industrial biofuel use and garbage burning in central Mexico. Atmospheric Chemistry and Physics 10, 565-584.
Chuang, M.-T., Chen, Y.-C., Lee, C.-T., Cheng, C.-H., Tsai, Y.-J., Chang, S.-Y., Su, Z.-S., 2016. Apportionment of the sources of high fine particulate matter concentration events in a developing aerotropolis in Taoyuan, Taiwan. Environmental Pollution 214, 273-281.
Chuang, M.T., Chiang, P.C., Chan, C.C., Wang, C.F., Chang, E.E., Lee, C.T., 2008. The effects of synoptical weather pattern and complex terrain on the formation of aerosol events in the Greater Taipei area. Sci Total Environ 399, 128-146.
Dall′Osto, M., Querol, X., Amato, F., Karanasiou, A., Lucarelli, F., Nava, S., Calzolai, G., Chiari, M., 2013. Hourly elemental concentrations in PM 2.5 aerosols sampled simultaneously at urban background and road site during SAPUSS–diurnal variations and PMF receptor modelling. Atmospheric Chemistry and Physics 13, 4375-4392.
Deng, J., Xing, Z., Zhuang, B., Du, K., 2014a. Comparative study on long-term visibility trend and its affecting factors on both sides of the Taiwan Strait. Atmospheric Research 143, 266-278.
Deng, S., Shi, Y., Liu, Y., Zhang, C., Wang, X., Cao, Q., Li, S., Zhang, F., 2014b. Emission characteristics of Cd, Pb and Mn from coal combustion: Field study at coal-fired power plants in China. Fuel Processing Technology 126, 469-475.
Dockery, D.W., Pope, C.A., Xu, X., Spengler, J.D., Ware, J.H., Fay, M.E., Ferris Jr, B.G., Speizer, F.E., 1993. An association between air pollution and mortality in six US cities. New England journal of medicine 329, 1753-1759.
Dominici, F., Peng, R.D., Bell, M.L., Pham, L., McDermott, A., Zeger, S.L., Samet, J.L., 2006. Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. JAMA 295, 1127-1134.
Eberly, S., 2005. EPA PMF 1.1 user’s guide. Prepared by the US Environmental Protection Agency, National Exposure Research Laboratory, Research Triangle Park, NC, June.
Eileen Birch, M., Cary, R., 1996. Elemental carbon-based method for occupational monitoring of particulate diesel exhaust: Methodology and exposure issues.
Escudero, M., Alastuey, A., Moreno, T., Querol, X., Perez, P., 2012. Open air mineral treatment operations and ambient air quality: assessment and source apportionment. Journal of Environmental Monitoring 14, 2939-2951.
Fang, G.-C., Wu, Y.-S., Wen, C.-C., Huang, S.-H., Rau, J.-Y., 2006. Ambient air particulate concentrations and metallic elements principal component analysis at Taichung Harbor (TH) and WuChi Traffic (WT) near Taiwan Strait during 2004–2005. Journal of hazardous materials 137, 314-323.
Fann, N., Lamson, A.D., Anenberg, S.C., Wesson, K., Risley, D., Hubbell, B.J., 2012. Estimating the national public health burden associated with exposure to ambient PM2.5 and ozone. Risk Anal 32, 81-95.
Feng, Y., Penner, J.E., 2007. Global modeling of nitrate and ammonium: Interaction of aerosols and tropospheric chemistry. Journal of Geophysical Research: Atmospheres 112.
Foltescu, V.L., Selin Lindgren, E., Isakson, J., Öblad, M., Tiede, R., Sommar, J., Pacyna, J.M., Toerseth, K., 1996. Airborne concentrations and deposition fluxes of major and trace species at marine stations in Southern Scandinavia. Atmospheric Environment 30, 3857-3872.
Geng, N., Wang, J., Xu, Y., Zhang, W., Chen, C., Zhang, R., 2013. PM2.5 in an industrial district of Zhengzhou, China: Chemical composition and source apportionment. Particuology 11, 99-109.
Gu, J., Du, S., Han, D., Hou, L., Yi, J., Xu, J., Liu, G., Han, B., Yang, G., Bai, Z.-P., 2014. Major chemical compositions, possible sources, and mass closure analysis of PM2. 5 in Jinan, China. Air Quality, Atmosphere & Health 7, 251-262.
