參考文獻 |
1. IEEE, The International Roadmap for Devices and Systems: 2020 update. More Moore. (2020).
2. Robinson, J. A. Perspective: 2D for beyond CMOS. APL Mater. 6, 058202 (2018).
3. Pop, E. What are 2D Materials Good For? CarbonOnlineHagen 2021. (2021)
4. Novoselov, K. S. Electric Field Effect in Atomically Thin Carbon Films. Science 306, 666–669 (2004).
5. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).
6. Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).
7. Pop, E. Energy Dissipation at the Nanoscale: from graphene to phase-change materials. (2011).
8. Barkan, T. Graphene: the hype versus commercial reality. Nat. Nanotechnol. 14, 904–906 (2019).
9. Novoselov, K. S. et al. A roadmap for graphene. Nature 490, 192–200 (2012).
10. Schwierz, F. Graphene transistors. Nat. Nanotechnol. 5, 487–496 (2010).
11. Xu, X. et al. Interfacial engineering in graphene bandgap. Chem. Soc. Rev. 47, 3059–3099 (2018).
12. Zhang, Y. et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009).
13. Chen, Z., Narita, A. & Müllen, K. Graphene Nanoribbons: On‐Surface Synthesis and Integration into Electronic Devices. Adv. Mater. 32, 2001893 (2020).
14. Houtsma, R. S. K., de la Rie, J. & Stöhr, M. Atomically precise graphene nanoribbons: interplay of structural and electronic properties. Chem. Soc. Rev. 10.1039.D0CS01541E (2021) doi:10.1039/D0CS01541E.
15. Yano, Y., Mitoma, N., Ito, H. & Itami, K. A Quest for Structurally Uniform Graphene Nanoribbons: Synthesis, Properties, and Applications. J. Org. Chem. 85, 4–33 (2020).
16. Ago, H. et al. Lattice-Oriented Catalytic Growth of Graphene Nanoribbons on Heteroepitaxial Nickel Films. ACS Nano 7, 10825–10833 (2013).
17. Saraswat, V., Jacobberger, R. M. & Arnold, M. S. Materials Science Challenges to Graphene Nanoribbon Electronics. ACS Nano 15, 3674–3708 (2021).
18. Schedin, F. et al. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652–655 (2007).
19. Syu, J.-Y. et al. Wide-range work-function tuning of active graphene transparent electrodes via hole doping. RSC Adv. 6, 32746–32756 (2016).
20. Farmer, D. B. et al. Chemical Doping and Electron−Hole Conduction Asymmetry in Graphene Devices. Nano Lett. 9, 388–392 (2009).
21. Kasry, A., Kuroda, M. A., Martyna, G. J., Tulevski, G. S. & Bol, A. A. Chemical Doping of Large-Area Stacked Graphene Films for Use as Transparent, Conducting Electrodes. ACS Nano 4, 3839–3844 (2010).
22. Pinto, H. & Markevich, A. Electronic and electrochemical doping of graphene by surface adsorbates. Beilstein J. Nanotechnol. 5, 1842–1848 (2014).
23. Zhang, W., Wu, L., Li, Z. & Liu, Y. Doped graphene: synthesis, properties and bioanalysis. RSC Adv. 5, 49521–49533 (2015).
24. Jena, D. et al. Electron transport in 2D crystal semiconductors and their device applications. in 2014 Silicon Nanoelectronics Workshop (SNW) 1–2 (IEEE, 2014). doi:10.1109/SNW.2014.7348543.
25. Schmidt, H., Giustiniano, F. & Eda, G. Electronic transport properties of transition metal dichalcogenide field-effect devices: surface and interface effects. Chem. Soc. Rev. 44, 7715–7736 (2015).
26. Sun, L. et al. Chemical vapour deposition. Nat. Rev. Methods Primers 1, 5 (2021).
27. Xin, H., Zhao, Q., Chen, D. & Li, W. Roll-to-Roll Mechanical Peeling for Dry Transfer of Chemical Vapor Deposition Graphene. J. Micro Nanomanuf. 6, 031004 (2018).
28. Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574–578 (2010).
29. Kobayashi, T. et al. Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process. Appl. Phys. Lett. 102, 023112 (2013).
30. Yamada, T., Ishihara, M. & Hasegawa, M. Large area coating of graphene at low temperature using a roll-to-roll microwave plasma chemical vapor deposition. Thin Solid Films 532, 89–93 (2013).
31. Xu, J. et al. Fast Batch Production of High-Quality Graphene Films in a Sealed Thermal Molecular Movement System. Small 13, 1700651 (2017).
32. Zhang, Y. et al. Batch production of uniform graphene films via controlling gas-phase dynamics in confined space. Nanotechnology 32, 105603 (2021).
33. Huet, B., Zhang, X., Redwing, J. M., Snyder, D. W. & Raskin, J.-P. Multi-wafer batch synthesis of graphene on Cu films by quasi-static flow chemical vapor deposition. 2D Mater. 6, 045032 (2019).
