博碩士論文 103327020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:52.14.85.76
姓名 洪珮芳(Pei-Fang Hung)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 高分子光柵應用於太陽光分光元件
相關論文
★ 利用銦錫氧化物設計太陽能電池之電極對轉換效率之效益★ 側聚光型太陽能電池系統之聚光元件設計與製作
★ 結合繞射光柵與平凸透鏡之光束分頻元件於聚 光型太陽光電 / 太陽熱混合系統之應用★ 波前檢測應用於氣體折射率量測
★ 多重曲率之聚光元件應用於聚光型太陽能電池系統★ 太陽光模擬系統之設計與製作
★ 有機發光二極體熱特性模擬研究★ 有機發光二極體激子光電特性模擬研究
★ 太陽光與固態照明自動化混光技術研究★ 利用色差分光之太陽能分光系統
★ 有機發光二極體光熱電特性整合模擬之研究★ 隨機奈米粒子模型應用於OLED 出光增益之研究
★ 太陽選擇性塗層與熱平行堆疊運用於太陽熱電發電系統之實時模擬研究★ 陰影疊紋式力-位移量測技術之研究
★ 繞射分波元件於混合型太陽能系統之應用★ 可撓式白光有機發光二極體光雪與色彩分析之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 因全球暖化和能源危機對再生能源的需求,太陽能成為乾淨能源的發展重點。然而,太陽光譜具有寬波段特性,對於種類不同之太陽能電池其主要光電轉換波段也不同,故發展太陽光分光技術有助於太陽光能利用之最佳化。
本論文開發一具有耐熱性之太陽能分光元件,並於其上設計特定之光柵,使太陽光譜藉由該分光元柵而達到分光的效果。在此選用聚亞醯胺作為分光元件之材料,並以光微影技術方式製作光柵圖案。分光元件製作完成後,則運用太陽光模擬器量測元件效率,並與模擬結果進行分析比較。
藉由理論推導、軟體模擬和量測實驗,證實聚亞醯胺穿透率達94%,適合為光學元件。且光柵具有分光功能,繞射效率量測值:在405nm,其繞射效率69%、在635nm,其繞射效率46%,在830nm,其繞射效率36%,與模擬結果趨勢相符。藉由熱分析已驗證元件溫度300℃以下為穩定態,故此元件適用於戶外。
摘要(英) In this research, polyimide is the substrate of the spectrum splitter because of its thermal stability, while the designed grating on the substrate is for splitting sun light. To realize the pattern of the grating, optical lithography has been used. Then, the fabricated spectrum splitter has been measured by using a solar simulator, and the measured results have been compared with those from simulation.
The experiment results have shown that polyimide has the transmittance of 94% and is appropriate for optical applications. The diffraction efficiency of the spectrum splitter has been measured by multiple laser beams with the values of 69% at 405nm, 46% at 635nm, and 36% at 830nm, agreeing with the trend predicted in simulation. Also, according to the thermal experiment, the fabricated spectrum splitter is stable below 300 ℃. Thus, this spectrum splitter is suitable for outdoor usages.
關鍵字(中) ★ 聚亞醯胺
★ 光柵
★ 光微影技術
★ 分光元件
關鍵字(英) ★ polyimide
★ division element
★ grating
★ Lithography
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
第一章 緒論 1
1-1 研究背景 1
1-2 文獻回顧 2
1-2-1 太陽分光元件 2
1-2-2 高分子光柵製作技術 4
1-3 研究目的 6
1-4 論文架構 7
第二章 基礎理論 8
2-1 薄膜光學基本理論 8
2-1-1 電磁波 8
2-1-2 界面之透射 12
2-1-3 非相干性之透射 14
2-2 繞射式光柵理論 15
2-2-1 純量繞射理論 16
2-2-2 二元光柵繞射效率 17
2-3 小結 18
第三章 實驗架構 19
3-1 聚亞醯胺光柵材料介紹 19
3-2 儀器介紹 21
3-3 光柵元件製作 27
3-4 參數建立 29
3-4-1 高分子分光元件之厚度 29
3-4-2 高分子分光元件之折射率 30
3-5 高分子分光元件量測 31
3-6 熱重分析 33
3-7 小結 33
第四章 實驗結果與討論 34
4-1 高分子光柵基本性質 34
4-1-1 高分子光柵折射率 34
4-2 高分子分光元件模擬與分析 40
4-2-1 高分子分光元件厚度 40
4-2-2 高分子分光元件週期 41
4-3 元件繞射效率頻譜分析 43
4-3-1 元件厚度之建立 43
4-3-2 元件週期之建立 44
4-3-3 元件效率模擬之建立 45
4-3-4 高分子光分光元件之效率 45
4-4 熱重分析 50
4-5 小結 51
第五章 誤差分析 52
5-1 元件表面輪廓誤差 52
5-2 粗糙度 54
第六章 結論 56
6-1 結論 56
6-2 未來展望 57
參考文獻 58
參考文獻 [1] W. Palz, Power for the World: The Emergence of Electricity from the Sun. Pan Stanford Publishing, 2010.