Guaita, R., Pichiule, M., Maté, T., Linares, C., Díaz, J., 2011. Short-term impact of particulate matter (PM2. 5) on respiratory mortality in Madrid. International journal of environmental health research 21, 260-274.
Han, J., Moon, K.-J., Lee, S.-J., Kim, Y.-J., Y. Ryu, S., S. Cli, S., M. Yi, S., 2005. Size-resolved source apportionment of ambient particles by positive matrix factorization. Atmospheric Chemistry Physics Discussion 5, 5223-5252.
Harrison, R.M., Yin, J., 2000. Particulate matter in the atmosphere: which particle properties are important for its effects on health? Science of the total environment 249, 85-101.
Hasselriis, F., Licata, A., 1996. Analysis of heavy metal emission data from municipal waste combustion. Journal of Hazardous Materials 47, 77-102.
He, K., Yang, F., Ma, Y., Zhang, Q., Yao, X., Chan, C.K., Cadle, S., Chan, T., Mulawa, P., 2001. The characteristics of PM2.5 in Beijing, China. Atmospheric Environment 35, 4959-4970.
Heintzenberg, J., 1989. Fine particles in the global troposphere a review. Tellus B 41, 149-160.
Hjortenkrans, D.S., Bergbäck, B.G., Häggerud, A.V., 2007a. Metal emissions from brake linings and tires: case studies of Stockholm, Sweden 1995/1998 and 2005. Environmental Science & Technology 41, 5224-5230.
Hjortenkrans, D.S.T., Bergbäck, B.G., Häggerud, A.V., 2007b. Metal Emissions from Brake Linings and Tires: Case Studies of Stockholm, Sweden 1995/1998 and 2005. Environmental Science & Technology 41, 5224-5230.
Ho, K.F., Lee, S.C., Chan, C.K., Yu, J.C., Chow, J.C., Yao, X.H., 2003. Characterization of chemical species in PM2.5 and PM10 aerosols in Hong Kong. Atmospheric Environment 37, 31-39.
Hsu, C.-Y., Chiang, H.-C., Chen, M.-J., Chuang, C.-Y., Tsen, C.-M., Fang, G.-C., Tsai, Y.-I., Chen, N.-T., Lin, T.-Y., Lin, S.-L., Chen, Y.-C., 2017. Ambient PM2.5 in the residential area near industrial complexes: Spatiotemporal variation, source apportionment, and health impact. Science of The Total Environment 590-591, 204-214.
Hsu, C.-Y., Chiang, H.-C., Lin, S.-L., Chen, M.-J., Lin, T.-Y., Chen, Y.-C., 2016a. Elemental characterization and source apportionment of PM10 and PM2.5 in the western coastal area of central Taiwan. Science of The Total Environment 541, 1139-1150.
Hsu, C.-Y., Chiang, H.-C., Lin, S.-L., Chen, M.-J., Lin, T.-Y., Chen, Y.-C., 2016b. Elemental characterization and source apportionment of PM10 and PM2. 5 in the western coastal area of central Taiwan. Science of the Total Environment 541, 1139-1150.
Hsu, S.-C., C. Liu, S., Tsai, F., Engling, G., Lin, I.I., Chou, C., Kao, S.-J.I., C. C. Lung, S., Chan, C.-Y., C. Lin, S., Huang, J.-C., Chi, K., 2010. High wintertime particulate matter pollution over an offshore island (Kinmen) off southeastern China: An overview.
Hsu, S.-C., Liu, S.C., Jeng, W.-L., Lin, F.-J., Huang, Y.-T., Candice Lung, S.-C., Liu, T.-H., Tu, J.-Y., 2005. Variations of Cd/Pb and Zn/Pb ratios in Taipei aerosols reflecting long-range transport or local pollution emissions. Science of The Total Environment 347, 111-121.
Hsu, S.-C., Liu, S.C., Lin, C.-Y., Hsu, R.-T., Huang, Y.-T., Chen, Y.-W., 2004a. Metal compositions of PM10 and PM2. 5 aerosols in Taipei during spring, 2002. Terr. Atmos. Ocean. Sci 15, 925-948.
