博碩士論文 103327027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:54.158.194.80
姓名 陳佳新(Jia-Sin Chen)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 反射鏡減重與撓性支撐結構最佳化
相關論文
★ G10液晶玻璃基板之機械手臂牙叉結構改良與最佳化設計★ 線性齒頂修整對正齒輪之傳動誤差與嚙合頻能量影響分析
★ 以互補型盤狀圓弧刀具創成之曲線齒齒輪有限元素應力分析★ 修整型曲線齒輪對齒面接觸應力與負載下傳動誤差之研究
★ 衛載遙測取像儀反射鏡加工缺陷檢測與最佳光學成像品質之運動學裝配設計★ 應用經驗模態分解法於正齒輪對之傳動誤差分析
★ 小軸交角之修整型正齒輪與凹面錐形齒輪組設計與負載下齒面接觸分析★ 修整型正齒輪對動態模擬與實驗
★ 應用繞射光學元件之齒輪量測系統開發★ 漸開線與切線雙圓弧齒形之諧波齒輪有限元素分析與齒形設計
★ 光學遮斷式晶圓定位系統與半導體製程設備之整合★ 應用於太陽能聚光器之等光路型與金字塔型二次光學元件的分析與比較
★ 口徑550 mm反射鏡減重與撓性支撐結構最佳化設計★ 光機整合分析應用於620mm反射鏡變形分析與八吋反射鏡彈性膠緊固設計
★ 具線性齒頂修整之螺旋齒輪接觸特性研究★ 應用投射疊紋技術於齒輪精度量測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究針對應用於遙測取像儀的主鏡系統進行設計改善以及最佳化,包含了主鏡的減重以及撓性支撐結構的優化。優化流程為透過電腦輔助設計軟體進行系統模型的繪製,並將模型匯入有限元素軟體進行靜態的分析,利用光機轉換程式將有限元素分析的結果轉換成光學性質,最後將有限元素分析以及光機轉換的結果給予最佳化軟體進行系統最佳化。最佳化共分為兩個部分,主鏡減重與撓性支撐結構設計,主鏡的減重中除了需要將主鏡重量減輕,亦需要保持良好的光學性質與機械性質;撓性支撐結構設計目的為與主鏡進行裝配後,整體系統的光學性能需要達到最佳。在最佳化的方法中,使用梯度演算法以及基因演算法。最後成功的得到減重比為77%的主鏡設計,以及主鏡與支撐結構結合後,受1g的重力影響,系統光學PV值為49nm的支撐結構設計。
摘要(英) The study improved and optimized a prime mirror system which was used in a remote sensing instrument (RSI), including the lightweight design of the mirror and its flexure mount. Computer-aided design software was used to build the model. The model was imported to the finite element software to analyze. The opto-mechanical program was used to get the optical performance of the system. The optimization process included two part, lightweight mirror design and the design of the flexure mount. For the lightweight mirror design, the goal was to make the mirror being lightest while maintaining both the optical quality and mechanical rigidity. For the flexure mount design, the purpose was to determine the optimum parameter of the flexure mount which made the mirror system performance best. This study used two optimization algorithm, including gradient descent and genetic algorithm. Finally, the mass reduction ratio of the lightweight mirror was 77% and the optical PV (Peak-to-valley) value of the prime mirror system was 49nm under gravity.
關鍵字(中) ★ 減重
★ 撓性支撐結構
★ 最佳化
★ 電腦輔助設計
★ 有限元素
★ 光機轉換
關鍵字(英) ★ Lightweight Mirror
★ Flexure mount
★ Optimization
★ CAD
★ FEM
★ opto-mechanical analysis
論文目次 摘要 I
ABSTRACT II
目錄 III
圖目錄 V
表目錄 IX
第一章 前言 1
1.1研究背景 1
1.2 文獻回顧 2
1.2.1 反射鏡減重設計 2
1.2.2 反射鏡支撐結構 5
1.3 研究目的 12
第二章 理論基礎 13
2.1 光機轉換 13
2.1.1 曲面變形 13
2.1.2 Zernike 多項式擬合 15
2.2 最佳化 18
2.2.1最佳化演算法 18
2.2.2 最佳化軟體 19
2.2.3 最佳化流程 20
第三章 反射鏡減重 23
3.1 反射鏡材料與初始設計 23
3.2 反射鏡減重有限元素分析 27
3.3 反射鏡減重最佳化分析 31
3.4 基因演算法最佳化分析比較 38
3.5 反射鏡減重結論 39
第四章 撓性支撐結構 42
4.1 撓性支撐結構材料與初始設計 42
4.2 撓性支撐結構有限元素分析 44
4.3 支撐結構最佳化分析設定 47
4.4 基因演算法與梯度演算法結果 48
4.5 支撐結構結論 58
第五章 結論與未來工作 61
5.1 結論 61
5.2 未來工作 62
參考文獻 63
參考文獻

[1] P. A. Abdula, M. Y. Neutov, N. D. Tolstoba, “Simulation and Analysis of Lightweight Space Mirror Design”, Proc. of SPIE Vol. 9526, 95261N, 2015.
[2] R. Geyl, M. Tarreau, P. Pla1nchamp, “SOFIA Primary Mirror Fabrication & Testing”, Proc. of SPIE Vol. 4451, pp. 126-130, 2001.
[3] C. Y. Chan, Y. C. Cheng, S. T. Chang, T. M. Huang, M. Y. Hsu, “Effects of accelerations and surface conditions on a pre-designed lightweight primary mirror”, Proc. of SPIE Vol. 8127, 81270F, 2011.
