博碩士論文 103327008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.214.184.124
姓名 蔡孟浩(Meng-Hao Tsai)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 MOCVD晶圓關鍵參數即時量測系統開發
(Development of In-situ Monitoring System for Metal Organic Chemical Vapor Deposition)
相關論文
★ MOCVD晶圓表面溫度即時量測系統之開發★ 全場相位式表面電漿共振技術
★ 波長調制外差式光柵干涉儀之研究★ 攝像模組之影像品質評價系統
★ 雷射修整之高速檢測-於修整TFT-LCD SHORTING BAR電路上之應用★ 光強差動式表面電漿共振感測術之研究
★ 準共光程外差光柵干涉術之研究★ 波長調制外差散斑干涉術之研究
★ 全場相位式表面電漿共振生醫感測器★ 利用Pigtailed Laser Diode 光學讀寫頭在角度與位移量測之研究
★ 複合式長行程精密定位平台之研究★ 紅外波段分光之全像集光器應用
★ 太陽光譜分光器之設計★ 波長調制旋光外差干涉術應用於表面電漿共振偵測
★ 疊紋自動對焦技術★ 以Fabry Perot Etalon 做雷射高斯光束發散角量測之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究開發一套晶圓製程參數量測系統,用於即時監控MOCVD製程中,晶圓表面溫度、薄膜沉積成長率與折射率。開發的系統整合了薄膜成長率量測模組與溫度量測模組,基於薄膜光學理論進行薄膜成長率量測,藉由薄膜反射率歷時曲線與開發演算法,計算出薄膜成長率與折射率;基於普朗克黑體輻射理論與克希荷夫定理進行溫度量測,藉由反射率補償發射率,修正量測溫度值。
設計空氣膜實驗與旋轉塗佈實驗,驗證本系統在薄膜成長率量測的能力。空氣膜實驗中,使用楔形稜鏡與壓電陶瓷位移平台模擬薄膜成長情形;旋轉塗佈實驗中,量測光阻附著於晶圓上的厚度變化量。將量測結果與商用膜厚儀進行比較,差量低於2%。
在溫度量測模組,設計在真空加熱腔體內進行實驗,驗證接收940 nm波段與400 nm波段的熱輻射訊號對於晶圓溫度量測的能力,並使用反射率變化,即時修正量測溫度。系統量測範圍於450 ℃以上,系統能穩定的量測到溫度。於低溫段450 ℃時,與商用量測系統溫度差量約為4 ℃;高溫段750 ℃以上時,與商用量測系統溫度差量約為0.5 ℃。
摘要(英) An in-situ monitoring system for Metal Organic Chemical Vapor Deposition (MOCVD) process is presented. The proposed monitoring system consisted of the modules of growth-rate and temperature, which is able to precisely measure the growth rate of thin film and the surface temperature of wafer in the MOCVD process. The principles of monitoring system are based on the thin film interference theorem and the blackbody radiation. In our system, the detector received the reflectance variation of thin film and the thermal radiation of wafer, while a lock-in amplifier was used to demodulate the reflected light of laser source and the thermal radiation signal. According to the thin film interference theorem and Kirchhoff’s law, the thin film growth rate and compensated temperature can be obtained.
 To demonstrate the feasibility of the growth-rate module, we designed an air layer that can change its thickness by using a piezoelectric (PZT) actuator. We also implemented the photoresist spin coating on a silicon wafer experiment to verify the measurement ability. To demonstrate the feasibility of the temperature measurement module, the 940 nm and 400 nm band of the thermal radiation resulting from the surface of the heated silicon wafer was received by the temperature module and used to determine the surface temperature of the wafer.
 The experimental results demonstrate that the growth rate, optical constants of the film, and temperature of wafer surface could be precisely determined in real time. Comparing the measurement results obtained using our proposed system with the ones obtained by the commercial metrology equipment (surface profiler and pyrometer), the relative differences are less than 2%.