Hsu, S.C., Chen Liu, S., Lin, C.Y., Hsu, R.T., Huang, Y.T., Chen, Y.W., 2004b. Metal Compositions of PM10 and PM2.5 Aerosols in Taipei during Spring, 2002. Terrestrial, Atmospheric and Oceanic sciences 15, 925-948.
Hsu, S.C., Liu, S.C., Huang, Y.T., Chou, C.C.K., Lung, S.C.C., Liu, T.H., Tu, J.Y., Tsai, F.J., 2009. Long-range southeastward transport of Asian biosmoke pollution: Signature detected by aerosol potassium in Northern Taiwan. J. Geophys. Res.-Atmos. 114, 17.
Hsu, S.C., Liu, S.C., Huang, Y.T., Lung, S.C.C., Tsai, F., Tu, J.Y., Kao, S.J., 2008. A criterion for identifying Asian dust events based on Al concentration data collected from northern Taiwan between 2002 and early 2007. Journal of Geophysical Research: Atmospheres 113.
Hu, C.-W., Chao, M.-R., Wu, K.-Y., Chang-Chien, G.-P., Lee, W.-J., Chang, L.W., Lee, W.-S., 2003. Characterization of multiple airborne particulate metals in the surroundings of a municipal waste incinerator in Taiwan. Atmospheric Environment 37, 2845-2852.
Hu, D., Tolocka, M., Li, Q., Kamens, R.M., 2007. A kinetic mechanism for predicting secondary organic aerosol formation from toluene oxidation in the presence of NOx and natural sunlight. Atmospheric Environment 41, 6478-6496.
Huang, Y., Hsu, L., Chang, Y., 2011. Comprehensive characterization of ambient nanoparticles collected near an industrial science park: Particle size distributions and relationships with environmental factors. Journal of Environmental Sciences 23, 1334-1341.
Hung-Lung, C., Yao-Sheng, H., 2009. Particulate matter emissions from on-road vehicles in a freeway tunnel study. Atmospheric Environment 43, 4014-4022.
Iijima, A., Sato, K., Yano, K., Kato, M., Kozawa, K., Furuta, N., 2008. Emission Factor for Antimony in Brake Abrasion Dusts as One of the Major Atmospheric Antimony Sources. 42, 2937-2942.
Ivošević, T., Orlic, I., Čargonja, M., 2016. Fine Particulate Matter from Ship Emissions in the Port of Rijeka, Croatia.
Jacobson, M.Z., 2001. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature 409, 695-697.
Johansson, C., Norman, M., Burman, L., 2009. Road traffic emission factors for heavy metals. Atmospheric Environment 43, 4681-4688.
Kaufman, Y.J., Fraser, R.S., 1997. The effect of smoke particles on clouds and climate forcing. Science 277, 1636-1639.
Kim, E., Hopke, P.K., Edgerton, E.S., 2003. Source identification of Atlanta aerosol by positive matrix factorization. Journal of the Air & Waste Management Association 53, 731-739.
Kittelson, D.B., Watts, W., Johnson, J., 2004. Nanoparticle emissions on Minnesota highways. Atmospheric Environment 38, 9-19.
Kong, S., Ding, X., Bai, Z., Han, B., Chen, L., Shi, J., Li, Z., 2010. A seasonal study of polycyclic aromatic hydrocarbons in PM2. 5 and PM2. 5–10 in five typical cities of Liaoning Province, China. Journal of Hazardous Materials 183, 70-80.
Kong, S., Ji, Y., Lu, B., Chen, L., Han, B., Li, Z., Bai, Z., 2011. Characterization of PM10 source profiles for fugitive dust in Fushun-a city famous for coal. Atmospheric Environment 45, 5351-5365.
Kulkarni, P., Chellam, S., Fraser, M.P., 2006. Lanthanum and lanthanides in atmospheric fine particles and their apportionment to refinery and petrochemical operations in Houston, TX. Atmospheric Environment 40, 508-520.
Kulkarni, P., Chellam, S., P Fraser, M., 2007. Tracking Petroleum Refinery Emission Events Using Lanthanum and Lanthanides as Elemental Markers for PM 2.5. Environmental science & technology 41, 6748-6754.
Kulmala, M., Keronen, P., Laaksonen, A., Vesala, T., Korhonen, P., 1995. The effect of HCl on cloud droplet formation. Journal of Aerosol Science 26, S413-S414.