[4] D. Fappani, H. Ducollet, “Manufacturing & Control of the aspherical mirrors for the telescope of the French satellite Pleiades”, Proc. of SPIE Vol. 6687, 66870T, 2007.
[5] T. Döhring, P. Hartmann, F. T. Lentes, R. Jedamzik, “Heritage of ZERODUR® Glass Ceramic for Space Applications”, Proc. of SPIE Vol. 7425, 74250L, 2009.
[6] K. S. Park, J. H. Lee, S. K. Youn, “Lightweight mirror design method using topology optimization”, Optical Engineering, Vol. 44, pp. 1-6, 2005.
[7] C. Escolle, E. Hugot, T. Fusco, M. Ferrari, V. Michau, T. Bret-Dibat, “Adapting large lightweight primary mirror to space active optics capabilities”, Proc. of SPIE Vol. 9151, 915128, 2014.
[8] J. Lee, H. Kihm, H. Kim, J. H. Lee, Y. W. Lee and H. S. Yang, “Pressurization system aided polishing for fabrication of a quilting-free lightweighted mirror”, In International Optical Design Conference, OSA, pp. JTu5A-3, 2014.
[9] D. Vukobratovich, R. M. Richard, “Flexure mounts for high-resolution optical elements”, Proc. SPIE Vol. 0959, pp. 18-36, 1998.
[10] T. Vít, R. Melich, P. Sandri, ”Numerical simulation of deformation and figure quality of precise mirror”, Proc. of SPIE Vol. 9442, 94421F, 2015.
[11] H. Kaneda, M. Naitoh, T. Imai, Y. Tange, K. Enya, H. Katayama, K. Maruyama, T. Nakagawa, T. Onaka, M. Suganuma, R. Kano, Y. Kiriyama, T. Mori, A. Takahashi, “Cryogenic optical testing of an 800 mm lightweight C/SiC composite mirror mounted on a C/SiC optical bench”, Applied Optics, Vol. 49, pp. 3941-3948, 2010.
[12] P. R. Yoder, Jr, Opto-Mechanical Systems Design, 3rd, CRC Press Taylor & Francis Group, New York, USA., 2006.
[13] I. Weingrod, C. Y. Chou, B. Holmes, C. Hom, J. W. Irwin, O. Lindstrom, F. Lopez, D. M. Stubbs, J. P. Wüelser, “Design of bipod flexure mounts for the IRIS Spectrometer”, Proc. of SPIE Vol. 8836, 88360Q, 2013.
[14] J. Fitzsimmons, D. Erickson, A. Hill, R. Bartos, J. K. Wallace, “Design and analysis of flexure mounts for precision optics”, Proc. of SPIE Vol. 7018, 70181k, 2008.
[15] C. B. Chu, Y. C. Li, W. Y. Chai, X. W. Fan, “Design of Bipod Flexures for Space Mirror”, Proc. of SPIE Vol. 8196, 819620, 2011.
[16] P. S. Wilde, T. A. Decker, L. C. Hale, “Highly-damped exactly-constrained mounting of an x-ray telescope”, Proc. of SPIE Vol. 2445, pp. 2-13, 1995
[17] E. T. Kvamme, M. Sullivan, “A small, low stress, stable, 3 DOF mirror mount with one arc-second tip/tilt resolution”, Proc. of SPIE Vol. 5528, pp. 264-271, 2004.
[18] 楊佳文,黃巧林,「大口徑反射鏡結構參數優化設計」,中國空間科學技術,第四期,2011。
[19] 范綱傑,「衛載遙測取像儀反射鏡加工缺陷檢測與最佳光學成像品質之運動學裝配設計」,國立中央大學,碩士論文,民國101年。
[20] R. W. Besuner, K. P. Chow, S. E. Kendrick, S. Streetman, “Selective reinforcement of a 2m-class lightweight mirror for horizontal beam optical testing”, Proc. of SPIE Vol. 7018, 701816, 2008.
[21] H. Kihm, I. K. Moon, H. S. Yang, Y. W. Lee, “1-m Lightweight Mirror Design using Genetic Algorithm”, Proc. of SPIE Vol. 8415, 841514, 2012.
[22] H. Kihm, H. S. Yang, I. Kweon M., J. H. Yeon, S. H. Lee, Y. W. Lee, “Adjustable bipod flexures for mounting mirrors in a space telescope”, APPLIED OPTICS, Vol. 51, No. 32, pp. 7776-7783, 2012.
[23] 黃柏愷,「口徑550mm反射鏡減重與撓性支撐結構最佳化設計」,國立中央大學,碩士論文,民國104年。
[24] 游振廷,「光機整合分析應用於620mm反射鏡變形分析與八吋反射鏡彈性膠緊固設計」,國立中央大學,碩士論文,民國104年
[25] K. B. Doley, V. L. Genberg, G. J. Michels, Integrated Optomechanical Analysis, 2nd, SPIE, 2012.
[26] S. Y. Chen, SmartDO Tutorial Manual, 2013.
[27] MathWorks, https://www.mathworks.com/discovery/genetic-algorithm.html
[28] MathWorks, https://www.mathworks.com/help/gads/how-the-genetic-algorithm-works.html
[29] Schott, ZERODUR® - Extremely low expansion glass ceramic, 2011, TIE-43.
指導教授 陳怡呈(Yi-Cheng Chen) 審核日期 2017-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明