34. Lin, L., Peng, H. & Liu, Z. Synthesis challenges for graphene industry. Nat. Mater. 18, 520–524 (2019).
35. Al-Shurman, K. M. & Naseem, H. CVD Graphene Growth Mechanism on Nickel Thin Films. 7 (2014).
36. Li, X., Colombo, L. & Ruoff, R. S. Synthesis of Graphene Films on Copper Foils by Chemical Vapor Deposition. Adv. Mater. 28, 6247–6252 (2016).
37. Li, X. et al. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 324, 1312–1314 (2009).
38. Wang, M., Luo, D., Wang, B. & Ruoff, R. S. Synthesis of Large-Area Single-Crystal Graphene. Trends Chem. 3, 15–33 (2021).
39. Zhao, G. et al. The physics and chemistry of graphene-on-surfaces. Chem. Soc. Rev. 46, 4417–4449 (2017).
40. Liang, X. et al. Toward Clean and Crackless Transfer of Graphene. ACS Nano 5, 9144–9153 (2011).
41. Pirkle, A. et al. The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2. Appl. Phys. Lett. 99, 122108 (2011).
42. Zhang, Z. et al. Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes. Nat. Commun. 8, 14560 (2017).
43. Zhang, G. et al. Versatile Polymer-Free Graphene Transfer Method and Applications. ACS Appl. Mater. Interfaces 8, 8008–8016 (2016).
44. Chen, Z., Qi, Y., Chen, X., Zhang, Y. & Liu, Z. Direct CVD Growth of Graphene on Traditional Glass: Methods and Mechanisms. Adv. Mater. 31, 1803639 (2019).
45. Pham, V. P., Jang, H.-S., Whang, D. & Choi, J.-Y. Direct growth of graphene on rigid and flexible substrates: progress, applications, and challenges. Chem. Soc. Rev. 46, 6276–6300 (2017).
46. Sun, J., Zhang, Y. & Liu, Z. Direct Chemical Vapor Deposition Growth of Graphene on Insulating Substrates. ChemNanoMat 2, 9–18 (2016).
47. Wei, D. et al. Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties. Nano Lett. 9, 1752–1758 (2009).
48. Wan, J. X. et al. Synthesis of nitrogen-doped graphene via pentachloropyridine as the sole solid source. Appl. Phys. Lett. 111, 033106 (2017).
49. He, B., Ren, Z., Qi, C., Yan, S. & Wang, Z. Synthesis of nitrogen-doped monolayer graphene with high transparent and n-type electrical properties. J. Mater. Chem. C 3, 6172–6177 (2015).
50. Zhang, C. et al. Synthesis of Nitrogen-Doped Graphene Using Embedded Carbon and Nitrogen Sources. Adv. Mater. 23, 1020–1024 (2011).
51. Bong, J. H., Sul, O., Yoon, A., Choi, S.-Y. & Cho, B. J. Facile graphene n-doping by wet chemical treatment for electronic applications. Nanoscale 6, 8503 (2014).
52. Xu, W. et al. Controllable n-Type Doping on CVD-Grown Single- and Double-Layer Graphene Mixture. Adv. Mater. 27, 1619–1623 (2015).
53. Jo, I. et al. Stable n-type doping of graphene via high-molecular-weight ethylene amines. Phys. Chem. Chem. Phys. 17, 29492–29495 (2015).
54. Shin, D.-W., Kim, T. S. & Yoo, J.-B. Phosphorus doped graphene by inductively coupled plasma and triphenylphosphine treatments. Mater. Res. Bull. 82, 71–75 (2016).
55. Xue, Y. et al. Direct synthesis of phosphorus and nitrogen co-doped monolayer graphene with air-stable n-type characteristics. Phys. Chem. Chem. Phys. 16, 20392–20397 (2014).
56. Some, S. et al. Highly Air-Stable Phosphorus-Doped n-Type Graphene Field-Effect Transistors. Adv. Mater. 24, 5481–5486 (2012).
57. Bangert, U. et al. Ion Implantation of Graphene—Toward IC Compatible Technologies. Nano Lett. 13, 4902–4907 (2013).
58. Åhlgren, E. H., Kotakoski, J. & Krasheninnikov, A. V. Atomistic simulations of the implantation of low-energy boron and nitrogen ions into graphene. Phys. Rev. B 83, (2011).
59. Wu, X., Zhao, H., Yan, D. & Pei, J. Doping of graphene using ion beam irradiation and the atomic mechanism. Comput. Mater. Sci. 129, 184–193 (2017).
60. Bai, Z., Zhang, L. & Liu, L. Improving low-energy boron/nitrogen ion implantation in graphene by ion bombardment at oblique angles. Nanoscale 8, 8761–8772 (2016).
61. Xu, Y., Zhang, K., Brüsewitz, C., Wu, X. & Hofsäss, H. C. Investigation of the effect of low energy ion beam irradiation on mono-layer graphene. AIP Adv. 3, 072120 (2013).
62. Willke, P. et al. Short-range ordering of ion-implanted nitrogen atoms in SiC-graphene. Appl. Phys. Lett. 105, 111605 (2014).
63. Willke, P. et al. Doping of Graphene by Low-Energy Ion Beam Implantation: Structural, Electronic, and Transport Properties. Nano Lett. 15, 5110–5115 (2015).