Kuo, C.-Y., Lin, Y.-R., Chang, S.-Y., Lin, C.-Y., Chou, C.-H., 2013. Aerosol characteristics of different types of episode. Environmental Monitoring and Assessment 185, 9777-9787.
Kuo, S.-C., Hsieh, L.-Y., Tsai, C.-H., Tsai, Y.I., 2007. Characterization of PM 2.5 fugitive metal in the workplaces and the surrounding environment of a secondary aluminum smelter. Atmospheric Environment 41, 6884-6900.
Lee, E., Chan, C.K., Paatero, P., 1999. Application of positive matrix factorization in source apportionment of particulate pollutants in Hong Kong. Atmospheric Environment 33, 3201-3212.
Lee, P.K., Brook, J.R., Dabek-Zlotorzynska, E., Mabury, S.A., 2003. Identification of the major sources contributing to PM2. 5 observed in Toronto. Environmental science & technology 37, 4831-4840.
Limbeck, A., Handler, M., Puls, C., Zbiral, J., Bauer, H., Puxbaum, H., 2009. Impact of mineral components and selected trace metals on ambient PM10 concentrations. Atmospheric Environment 43, 530-538.
Lin, Y.-C., 2015. Characteristics of trace metals in traffic-derived particles in Hsuehshan Tunnel, Taiwan: size distribution, potential source, and fingerprinting metal ratio. Atmospheric Chemistry and Physics, 4117-4130.
Lin, Y.-C., Tsai, C.-J., Wu, Y.-C., Zhang, R., Chi, K.-H., Huang, Y.-T., Lin, S.-H., Hsu, S.-C., 2015. Characteristics of trace metals in traffic-derived particles in Hsuehshan Tunnel, Taiwan: size distribution, potential source, and fingerprinting metal ratio. Atmospheric Chemistry and Physics 15, 4117-4130.
Lin, Y.C., Cheng, M.T., Lin, W.H., Lan, Y.-Y., Tsuang, B.-J., 2010. Causes of the elevated nitrate aerosol levels during episodic days in Taichung urban area, Taiwan. Atmospheric Environment 44, 1632-1640.
Lin, Y.C., Tsai, C.J., Wu, Y.C., Zhang, R., Chi, K.H., Huang, Y.T., Lin, S.H., Hsu, S.C., 2014a. Characteristics of trace metals in traffic-derived particles in Hsuehshan Tunnel, Taiwan: size distribution, fingerprinting metal ratio, and emission factor. Atmospheric Chemistry and Physics Discussions 14, 13963-14004.
Lin, Y.C., Tsai, C.J., Wu, Y.C., Zhang, R., Chi, K.H., Huang, Y.T., Lin, S.H., Hsu, S.C., 2014b. Characteristics of trace metals in traffic-derived particles in Hsuehshan Tunnel, Taiwan: size distribution, fingerprinting metal ratio, and emission factor.
Lough, G.C., Schauer, J.J., Park, J.-S., Shafer, M.M., DeMinter, J.T., Weinstein, J.P., 2005. Emissions of Metals Associated with Motor Vehicle Roadways. Environmental Science & Technology 39, 826-836.
Manoli, E., Voutsa, D., Samara, C., 2002. Chemical characterization and source identification/apportionment of fine and coarse air particles in Thessaloniki, Greece. Atmospheric Environment 36, 949-961.
Matawle, J.L., Pervez, S., Dewangan, S., Shrivastava, A., Tiwari, S., Pant, P., Deb, M.K., Pervez, Y., 2015. Characterization of PM2. 5 source profiles for traffic and dust sources in Raipur, India. Aerosol and Air Quality Research 15, 2537-2548.
Middleton, P., Kiang, C., Mohnen, V.A., 1980. Theoretical estimates of the relative importance of various urban sulfate aerosol production mechanisms. Atmospheric Environment (1967) 14, 463-472.
Minguillón, M., Querol, X., Baltensperger, U., Prévôt, A., 2012. Fine and coarse PM composition and sources in rural and urban sites in Switzerland: local or regional pollution? Science of the Total Environment 427, 191-202.
Moolgavkar, S.H., 2000. Air pollution and hospital admissions for diseases of the circulatory system in three US metropolitan areas. Journal of the Air & Waste Management Association 50, 1199-1206.