關鍵字(中) ★ MOCVD
★ 晶圓參數量測
★ 熱輻射
★ 反射率曲線
★ 薄膜
關鍵字(英) ★ MOCVD
★ Thermal radiation
★ Reflectance
★ Emissivity
★ In-situ measurement
論文目次 第一章 緒論................................1
1-1 研究背景..............................1
1-2 文獻回顧..............................2
1-2-1薄膜量測與監測之文獻回顧...........2
1-2-2溫度量測之文獻回顧.................5
1-3 研究目的..............................11
1-4 論文架構..............................12
第二章 理論與原理...........................13
2-1 薄膜與反射率...........................13
2-2 光學干涉術.............................14
2-3 薄膜參數量測原理........................14
2-3-1 膜層之透射與反射...................16
2-4 熱輻射理論.............................21
2-4-1 黑體輻射..........................21
2-2-2 實際物體熱輻射的反射率與發射率.......24
2-5 溫度量測系統............................27
2-5-1 單波長溫度量測.....................27
2-5-2 反射率校正溫度公式.................30
2-6 鎖相放大器.............................31
第三章 量測系統及架構........................33
3-1 量測腔體與加熱器........................33
3-2 光源、光偵測器與光學元件選用.............37
3-3 量測系統及軟體介紹......................40
3-3-1 量測系統架構.......................40
3-3-2 量測軟體開發.......................44
3-4 熱輻射與反射率訊號分離方法................44
3-5 光偵測器訊號模擬.........................47
第四章 實驗結果與討論.........................50
4-1 薄膜量測................................50
4-1-1 空氣薄膜量測實驗....................50
4-1-1-1 量測架構介紹...................51
4-1-1-2 空氣膜成長率量測...............54
4-1-2 旋轉塗佈實驗........................56
4-1-2-1 量測架構介紹...................56
4-1-2-2塗佈成長率量測..................59
4-2 溫度量測.................................61
4-2-1 量測架構介紹........................61
4-2-2 實驗步驟介紹..........................64
4-2-3 載盤溫度量測........................66
4-2-4 矽晶圓溫度量測.........................72
4-2-5 藍寶石晶圓溫度量測...................77
4-3 系統整合模擬實驗..........................79
4-3-1 量測架構介紹.........................80
4-3-2 成長率與模擬溫度量測.................81
4-4 系統穩定度分析............................83
4-5小結.......................................87
第五章 誤差分析................................88
5-1 系統誤差.................................88
5-1-1 光二極體偏壓引進溫度量測誤差...........88
5-1-2 斜向入射所引進之誤差.................88
5-1-3 雜散光影響溫度量測...................91
5-2 隨機誤差.................................92
5-2-1 環境及機械震動.......................92
5-2-2 環境溫度............................92
5-2-3 電子雜訊............................93
5-3 小結.....................................93
第六章 結論與未來展望..........................94
6-1 結論.....................................94
6-2 未來展望.................................94
參考文獻......................................95
參考文獻 [1].O. S. Heavens, Optical Properties of Thin Solid Films (Dover Publications, 1965).
[2].F. L. McCrackin, E. Passaglia, R. R. Stromberg, and H. L. Steinberg, “Measurement of the thickness and refractive index of very thin films and the optical properties of surfaces by ellipsometry,” J. Res. Natl. Bur. Stand. 67A(4), 363-377 (1963).
[3].Z. H. Lu, J. P. McCaffrey, B. Brar, G. D. Wilk, R. M. Wallace, L. C. Feldman, and S. P. Tay, “SiO2 film thickness metrology by x-ray photoelectron spectroscopy,” Appl. Phys. Lett. 71, 2764-2766 (1997).
[4].A. M. Goodman, “Optical interference method for the approximate determination of refractive index and thickness of a transparent layer,” Appl. Opt. 17, 2779-2787 (1978).
[5].E. Steinsland, T. Finstad, A. Ferber, and A. Haniieborg, “In situ measurement of etch rate of single crystal silicon,” in Solid-state Sensors and Actuators (IEEE), pp. 707-710(1997).
[6].G. A. Bootsma and F. Meyer, “Ellipsometry in the sub-monolayer region,” Surf. Sci. 14(1), 52-76.
[7].C. S. Lu and O. Lewis, “Investigation of film‐thickness determination by oscillating quartz resonators with large mass load,” J. Appl. Phys. 43(11), 4385-4390 (1972).