64. Kepaptsoglou, D. et al. Electronic Structure Modification of Ion Implanted Graphene: The Spectroscopic Signatures of p- and n-Type Doping. ACS Nano 9, 11398–11407 (2015).
65. Susi, T. et al. Single-atom spectroscopy of phosphorus dopants implanted into graphene. 2D Mater. 4, 021013 (2017).
66. Ryu, M., Lee, P., Kim, J., Park, H. & Chung, J. Band gap engineering for single-layer graphene by using slow Li+ ions. Nanotechnology 27, 31LT03 (2016).
67. Tripathi, M. et al. Implanting Germanium into Graphene. ACS Nano 12, 4641–4647 (2018).
68. Lin, P.-C. et al. Doping Graphene with Substitutional Mn. ACS Nano 15, 5449–5458 (2021).
69. Mounet, N. et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 13, 246–252 (2018).
70. Puthirath Balan, A. et al. Exfoliation of a non-van der Waals material from iron ore hematite. Nat. Nanotechnol. 13, 602–609 (2018).
71. Zhang, S., Yan, Z., Li, Y., Chen, Z. & Zeng, H. Atomically Thin Arsenene and Antimonene: Semimetal-Semiconductor and Indirect-Direct Band-Gap Transitions. Angew. Chem. Int. Ed. 54, 3112–3115 (2015).
72. Castellanos-Gomez, A. Why all the fuss about 2D semiconductors? Nat. Photonics 10, 202–204 (2016).
73. Wang, J. et al. Recent Progress on Localized Field Enhanced Two-dimensional Material Photodetectors from Ultraviolet-Visible to Infrared. Small 13, 1700894 (2017).
74. Liu, Y. et al. Promises and prospects of two-dimensional transistors. Nature 591, 43–53 (2021).
75. Xie, L. M. Two-dimensional transition metal dichalcogenide alloys: preparation, characterization and applications. Nanoscale 7, 18392–18401 (2015).
76. Choi, W. et al. Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 20, 116–130 (2017).
77. Chaves, A. et al. Bandgap engineering of two-dimensional semiconductor materials. npj 2D Mater. Appl. 4, 29 (2020).
78. Akhtar, M. et al. Recent advances in synthesis, properties, and applications of phosphorene. npj 2D Mater. Appl. 1, (2017).
79. Nan, H. et al. Producing air-stable InSe nanosheet through mild oxygen plasma treatment. Semicond. Sci. Technol. 33, 074002 (2018).
80. Hu, Y., Wu, Y. & Zhang, S. Influences of Stone–Wales defects on the structure, stability and electronic properties of antimonene: A first principle study. Phys. B: Condens. Matter 503, 126–129 (2016).
81. Tsai, H.-S. et al. Direct Synthesis and Practical Bandgap Estimation of Multilayer Arsenene Nanoribbons. Chem. Mater. 28, 425–429 (2016).
82. Shah, J., Wang, W., Sohail, H. M. & Uhrberg, R. I. G. Experimental evidence of monolayer arsenene: an exotic 2D semiconducting material. 2D Mater. 7, 025013 (2020).
83. Zhang, S. et al. Recent progress in 2D group-VA semiconductors: from theory to experiment. Chem. Soc. Rev. 47, 982–1021 (2018).
84. Huh, W., Lee, D. & Lee, C. Memristors Based on 2D Materials as an Artificial Synapse for Neuromorphic Electronics. Adv. Mater. 32, 2002092 (2020).
85. Pumera, M. & Sofer, Z. 2D Monoelemental Arsenene, Antimonene, and Bismuthene: Beyond Black Phosphorus. Adv. Mater. 29, 1605299 (2017).
86. Du, H., Lin, X., Xu, Z. & Chu, D. Recent developments in black phosphorus transistors. J. Mater. Chem. C 3, 8760–8775 (2015).
87. Woomer, A. H. et al. Phosphorene: Synthesis, Scale-Up, and Quantitative Optical Spectroscopy. ACS Nano 9, 8869–8884 (2015).
88. Duong, D. L., Yun, S. J. & Lee, Y. H. van der Waals Layered Materials: Opportunities and Challenges. ACS Nano 11, 11803–11830 (2017).
89. Li, L. et al. Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014).
90. Zhang, S. et al. Semiconducting Group 15 Monolayers: A Broad Range of Band Gaps and High Carrier Mobilities. Angew. Chem. Int. Ed. 55, 1666–1669 (2016).
91. Zeng, M., Xiao, Y., Liu, J., Yang, K. & Fu, L. Exploring Two-Dimensional Materials toward the Next-Generation Circuits: From Monomer Design to Assembly Control. Chem. Rev. 118, 6236–6296 (2018).
92. Kecik, D., Durgun, E. & Ciraci, S. Stability of single-layer and multilayer arsenene and their mechanical and electronic properties. Phys. Rev. B 94, (2016).
93. Ji, J. et al. Two-dimensional antimonene single crystals grown by van der Waals epitaxy. Nat. Commun. 7, 13352 (2016).