Moreno, T., Querol, X., Alastuey, A., de la Rosa, J., Sánchez de la Campa, A.M., Minguillón, M., Pandolfi, M., González-Castanedo, Y., Monfort, E., Gibbons, W., 2010. Variations in vanadium, nickel and lanthanoid element concentrations in urban air. Science of The Total Environment 408, 4569-4579.
Moreno, T., Querol, X., Alastuey, A., Gibbons, W., 2008. Identification of FCC refinery atmospheric pollution events using lanthanoid- and vanadium-bearing aerosols. Atmospheric Environment 42, 7851-7861.
Morishita, M., Keeler, G.J., Wagner, J.G., Harkema, J.R., 2006. Source identification of ambient PM2.5 during summer inhalation exposure studies in Detroit, MI. Atmospheric Environment 40, 3823-3834.
Norris, G., Duvall, R., Brown, S., Bai, S., 2014. EPA Positive Matrix Factorization (PMF) 5.0 fundamentals and User Guide Prepared for the US Environmental Protection Agency Office of Research and Development, Washington, DC. DC EPA/600/R-14/108.
Ntziachristos, L., Ning, Z., Geller, M.D., Sheesley, R.J., Schauer, J.J., Sioutas, C., 2007. Fine, ultrafine and nanoparticle trace element compositions near a major freeway with a high heavy-duty diesel fraction. Atmospheric Environment 41, 5684-5696.
Okuda, T., Katsuno, M., Naoi, D., Nakao, S., Tanaka, S., He, K., Ma, Y., Lei, Y., Jia, Y., 2008. Trends in hazardous trace metal concentrations in aerosols collected in Beijing, China from 2001 to 2006. Chemosphere 72, 917-924.
Paatero, P., 1997. Least squares formulation of robust non-negative factor analysis. Chemometrics and intelligent laboratory systems 37, 23-35.
Pandis, S.N., Harley, R.A., Cass, G.R., Seinfeld, J.H., 1992. Secondary organic aerosol formation and transport. Atmospheric Environment. Part A. General Topics 26, 2269-2282.
Pandolfi, M., Gonzalez-Castanedo, Y., Alastuey, A., de la Rosa, J.D., Mantilla, E., de la Campa, A.S., Querol, X., Pey, J., Amato, F., Moreno, T., 2011. Source apportionment of PM10 and PM2.5 at multiple sites in the strait of Gibraltar by PMF: impact of shipping emissions. Environmental Science and Pollution Research 18, 260-269.
Park, J.-S., Schauer, J.J., Shafer, M.M., Chowdhury, Z., Cass, G.R., Wagner, D., Sarofim, A.F., Lighty, J., 2001. Analysis of source apportionment tracers in fine particulate matter emitted from the combustion of coal, Abstr Papers Am Chem Soc.
Pey, J., Querol, X., Alastuey, A., 2010. Discriminating the regional and urban contributions in the North-Western Mediterranean: PM levels and composition. Atmospheric Environment 44, 1587-1596.
Pio, C., Mirante, F., Oliveira, C., Matos, M., Caseiro, A., Oliveira, C., Querol, X., Alves, C., Martins, N., Cerqueira, M., Camões, F., Silva, H., Plana, F., 2013. Size-segregated chemical composition of aerosol emissions in an urban road tunnel in Portugal. Atmospheric Environment 71, 15-25.
Polichetti, G., Cocco, S., Spinali, A., Trimarco, V., Nunziata, A., 2009. Effects of particulate matter (PM10, PM2.5 and PM1) on the cardiovascular system. Toxicology 261, 1-8.
Polissar, A.V., Hopke, P.K., Poirot, R.L., 2001. Atmospheric Aerosol over Vermont:  Chemical Composition and Sources. Environmental Science & Technology 35, 4604-4621.
Qin, Y., Kim, E., Hopke, P.K., 2006. The concentrations and sources of PM2.5 in metropolitan New York City. Atmospheric Environment 40, 312-332.
Querol, X., Alastuey, A., Rodriguez, S., Plana, F., Ruiz, C.R., Cots, N., Massagué, G., Puig, O., 2001. PM10 and PM2.5 source apportionment in the Barcelona Metropolitan area, Catalonia, Spain. Atmospheric Environment 35, 6407-6419.