[8].廖振興,楊芳,夏文建,「光學薄膜膜厚監控方法與進展」,雷射雜誌,25(4),10-12 (2004)。
[9].權貴秦,韓軍,彌謙,「一種基於光電極值法的光學膜厚監控系統的改進設計」,應用光學,23(4),30-32 (2002)。
[10].W. Peiyun and G. Peifu, “Wideband monitoring of optical coatings with deposition error correction,” Proc. SPIE 2000, 121-132 (1993).
[11].J. T. Zettler, “Method for calibrating a pyrometer, method for determining the temperature of a semiconducting wafer and system for determining the temperature of a semiconducting wafer,” US8388219 B2 , U.S. Patent, LayTec GmbH (2013).
[12].M. Duff, J. Towey, “Two Ways to Measure Temperature Using Thermocouples Feature Simplicity, Accuracy, and Flexibility,” Analog Dialogue, 44, (2010).
[13].D. D. Pollock, “Thermoelectricity Theory, Thermometiy, Tool,” ASTM, New York (1985).
[14].F. R. A. Jorgensen, M. Zuiderwyk, “Two-colour pyrometer measurement of the temperature of individual combusting particles,” J. Phys. E: Sci. Instrum. 18(6), 486–491 (1985).
[15].W. G. Breiland, “Reflectance-correcting pyrometry in thin film deposition applications,” Sand Report, SAND 2003-1868 (2003).
[16].B. Müller, U. Renz, “Development of a fast fiber-optic two-color pyrometer for the temperature measurement of surfaces with varying emissivities,” Review of Scientific Instruments, 72(8), 3366-3374 (2001).
[17].Z. Zhilin, S. Weimin, S. Leiwei and X. Jian, “Multi-wavelength Pyrometry for Temperature Measurement in Gas Flames,” Measurement, Information and Control (MIC), International Conference, 1, 198–201 (2012).
[18].H. Madura, M. Kastek, T. Pia˛tkowski, “Automatic compensation of emissivity in three-wavelength pyrometers,” Infrared. Phys & Technology, 51(1), 1–8 (2007).
[19].M. B. Kaplinsky, “Multi-wavelength imaging pyrometer for noncontact temperature sensing,” Industrial Electronics, ISIE ′95, Proceedings of the IEEE International Symposium, 1, 199–204 (1995).
[20].Z. M. Zhang, “Surface temperature measurement using optical techniques,” University of Florida, (2000).
[21].Y. Yamada, J. Ishii, “In situ silicon-wafer surface-temperature measurements utilizing polarized light,” Int. J. Thermophys. 32(11-12), 2304-2316 (2011).
[22].T. Iuchi, A. Gogami, “Simultaneous measurement of emissivity and temperature of silicon wafers using a polarization technique,” Measurement, 43(5), 645–651 (2010).
[23].Pyrometer - Handbook, “Non-Contact Thermometry”, IMPAC Infrared GmbH (2004).
[24].Jian-Jang Huang, “Nitride Semiconductor Light-Emitting Diodes (LEDs):Materials, Technologies and Applications,” (2004).
[25].W. G. Breiland, “Reflectance-Correcting Pyrometry in Thin FIlm Deposition Applications”, Sandia National Laboratories (2003).
[26].黃富榮,「即時薄膜光學參數量測系統之開發」,國立中央大學,碩士論文,民國103年。
[27].王俊程,「MOCVD晶圓表面溫度即時量測系統之開發」,國立中央大學,碩士論文,民國104年。
[28].李正中,薄膜光學與鍍膜技術,(藝軒圖書出版社,2006)。
[29].W. G. Breilanda and K. P. Killeen, “A virtual interface method for extracting growth rates and high temperature optical constants from thin semiconductor films using in situ normal incidence reflectance,” J. Appl. Phys. 78(11), 6726-6736 (1995).
[30].N. Dietz, U. Rossow, D. Aspnes, and K. J. Bachmann, “Real-time optical monitoring of epitaxial growth: Pulsed chemical beam epitaxy of GaP and InP homoepitaxy and heteroepitaxy on Si,” J. Electron. Mater. 24(11), 1571-1576 (1995).
[31].安毓英,曾小東著,光學感測與量測 (五南圖書出版公司,2004)。
[32].M. Planck, “On the Law of the Energy Distribution in the Normal Spectrum,” Ann. Phys. 4, 553–563 (1901).
指導教授 李朱育(Ju-Yi Lee) 審核日期 2016-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明