94. Aktürk, O. Ü., Özçelik, V. O. & Ciraci, S. Single-layer crystalline phases of antimony: Antimonenes. Phys. Rev. B 91, (2015).
95. Wang, G., Pandey, R. & Karna, S. P. Atomically Thin Group V Elemental Films: Theoretical Investigations of Antimonene Allotropes. ACS Appl. Mater. Interfaces 7, 11490–11496 (2015).
96. Chen, J. et al. Monolayer-Trilayer Lateral Heterostructure Based Antimonene Field Effect Transistor: Better Contact and High On/Off Ratios. Phys. Status Solidi - Rapid Res. Lett. 12, 1800038 (2018).
97. Balandin, A. A. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569–581 (2011).
98. Nan, H. Y. et al. The thermal stability of graphene in air investigated by Raman spectroscopy: The thermal stability of graphene in air. J. Raman Spectrosc. 44, 1018–1021 (2013).
99. Mannix, A. J., Kiraly, B., Hersam, M. C. & Guisinger, N. P. Synthesis and chemistry of elemental 2D materials. Nat. Rev. Chem. 1, 0014 (2017).
100. De Padova, P. et al. Evidence of graphene-like electronic signature in silicene nanoribbons. Appl. Phys. Lett. 96, 261905 (2010).
101. Tao, L. et al. Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol. 10, 227–231 (2015).
102. Grazianetti, C. & Molle, A. Silicene in the Flatland. in GraphITA (eds. Morandi, V. & Ottaviano, L.) 137–152 (Springer International Publishing, 2017). doi:10.1007/978-3-319-58134-7_10.
103. Molle, A. et al. Buckled two-dimensional Xene sheets. Nat. Mater. 16, 163–169 (2017).
104. Chen, K.-C. et al. Multi-layer elemental 2D materials: antimonene, germanene and stanene grown directly on molybdenum disulfides. Semicond. Sci. Technol. 34, 105020 (2019).
105. Gablech, I. et al. Monoelemental 2D materials-based field effect transistors for sensing and biosensing: Phosphorene, antimonene, arsenene, silicene, and germanene go beyond graphene. Trends Analyt. Chem. 105, 251–262 (2018).
106. Sengupta, A., Dominguez, A. & Frauenheim, T. Photo-absorption properties of van der Waals heterostructure of monolayer InSe with silicene, germanene and antimonene. Appl. Surf. Sci. 475, 774–780 (2019).
107. Guo, Y. et al. Interfacial properties of stanene–metal contacts. 2D Mater. 3, 035020 (2016).
108. Yuhara, J. et al. Large area planar stanene epitaxially grown on Ag(111). 2D Mater. 5, 025002 (2018).
109. Cao, W. et al. 2-D Layered Materials for Next-Generation Electronics: Opportunities and Challenges. IEEE Trans. Electron Devices 65, 4109–4121 (2018).
110. Yakovkin, I. Dirac Cones in Graphene, Interlayer Interaction in Layered Materials, and the Band Gap in MoS2. Crystals 6, 143 (2016).
111. Splendiani, A. et al. Emerging Photoluminescence in Monolayer MoS2. Nano Lett. 10, 1271–1275 (2010).
112. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).
113. Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013).
114. Gao, J. et al. Aging of Transition Metal Dichalcogenide Monolayers. ACS Nano 10, 2628–2635 (2016).
115. Chang, H.-C. et al. Synthesis of Large-Area InSe Monolayers by Chemical Vapor Deposition. Small 14, 1802351 (2018).
116. Zheng, T. et al. Layer-number dependent and structural defect related optical properties of InSe. RSC Adv. 7, 54964–54968 (2017).
117. Arora, H. & Erbe, A. Recent progress in contact, mobility, and encapsulation engineering of InSe and GaSe. InfoMat 3, 662–693 (2021).
118. Song, C., Huang, S., Wang, C., Luo, J. & Yan, H. The optical properties of few-layer InSe. J. Appl. Phys. 128, 060901 (2020).
119. Ansari, L. et al. Quantum confinement-induced semimetal-to-semiconductor evolution in large-area ultra-thin PtSe2 films grown at 400 °C. npj 2D Mater. Appl. 3, 33 (2019).
120. Ghasemi, F., Taghavimendi, R. & Bakhshayeshi, A. Electronic and optical properties of monolayer and bulk of PtSe2. Opt. Quantum Electron 52, 492 (2020).
121. Jiang, W. et al. Large-area high quality PtSe2 thin film with versatile polarity. InfoMat 1, 260–267 (2019).
122. Kandemir, A. et al. Structural, electronic and phononic properties of PtSe2 : from monolayer to bulk. Semicond. Sci. Technol. 33, 085002 (2018).
123. Zhao, Y. et al. High-Electron-Mobility and Air-Stable 2D Layered PtSe2 FETs. Adv. Mater. 29, 1604230 (2017).
124. Podzorov, V., Gershenson, M. E., Kloc, Ch., Zeis, R. & Bucher, E. High-mobility field-effect transistors based on transition metal dichalcogenides. Appl. Phys. Lett. 84, 3301–3303 (2004).