Querol, X., Viana, M., Alastuey, A., Amato, F., Moreno, T., Castillo, S., Pey, J., de la Rosa, J., Sánchez de la Campa, A., Artíñano, B., Salvador, P., García Dos Santos, S., Fernández-Patier, R., Moreno-Grau, S., Negral, L., Minguillón, M.C., Monfort, E., Gil, J.I., Inza, A., Ortega, L.A., Santamaría, J.M., Zabalza, J., 2007. Source origin of trace elements in PM from regional background, urban and industrial sites of Spain. Atmospheric Environment 41, 7219-7231.
Querol, X., Zhuang, X., Alastuey, A., Viana, M., Lv, W., Wang, Y., López, A., Zhu, Z., Wei, H., Xu, S., 2006. Speciation and sources of atmospheric aerosols in a highly industrialised emerging mega-city in Central China. Journal of Environmental Monitoring 8, 1049-1059.
Rahn, K.A., 1999. A graphical technique for determining major components in a mixed aerosol. I. Descriptive aspects. Atmospheric Environment 33, 1441-1455.
Ram, K., Sarin, M.M., 2011. Day–night variability of EC, OC, WSOC and inorganic ions in urban environment of Indo-Gangetic Plain: Implications to secondary aerosol formation. Atmospheric Environment 45, 460-468.
Ravishankara, A., 1997. Heterogeneous and multiphase chemistry in the troposphere. Science 276, 1058-1065.
Reed, M., Gigliotti, A., McDonald, J., Seagrave, J., Seilkop, S., Mauderly, J., 2004. Health effects of subchronic exposure to environmental levels of diesel exhaust. Inhalation toxicology 16, 177-193.
Reff, A., Bhave, P.V., Simon, H., Pace, T.G., Pouliot, G.A., Mobley, J.D., Houyoux, M., 2009. Emissions inventory of PM2. 5 trace elements across the United States. Environmental science & technology 43, 5790-5796.
Reff, A., Eberly, S.I., Bhave, P.V., 2007. Receptor modeling of ambient particulate matter data using positive matrix factorization: review of existing methods. Journal of the Air & Waste Management Association 57, 146-154.
Sörme, L., Bergbäck, B., Lohm, U., 2001. Goods in the anthroposphere as a metal emission source a case study of Stockholm, Sweden. Water, air and soil pollution: Focus 1, 213-227.
Salvador, P., Artı́ñano, B., Alonso, D.G., Querol, X., Alastuey, A., 2004. Identification and characterisation of sources of PM 10 in Madrid (Spain) by statistical methods. Atmospheric Environment 38, 435-447.
Sanders, P.G., Xu, N., Dalka, T.M., Maricq, M.M., 2003a. Airborne brake wear debris: size distributions, composition, and a comparison of dynamometer and vehicle tests. Environmental science & technology 37, 4060-4069.
Sanders, P.G., Xu, N., Dalka, T.M., Maricq, M.M., 2003b. Airborne Brake Wear Debris:  Size Distributions, Composition, and a Comparison of Dynamometer and Vehicle Tests. Environmental Science & Technology 37, 4060-4069.
Santacatalina, M., Reche, C., Minguillón, M., Escrig, A., Sanfelix, V., Carratalá, A., F Nicolás, J., Yubero, E., Crespo, J., Alastuey, A., Monfort, E., V Miró, J., Querol, X., 2010a. Impact of fugitive emissions in ambient PM levels and composition. A case study in Southeast Spain. Science of The Total Environment 408, 4999-5009.
Santacatalina, M., Reche, C., Minguillon, M.C., Escrig, A., Sanfelix, V., Carratala, A., Nicolas, J.F., Yubero, E., Crespo, J., Alastuey, A., Monfort, E., Miro, J.V., Querol, X., 2010b. Impact of fugitive emissions in ambient PM levels and composition: a case study in Southeast Spain. Sci Total Environ 408, 4999-5009.
Schwartz, J., Dockery, D.W., Neas, L.M., 1996. Is Daily Mortality Associated Specifically with Fine Particles? Journal of the Air & Waste Management Association 46, 927-939.
Sánchez-Soberón, F., Rovira, J., Mari, M., Sierra, J., Nadal, M., Domingo, J.L., Schuhmacher, M., 2015. Main components and human health risks assessment of PM10, PM2.5, and PM1 in two areas influenced by cement plants. Atmospheric Environment 120, 109-116.