[2] S. A. Omer and D. G. In, “Design and thermal analysis of a two stage solar concentrator for combined heat and thermoelectric power generation,” Energy Conversion & Management, vol. 41, pp. 737–756, 2000.
[3] A. A. Mohamad, “High efficiency solar air heater,” Sol. Energy, vol. 60, no. 2, pp. 71–76, 1997.
[4] E. Klampaftis, D. Ross, K. R. McIntosh, and B. S. Richards, “Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: A review,” Sol. Energy Mater. Sol. Cells, vol. 93, no. 8, pp. 1182–1194, 2009.
[5] W. G. J. H. M. Van Sark, K. W. J. Barnham, L. H. Slooff, A. J. Chatten, A. Büchtemann, A. Meyer, S. J. Mccormack, R. Koole, D. J. Farrell, R. Bose, E. E. Bende, A. R. Burgers, T. Budel, J. Quilitz, M. Kennedy, T. Meyer, C. D. M. Donegá, A. Meijerink, and D. Vanmaekelbergh, “Luminescent Solar Concentrators – A review of recent results,” OPTICS EXPRESS. vol. 16, no. 26, pp. 21773–21792, 2008.
[6] H. J. Park, T. Xu, J. Y. Lee, A. Ledbetter, and L. J. Guo, “Photonic color filters integrated with organic solar cells for energy harvesting,” ACS Nano, vol. 5, no. 9, pp. 7055–7060, 2011.
[7] A. Schüler, J. Boudaden, P. Oelhafen, E. De Chambrier, C. Roecker, and J. L. Scartezzini, “Thin film multilayer design types for colored glazed thermal solar collectors,” Sol. Energy Mater. Sol. Cells, vol. 89, no. 2–3, pp. 219–231, 2005.
[8] P. Benítez, J. C. Miñano, P. Zamora, R. Mohedano, A. Cvetkovic, M. Buljan, J. Chaves, and M. Hernández, “High performance Fresnel-based photovoltaic concentrator.,” Opt. Express, vol. 18, no. 9, pp. A25–A40, 2010.
[9] A. J. W. Whang, Y. Y. Chen, and B. Y. Wu, “Innovative design of cassegrain solar concentrator system for indoor illumination utilizing chromatic aberration to filter out ultraviolet and infrared in sunlight,” Sol. Energy, vol. 83, no. 8, pp. 1115–1122, 2009.
[10] D. Vincenzi, A. Busato, M. Stefancich, and G. Martinelli, “Concentrating PV system based on spectral separation of solar radiation,” Phys. Status Solidi Appl. Mater. Sci., vol. 206, no. 2, pp. 375–378, 2009.
[11] K. Xiong, S. Lu, J. Dong, T. Zhou, D. Jiang, R. Wang, and H. Yang, “Light-splitting photovoltaic system utilizing two dual-junction solar cells,” Sol. Energy, vol. 84, no. 12, pp. 1975–1978, 2010.
[12] J. Nilsson, R. Leutz, and E. Klampaftis, “Micro-structured reflector surfaces for a stationary asymmetric parabolic solar concentrator,” Sol. Energy Mater. Sol. Cells, vol. 91, no. 6, pp. 525–533, 2007.
[13] U. Wagemann, J. Schulat, and C. G. Stojanoff, “Fabrication and test of a holographic concentrator for two color PV-operation,” SPIE. vol. 2255, pp. 812–821.
[14] Y. Xia and G. M. G. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci., no. 12, 1998.
[15] S. I. Na, S. S. Kim, J. Jo, S. H. Oh, J. Kim, and D. Y. Kim, “Efficient polymer solar cells with surface relief gratings fabricated by simple soft lithography,” Adv. Funct. Mater., vol. 18, no. 24, pp. 3956–3963, 2008.
[16] R. E. Bird and C. Riordan, “Simple Solar Spectral Model for Direct and Diffuse Irradiance on Horizontal and Tilted Planes at the Earth’s Surface for Cloudless Atmospheres,” J. Clim. Appl. Meteorol., vol. 25, pp. 87–97, 1986.
[17] X. Zhang and Z. Sun, “Effects of vacancy structural defects on the thermal conductivity of silicon thin films,” J. Semicond., vol. 32, no. 5, p. 053002, 2011.
[18] 李正中, 薄膜光學與鍍膜技術, 第五版. 2006.
[19] 白木, 靖寬, 吉田, 真史, 金原粲, 王建義, “薄膜工程學,” 全華科技出版社, 台灣, 2004.
[20] E. Hecht, “Optics, 4th,” Int. Ed. Addison-Wesley, San Fr., vol. 3, 2002.
[21] D. C. O’Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, “Diffractive optics: design, fabrication, and test,” 2004.
[22] K. L. Mittal, Polyimides: synthesis, characterization, and applications, vol. 1. Springer Science & Business Media, 2013.
[23] web page from:TORAY:http://www.toray.co.jp/english/electronic/products/pro_b001.html.
指導教授 韋安琪(An-Chi Wei,) 審核日期 2016-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明