125. Fang, H. et al. High-Performance Single Layered WSe2 p-FETs with Chemically Doped Contacts. Nano Lett. 12, 3788–3792 (2012).
126. Cheng, R. et al. Electroluminescence and Photocurrent Generation from Atomically Sharp WSe2/MoS2 Heterojunction p–n Diodes. Nano Lett. 14, 5590–5597 (2014).
127. Gutiérrez, H. R. et al. Extraordinary Room-Temperature Photoluminescence in Triangular WS2 Monolayers. Nano Lett. 13, 3447–3454 (2013).
128. Kuc, A. Low-dimensional transition-metal dichalcogenides. in Chemical Modelling (eds. Springborg, M. & Joswig, J.-O.) vol. 11 1–29 (Royal Society of Chemistry, 2014).
129. Kang, K. et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656–660 (2015).
130. Falin, A. et al. Mechanical Properties of Atomically Thin Tungsten Dichalcogenides: WS2 , WSe2 , and WTe2. ACS Nano 15, 2600–2610 (2021).
131. Di, X., Zhu, L. & Zhang, T. Effective thickness and mechanical properties of β-phases of two-dimensional pnictogen nanosheets. J. Nanoparticle Res. 21, 139 (2019).
132. Torbatian, Z., Alidoosti, M., Novko, D. & Asgari, R. Low-loss two-dimensional plasmon modes in antimonene. Phys. Rev. B 101, 205412 (2020).
133. Sharma, S., Kumar, S. & Schwingenschlögl, U. Arsenene and Antimonene: Two-Dimensional Materials with High Thermoelectric Figures of Merit. Phys. Rev. Appl. 8, (2017).
134. Wu, Y. et al. Effects of intervalley scatterings in thermoelectric performance of band-convergent antimonene. arXiv:2001.07499 [cond-mat] (2020).
135. Lu, L. et al. Broadband Nonlinear Optical Response in Few-Layer Antimonene and Antimonene Quantum Dots: A Promising Optical Kerr Media with Enhanced Stability. Adv. Opt. Mater. 5, 1700301 (2017).
136. Song, Y. et al. Nonlinear Few-Layer Antimonene-Based All-Optical Signal Processing: Ultrafast Optical Switching and High-Speed Wavelength Conversion. Adv. Opt. Mater. 6, 1701287 (2018).
137. Kistanov, A. A. et al. A first-principles study on the adsorption of small molecules on antimonene: oxidation tendency and stability. J. Mater. Chem. C 6, 4308–4317 (2018).
138. Touski, S. B. & Ghobadi, N. Interplay Between Stacking Order and In-plane Strain on the Electrical Properties of Bilayer Antimonene. arXiv:2007.10258 [cond-mat] (2020).
139. Shi, Z.-Q. et al. Tuning the Electronic Structure of an α-Antimonene Monolayer through Interface Engineering. Nano Lett. 20, 8408–8414 (2020).
140. Wang, Y. & Ding, Y. The electronic structures of group-V–group-IV hetero-bilayer structures: a first-principles study. Phys. Chem. Chem. Phys. 17, 27769–27776 (2015).
141. Kripalani, D. R., Kistanov, A. A., Cai, Y., Xue, M. & Zhou, K. Strain Engineering of Antimonene by a First-principles Study: Mechanical and Electronic Properties. Phys. Rev. B 98, (2018).
142. Pizzi, G. et al. Performance of arsenene and antimonene double-gate MOSFETs from first principles. Nat. Commun. 7, 12585 (2016).
143. Singh, D., Gupta, S. K., Sonvane, Y. & Lukačević, I. Antimonene: a monolayer material for ultraviolet optical nanodevices. J. Mater. Chem. C 4, 6386–6390 (2016).
144. Wang, M., Zhang, F., Wang, Z., Wu, Z. & Xu, X. Passively Q-switched Nd3+ solid-state lasers with antimonene as saturable absorber. Opt. Express 26, 4085 (2018).
145. Shu, H., Li, Y., Niu, X. & Guo, J. Electronic structures and optical properties of arsenene and antimonene under strain and an electric field. J. Mater. Chem. C 6, 83–90 (2018).
146. Wang, Y. et al. Many-body Effect, Carrier Mobility, and Device Performance of Hexagonal Arsenene and Antimonene. Chem. Mater. 29, 2191–2201 (2017).
147. Ares, P., Palacios, J. J., Abellán, G., Gómez-Herrero, J. & Zamora, F. Recent Progress on Antimonene: A New Bidimensional Material. Adv. Mater. 30, 1703771 (2018).
148. Lu, H., Gao, J., Hu, Z. & Shao, X. Biaxial strain effect on electronic structure tuning in antimonene-based van der Waals heterostructures. RSC Adv. 6, 102724–102732 (2016).
149. Abid, M. et al. Edge magnetism and electronic structure properties of zigzag nanoribbons of arsenene and antimonene. J. Phys. Chem. Solids 110, 167–172 (2017).
150. Zhang, A.-X., Liu, J.-T., Guo, S.-D. & Li, H.-C. Strain effects on phonon transport in antimonene investigated using a first-principles study. Phys. Chem. Chem. Phys. 19, 14520–14526 (2017).