Sternbeck, J., Sjödin, Å., Andréasson, K., 2002. Metal emissions from road traffic and the influence of resuspension—results from two tunnel studies. Atmospheric Environment 36, 4735-4744.
Thorpe, A., Harrison, R., 2008. Sources and properties of non-exhaust particulate matter from road traffic: A review. Science of The Total Environment 400, 270-282.
Tian, H., Wang, Y., Xue, Z., Cheng, K., Qu, Y., Chai, F., Hao, J., 2010. Trend and characteristics of atmospheric emissions of Hg, As, and Se from coal combustion in China, 1980–2007. Atmospheric Chemistry and Physics 10, 11905-11919.
Tiwari, S., Pervez, S., Cinzia, P., Bisht, D.S., Kumar, A., Chate, D., 2013. Chemical characterization of atmospheric particulate matter in Delhi, India, Part II: Source apportionment studies using PMF 3.0. Sustainable Environment Research 23, 295-306.
Tsai, J.-H., Lin, K.-H., Chen, C.-Y., Ding, J.-Y., Choa, C.-G., Chiang, H.-L., 2007. Chemical constituents in particulate emissions from an integrated iron and steel facility. Journal of Hazardous Materials 147, 111-119.
USEPA, 2001. Risk Assessment Guidance for Superfund: Volume III - Part A, Process for Conducting Probabilistic Risk Assessment. Risk Assessment Guidance for Superfund: Volume III - Part A, Process for Conducting Probabilistic Risk Assessment.
USEPA, 2009. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment). EPA-540-R-070-002. OSWER 9285. 7-82 , Washington, DC, USA.
Voutsa, D., Samara, C., Kouimtzis, T., Ochsenkühn, K., 2002. Elemental composition of airborne particulate matter in the multi-impacted urban area of Thessaloniki, Greece. Atmospheric Environment 36, 4453-4462.
Wall, S.M., John, W., Ondo, J.L., 1988. Measurement of aerosol size distributions for nitrate and major ionic species. Atmospheric Environment (1967) 22, 1649-1656.
Wang, C.-F., Chang, C.-Y., Tsai, S.-F., Chiang, H.-L., 2005. Characteristics of Road Dust from Different Sampling Sites in Northern Taiwan. Journal of the Air & Waste Management Association 55, 1236-1244.
Wang, Y.-F., Huang, K.-L., Li, C.-T., Mi, H.-H., Luo, J.-H., Tsai, P.-J., 2003. Emissions of fuel metals content from a diesel vehicle engine. Atmospheric Environment 37, 4637-4643.
Watson, J., Chow, J., E Houck, J., 2001a. PM2.5 Chemical Source Profiles for Vehicle Exhaust, Vegetative Burning, Geological Material, and Coal Burning in Northwestern Colorado During 1995.
Watson, J.G., Chow, J.C., 2001. Source characterization of major emission sources in the Imperial and Mexicali Valleys along the US/Mexico border. Science of The Total Environment 276, 33-47.
Watson, J.G., Chow, J.C., Houck, J.E., 2001b. PM2. 5 chemical source profiles for vehicle exhaust, vegetative burning, geological material, and coal burning in Northwestern Colorado during 1995. Chemosphere 43, 1141-1151.
Weckwerth, G., 2001. Verification of traffic emitted aerosol components in the ambient air of Cologne (Germany). Atmospheric Environment 35, 5525-5536.
WMO, 2014. Guide to Meteorological Instruments and Methods of Observation.
Xia, L., Gao, Y., 2011. Characterization of trace elements in PM 2.5 aerosols in the vicinity of highways in northeast New Jersey in the US east coast. Atmospheric Pollution Research 2, 34-44.
Xie, R., Seip, H.M., Wibetoe, G., Nori, S., McLeod, C.W., 2006. Heavy coal combustion as the dominant source of particulate pollution in Taiyuan, China, corroborated by high concentrations of arsenic and selenium in PM10. Science of The Total Environment 370, 409-415.
Xu, H., Cao, J., Chow, J.C., Huang, R.J., Shen, Z., Chen, L.W.A., Ho, K.F., Watson, J.G., 2016. Inter-annual variability of wintertime PM2.5 chemical composition in Xi′an, China: Evidences of changing source emissions. Science of The Total Environment 545-546, 546-555.