151. Zhang, S. et al. Antimonene Oxides: Emerging Tunable Direct Bandgap Semiconductor and Novel Topological Insulator. Nano Lett. 17, 3434–3440 (2017).
152. Chu, F. et al. A highly polarization sensitive antimonene photodetector with a broadband photoresponse and strong anisotropy. J. Mater. Chem. C 6, 2509–2514 (2018).
153. Fortin-Deschênes, M. & Moutanabbir, O. Recovering the Semiconductor Properties of the Epitaxial Group V 2D Materials Antimonene and Arsenene. J. Phys. Chem. C 122, 9162–9168 (2018).
154. van Veen, E., Yu, J., Katsnelson, M. I., Roldan, R. & Yuan, S. Electronic structure of monolayer antimonene nanoribbons under out-of-plane and transverse bias. arXiv:1807.04597 [cond-mat] (2018).
155. Zhang, L. & Liang, W. Atomically Thin p–n/p–n Nanodevices by Surface Charge Transfer Doping of Arsenene/Antimonene Heterostructures. ACS Appl. Mater. Interfaces 10, 23851–23857 (2018).
156. Xie, M., Zhang, S., Cai, B., Zou, Y. & Zeng, H. N- and p-type doping of antimonene. RSC Adv. 6, 14620–14625 (2016).
157. Ares, P. et al. Mechanical Isolation of Highly Stable Antimonene under Ambient Conditions. Adv. Mater. 28, 6332–6336 (2016).
158. Abellán, G. et al. Noncovalent Functionalization and Charge Transfer in Antimonene. Angew. Chem. Int. Ed. 56, 14389–14394 (2017).
159. Zhang, G. et al. 2D group-VA fluorinated antimonene: synthesis and saturable absorption. Nanoscale 11, 1762–1769 (2019).
160. Marzo, A. M. L., Gusmão, R., Sofer, Z. & Pumera, M. Towards Antimonene and 2D Antimony Telluride through Electrochemical Exfoliation. Chem. Eur. J. 26, 6583–6590 (2020).
161. Peng, L., Ye, S., Song, J. & Qu, J. Solution-Phase Synthesis of Few-Layer Hexagonal Antimonene Nanosheets via Anisotropic Growth. Angew. Chem. Int. Ed. 58, 9891–9896 (2019).
162. Zhang, Y. et al. In Situ Exfoliation and Pt Deposition of Antimonene for Formic Acid Oxidation via a Predominant Dehydrogenation Pathway. Research 2020, 1–11 (2020).
163. Gibaja, C. et al. Few-Layer Antimonene by Liquid-Phase Exfoliation. Angew. Chem. Int. Ed. 55, 14345–14349 (2016).
164. Zuo, X. et al. Bubble-template-assisted synthesis of hollow fullerene-like MoS2 nanocages as a lithium ion battery anode material. J. Mater. Chem. A 4, 51–58 (2016).
165. Gu, J. et al. Liquid-Phase Exfoliated Metallic Antimony Nanosheets toward High Volumetric Sodium Storage. Adv. Energy Mater. 7, 1700447 (2017).
166. Lin, W. et al. A fast synthetic strategy for high-quality atomically thin antimonene with ultrahigh sonication power. Nano Res. (2018) doi:10.1007/s12274-018-2110-0.
167. Luo, H. et al. Antimonene: a long-term stable two-dimensional saturable absorption material under ambient conditions for the mid-infrared spectral region. Photonics Res. 6, 900 (2018).
168. Tao, W. et al. Two-Dimensional Antimonene-Based Photonic Nanomedicine for Cancer Theranostics. Adv. Mater. 30, 1802061 (2018).
169. Tian, W. et al. Few-Layer Antimonene: Anisotropic Expansion and Reversible Crystalline-Phase Evolution Enable Large-Capacity and Long-Life Na-Ion Batteries. ACS Nano 12, 1887–1893 (2018).
170. Wang, G. et al. Intensity-dependent nonlinear refraction of antimonene dispersions in the visible and near-infrared region. Appl. Opt. 57, E147 (2018).
171. Wang, X. et al. Bandgap-Tunable Preparation of Smooth and Large Two-Dimensional Antimonene. Angew. Chem. Int. Ed. 57, 8668–8673 (2018).
172. Ren, X. et al. Few-Layer Antimonene Nanosheet: A Metal-Free Bifunctional Electrocatalyst for Effective Water Splitting. ACS Appl. Energy Mater. 2, 4774–4781 (2019).
173. Wu H. & Yan Z. Antimonene Quantum Dots: Large-scale Synthesis via Liquid-phase Exfoliation. Acta. Phys. Sin. 35, 1052–1057 (2019).
174. Xue, T. et al. Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor. Nat. Commun. 10, 28 (2019).
175. Yu, J. et al. Antimonene Engineered Highly Deformable Freestanding Electrode with Extraordinarily Improved Energy Storage Performance. Adv. Energy Mater. 9, 1902462 (2019).
176. Assebban, M. et al. Unveiling the oxidation behavior of liquid-phase exfoliated antimony nanosheets. 2D Mater. 7, 025039 (2020).
177. Bat-Erdene, M. et al. Surface oxidized two-dimensional antimonene nanosheets for electrochemical ammonia synthesis under ambient conditions. J. Mater. Chem. A 8, 4735–4739 (2020).
178. García-Mendiola, T. et al. Functionalization of a Few-Layer Antimonene with Oligonucleotides for DNA Sensing. ACS Appl. Nano Mater. 3, 3625–3633 (2020).
179. Kang, Y. et al. Antimonene Nanosheets‐Based Z‐Scheme Heterostructure with Enhanced Reactive Oxygen Species Generation and Photothermal Conversion Efficiency for Photonic Therapy of Cancer. Adv. Healthcare Mater. 2001835 (2020) doi:10.1002/adhm.202001835.
180. Liu, Y. et al. Antimonene Quantum Dots as an Emerging Fluorescent Nanoprobe for the pH-Mediated Dual-Channel Detection of Tetracyclines. Small 16, 2003429 (2020).
181. Gibaja, C. et al. Liquid Phase Exfoliation of Antimonene: Systematic Optimization, Characterization and Electrocatalytic Properties. 14.
182. Fortin-Deschênes, M. et al. Synthesis of Antimonene on Germanium. Nano Lett. 17, 4970–4975 (2017).
183. Wu, X. et al. Epitaxial Growth and Air-Stability of Monolayer Antimonene on PdTe2. Adv. Mater. 29, 1605407 (2017).
184. Chen, H.-A. et al. Single-Crystal Antimonene Films Prepared by Molecular Beam Epitaxy: Selective Growth and Contact Resistance Reduction of the 2D Material Heterostructure. ACS Appl. Mater. Interfaces 10, 15058–15064 (2018).
185. Mao, Y.-H. et al. Epitaxial growth of highly strained antimonene on Ag (111). arXiv:1803.09865 [cond-mat] (2018).
186. Shao, Y. et al. Epitaxial Growth of Flat Antimonene Monolayer: A New Honeycomb Analogue of Graphene. Nano Lett. 18, 2133–2139 (2018).
187. Jałochowski, M. & Krawiec, M. Antimonene on Pb quantum wells. 2D Mater. 6, 045028 (2019).
188. Niu, T. et al. Large‐Scale Synthesis of Strain‐Tunable Semiconducting Antimonene on Copper Oxide. Adv. Mater. 8 (2019).
189. Shi, Z.-Q. et al. Van der Waals Heteroepitaxial Growth of Monolayer Sb in a Puckered Honeycomb Structure. Adv. Mater. 31, 1806130 (2019).
190. Gu, M. et al. Direct Growth of Antimonene on C-Plane Sapphire by Molecular Beam Epitaxy. Appl. Sci. 10, 639 (2020).
191. Rathore, J. & Mahapatra, S. Formation of antimonene nanoribbons by molecular beam epitaxy. 2D Mater. 7, 045003 (2020).
192. Kim, S. H. et al. Topological phase transition and quantum spin Hall edge states of antimony few layers. Sci. Rep. 6, 33193 (2016).
193. Märkl, T. et al. Engineering multiple topological phases in nanoscale Van der Waals heterostructures: realisation of α -antimonene. 2D Mater. 5, 011002 (2017).
194. Sun, X. et al. van der Waals Epitaxy of Antimony Islands, Sheets, and Thin Films on Single-Crystalline Graphene. ACS Nano 12, 6100–6108 (2018).
195. Hogan, C. et al. Temperature Driven Phase Transition at the Antimonene/Bi2Se3 van der Waals Heterostructure. ACS Nano 13, 10481–10489 (2019).
196. Kuriakose, S. et al. Monocrystalline Antimonene Nanosheets via Physical Vapor Deposition. Adv. Mater. Interfaces 2001678 (2020) doi:10.1002/admi.202001678.
197. Gupta, T. et al. Resolving few-layer antimonene/graphene heterostructures. npj 2D Mater. Appl. 5, 53 (2021).
198. Cecchini, R. et al. Vapor phase epitaxy of antimonene-like nanocrystals on germanium by an MOCVD process. Appl. Surf. Sci. 535, 147729 (2021).
199. Wu, Q. & Song, Y. J. The environmental stability of large-size and single-crystalline antimony flakes grown by chemical vapor deposition on SiO2 substrates. Chem. Commun. 54, 9671–9674 (2018).
200. Tsai, H.-S., Chen, C.-W., Hsiao, C.-H., Ouyang, H. & Liang, J.-H. The advent of multilayer antimonene nanoribbons with room temperature orange light emission. Chem. Commun. 52, 8409–8412 (2016).
201. Fortin‐Deschênes, M. et al. Dynamics of Antimonene–Graphene Van Der Waals Growth. Adv. Mater. 31, 1900569 (2019).
202. Fortin-Deschênes, M. et al. Pnictogens Allotropy and Phase Transformation during van der Waals Growth. 30.
203. Zhu, S.-Y. et al. Evidence of Topological Edge States in Buckled Antimonene Monolayers. Nano Lett. 19, 6323–6329 (2019).