Yang, F., He, K., Ma, Y., Chen, X., Cadle, S., Tai, C., Mulawa, P., 2003. [Characteristics and sources of trace elements in ambient PM2. 5 in Beijing]. Huan jing ke xue= Huanjing kexue/[bian ji, Zhongguo ke xue yuan huan jing ke xue wei yuan hui" Huan jing ke xue" bian ji wei yuan hui.] 24, 33-37.
Yao, L., Yang, L., Yuan, Q., Yan, C., Dong, C., Meng, C., Sui, X., Yang, F., Lu, Y., Wang, W., 2016. Sources apportionment of PM2.5 in a background site in the North China Plain. Science of The Total Environment 541, 590-598.
Yoo, J.-I., Kim, K.-H., Jang, H.-N., Seo, Y.-C., Seok, K.-S., Hong, J.-H., Jang, M., 2002. Emission characteristics of particulate matter and heavy metals from small incinerators and boilers. Atmospheric Environment 36, 5057-5066.
Yu, L., 2013. Characterization and Source Apportionment of PM2.5 in an Urban Environment in Beijing. Aerosol and Air Quality Research, 574-583.
Zhang, J., Wu, L., Fang, X., Li, F., Yang, Z., Wang, T., Mao, H., Wei, E., 2018. Elemental composition and health risk assessment of PM10 and PM2. 5 in the roadside microenvironment in Tianjin, China. Aerosol and Air Quality Research 18, 1817-1827.
Zhang, X., Gong, S., Shen, Z., Mei, F., Xi, X., Liu, L., Zhou, Z., Wang, D., Wang, Y., Cheng, Y., 2003. Characterization of soil dust aerosol in China and its transport and distribution during 2001 ACE‐Asia: 1. Network observations. Journal of Geophysical Research: Atmospheres 108.
Zhao, P., Dong, F., Yang, Y., He, D., Zhao, X., Zhang, W., Yao, Q., Liu, H., 2013. Characteristics of carbonaceous aerosol in the region of Beijing, Tianjin, and Hebei, China. Atmospheric Environment 71, 389-398.
Zhu, C.-S., Chen, C.-C., Cao, J.-J., Tsai, C.-J., Chou, C.C.K., Liu, S.-C., Roam, G.-D., 2010. Characterization of carbon fractions for atmospheric fine particles and nanoparticles in a highway tunnel. Atmospheric Environment 44, 2668-2673.
Zoller, W., Gordon, G., Gladney, E., Jones, A., 1971. SOURCES AND DISTRIBUTION OF VANADIUM IN THE ATMOSPHERE. Amer. Chem. Soc., Div. Water, Air Waste Chem., Gen. Pap. 11: No. 2, 159-65 (1971).
王偉, 2017. 2015-2016年台灣都會區細懸浮微粒(PM2.5)成分濃度變化、污染來源推估. 國立中央大學環境工程研究所碩士論文.
李崇德, 周崇光, 張士昱, 蕭大智, 2016. 104-105年細懸浮微粒(PM2.5) 化學成分監測專案工作計畫. 環保署EPA-104-L102-02-103,台北,105年12月.
李崇德, 周崇光, 張士昱, 蕭大智, 許文昌, 2017. 細懸浮微粒(PM2.5)化學成分監測及分析計畫. 環保署EPA-105-U102-03-A284.
周崇光;林煜棋;林順信;練建國;陳馥韻;黃譯樘;胡淑娟;黃昭豪, 103年12月. 懸浮微粒污染源特徵指標技術之建置與評析(2014). EPA-103-1602-02-06.
許家綺, 2015. 2011-2015 年台灣都會區細懸浮微粒 (PM2. 5) 成分濃度變化, 污染來源推估及對能見度影響. 國立中央大學.
魏海青, 2014. 台灣北、中、南部細懸浮微粒 (PM2. 5) 儀器比對成分分析與來源推估; Fine suspended particles (PM2. 5) instrument comparison, component analysis and source apportionment in northern, central, and southern Taiwan. 國立中央大學.
羅鈞, 鄭玟芩, 陳怡伶, 2018. 我國固定污染源細懸浮微粒 (PM_ (2.5)) 排放特性之研究分析. 中興工程, 47-62.
指導教授 李崇德 審核日期 2019-1-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明