204. Yang, X. et al. Application and prospect of antimonene: A new two-dimensional nanomaterial in cancer theranostics. J. Inorg. Biochem. 212, 111232 (2020).
205. Lu, G. et al. Antimonene with two-orders-of-magnitude improved stability for high-performance cancer theranostics. Chem. Sci. 10.1039.C9SC00324J (2019) doi:10.1039/C9SC00324J.
206. Martínez-Periñán, E. et al. Antimonene: A Novel 2D Nanomaterial for Supercapacitor Applications. Adv. Energy Mater. 8, 1702606 (2018).
207. Zhang, F. et al. Semimetal-Semiconductor Transitions for Monolayer Antimonene Nanosheets and Their Application in Perovskite Solar Cells. Adv. Mater. 30, 1803244 (2018).
208. Ferrari, A. C. & Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8, 235–246 (2013).
209. Ferrari, A. C. et al. Raman Spectrum of Graphene and Graphene Layers. Phys. Rev. Lett. 97, (2006).
210. Ho, K.-I. et al. Fluorinated Graphene as High Performance Dielectric Materials and the Applications for Graphene Nanoelectronics. Sci. Rep. 4, 5893 (2015).
211. Qin, B. et al. Substrates in the Synthesis of Two-Dimensional Materials via Chemical Vapor Deposition. Chem. Mater. 32, 10321–10347 (2020).
212. Deng, B., Liu, Z. & Peng, H. Toward Mass Production of CVD Graphene Films. Adv. Mater. 31, 1800996 (2019).
213. Bruna, M. et al. Doping Dependence of the Raman Spectrum of Defected Graphene. ACS Nano 8, 7432–7441 (2014).
214. Hesjedal, T. Continuous roll-to-roll growth of graphene films by chemical vapor deposition. Appl. Phys. Lett. 98, 133106 (2011).
215. Wang, Y. et al. Synthesis of large-area graphene films on rolled-up Cu foils by a “breathing” method. Chem. Eng. J. 405, 127014 (2021).
216. Nagai, Y., Sugime, H. & Noda, S. 1.5 Minute-synthesis of continuous graphene films by chemical vapor deposition on Cu foils rolled in three dimensions. Chem. Eng. Sci. 201, 319–324 (2019).
217. Polsen, E. S., McNerny, D. Q., Viswanath, B., Pattinson, S. W. & John Hart, A. High-speed roll-to-roll manufacturing of graphene using a concentric tube CVD reactor. Sci. Rep. 5, 10257 (2015).
218. Zhong, G. et al. Growth of continuous graphene by open roll-to-roll chemical vapor deposition. Appl. Phys. Lett. 109, 193103 (2016).
219. Wang, H. et al. Surface Monocrystallization of Copper Foil for Fast Growth of Large Single-Crystal Graphene under Free Molecular Flow. Adv. Mater. 28, 8968–8974 (2016).
220. He, S.-M. et al. Toward large-scale CVD graphene growth by enhancing reaction kinetics via an efficient interdiffusion mediator and mechanism study utilizing CFD simulations. J. Taiwan Inst. Chem. Engrs. S1876107021005113 (2021) doi:10.1016/j.jtice.2021.08.035.
221. Shin, Y. C., Dresselhaus, M. S. & Kong, J. Preparation of Graphene with Large Area. in Carbon Nanotubes and Graphene 39–76 (Elsevier, 2014). doi:10.1016/B978-0-08-098232-8.00004-8.
222. Song, L., Ci, L., Gao, W. & Ajayan, P. M. Transfer Printing of Graphene Using Gold Film. ACS Nano 3, 1353–1356 (2009).
223. Dresselhaus, M. S., Jorio, A., Hofmann, M., Dresselhaus, G. & Saito, R. Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy. Nano Lett. 10, 751–758 (2010).
224. Cançado, L. G. et al. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 11, 3190–3196 (2011).
225. Lee, J. E., Ahn, G., Shim, J., Lee, Y. S. & Ryu, S. Optical separation of mechanical strain from charge doping in graphene. Nat. Commun. 3, (2012).
226. Armano, A. et al. Monolayer graphene doping and strain dynamics induced by thermal treatments in controlled atmosphere. Carbon 127, 270–279 (2018).
227. Ahn, G. et al. Optical Probing of the Electronic Interaction between Graphene and Hexagonal Boron Nitride. ACS Nano 7, 1533–1541 (2013).
228. Bendiab, N. et al. Unravelling external perturbation effects on the optical phonon response of graphene: External perturbation effects on graphene optical phonons. J. Raman Spectrosc. 49, 130–145 (2018).
229. Li, Y. et al. Electrochemical synthesis of phosphorus-doped graphene quantum dots for free radical scavenging. Phys. Chem. Chem. Phys. 19, 11631–11638 (2017).
230. Wang, F. et al. Phosphorus-doped activated carbon as a promising additive for high performance lead carbon batteries. RSC Adv. 7, 4174–4178 (2017).
231. Zhao, L. Natural phosphorus-doped honeycomb carbon materials as oxygen reduction catalysts derived from Pulsatilla chinensis (Bunge) Regel. RSC Adv. 7, 13904–13910 (2017). |