博碩士論文 103328015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:3.149.26.176
姓名 林彥臣(Yen-Chen Lin)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱
(Phosphor Packaging Design of white LED with Optical-Thermal-Electrical Coupling)
相關論文
★ 發光二極體電極設計與電流分佈模擬分析★ 外加水平式磁場柴氏長晶法生長矽單晶之熱流場數值模擬研究
★ 外加cusp磁場柴氏法生長單晶矽之熱流場及氧雜質傳輸數值分析★ MOCVD垂直式腔體中氮化鎵薄膜生長之模擬分析
★ 考量氣體分子 吸附性質之 MOCVD垂直反應腔體模擬分析★ 水平式MOCVD腔體中使用氣體脈衝方法生長氮化鋁薄膜之數值模擬與分析
★ 外加Cusp磁場下柴氏法生長單晶矽之不同晶堝轉影響熱流場及氧傳輸數值分析★ 水解二乙基鋅於近耦合噴淋式反對稱腔體 之MOCVD模擬設計分析
★ MOCVD水平式腔體中氮化鎵薄膜製程碳濃度之模擬與傳輸現象分析★ MOCVD 行星式腔體之模型建立與傳輸現象分析
★ 柴氏法生長6~8吋矽單晶之高溫梯爐體與製程設計模擬★ 300mm矽晶圓片於平坦度10奈米以下磊晶製程之數值模擬分析
★ 以陽極處理法生長二氧化鈦奈米管於玻璃基板上之研究★ 二段陽極處理法應用於鈦薄膜成長之研究
★ 交流電發光二極體之接面溫度與熱阻量測研究★ 液滴於具溫度梯度的微流道之數值模擬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 白光發光二極體(White LED) 是新一代重要的固態照明設備。了解其中的電、光、熱的交互作用機制是我們非常中要的課題。本研究中使用有限元素分析法搭配蒙地卡羅法建立光電熱耦合數值模擬分析模型。透過內部量子效率計算光源能量分布。再套入螢光粉封裝數值模型分析螢光粉轉換白光LED整體封裝的溫度場分布、出光能量、相對色溫及演色性。
本研究選用藍光LED以及黃光螢光粉作為組成白光LED的方式。同時探討藍光與白光LED。所有的模擬結果與實驗結果比較都有非常高的一致性。並證實螢光粉層的自加熱效應是造成螢光粉層熱點的主因。
根據此驗證模型提出雙層螢光粉封裝設計方式。限定內層螢光粉的濃度一定高於外層的螢光粉,並將相對色溫定在6300K左右。在有較高的內層螢光粉濃度時,因為LED本身的吸收上升而導致顏色的偏差與接面溫度的上升。較低的內層螢光粉濃度時,會有較低的接面溫度,然而因為大部分的熱源發生在外層,也因此有較高的螢光粉層溫度。
摘要(英)
White LED is an important candidate of new generation solid state lightening. Understanding the mechanism of how is the interaction between current, light and heat is an essential task for us. In this study, finite element method (FEM) and Monte Carlo statistics method are applied to optical-electrical-thermal coupled numerical model. Obtaining the light source from IQE calculation. Coupling with the phosphor packaging numerical model in order to analyze the temperature distribution, light output power, CCT, and CRI of phosphor-converted white LED.
The blue LED and yellow phosphor is chosen as the material of white LED. The packaging with and without phosphor are investigated. From the comparison, the result obtained from numerical simulation can correctly fit to the experimental result. The self-heating of phosphor layer is the main reason that caused the hotspot in phosphor layer for phosphor-converted white LED.
Based on the previous analysis, double phosphor layer packaging was proposed. The concentration of inner layer is always higher than outer layer, and the CCT of white LED is set to be about 6300K. With higher inner concentration, the absorption of die is enhanced, caused the color shift and higher junction temperature. Lower inner concentration can lead to lower junction temperature, however the maximum temperature of phosphor layer is higher as an exchange, due to the heat generation mostly happened at outer layer. Based on these analysis of simulation, better LED device is expected to be realize.
關鍵字(中) ★ LED
★ 螢光粉
★ 白光
★ 封裝
關鍵字(英) ★ LED
★ Phosphor
★ white
★ packaging
論文目次
中文摘要 i
ABSTRACT ii
致謝 iii
Contents iv
LIST OF FIGURES vii
LIST OF TABLES xi
List of Symbols xii
Chapter 1 Introduction 1
1.1 Background Introduction 1
1.2 Literature Review 4
1.2.1 Effect of Packaging Design of LEDs 4
1.3 Motivation and Objectives 8
Chapter 2 Theoretical and Numerical Method 15
2.1 Emission Theory 15
2.1.1 LED Basic 15
2.1.2 Phosphors Basic 16
2.2 Luminescence Efficiency 18
2.2.1 LED Efficiency 18
2.2.2 Phosphor Efficiency 19
2.2.3 Overall Efficiency 20
2.3 Mathematical model of Electrical Field 21
2.3.1 Governing Equation and Boundary Conditions 21
2.3.2 Equivalent Conductivity in Active Layer 23
2.3.3 Recombination in Active layer 24
2.4 Mathematical model of Thermal Field 28
2.4.1 Governing Equation and Boundary Conditions 28
2.5 Optical Field Theory 31
2.5.1 Snell’s Law 31
2.5.2 Total Internal Reflection 31
2.5.3 Beer-Lambert-Bouguer Law 32
2.5.4 Fresnel Equation 33
2.6 Numerical model of Semiconductors 33
2.6.1 Energy bandgap 33
2.6.2 Thermal Conductivity 34
2.6.3 Refractive Index 35
2.7 Numerical model of Phosphors 36
2.7.1 Scattering of Phosphors 36
2.7.2 Thermal Quenching of Phosphors 38
2.7.3 Thermal conductivity of Phosphor colloids 39
2.7.4 Absorption of Phosphor layer 39
2.8 Simulation Model 40
2.9 Coupling and Analysis 41
2.9.1 Solving Method 41
2.9.2 Solving Step 42
2.9.3 Meshing, Convergence and Ray Number Test 43
Chapter 3 Experimental Theory and Measurement 58
3.1 Junction Temperature Measuring Theory 58
3.2 Junction Temperature Measuring System and Settings 59
3.2.1 K factor Calibration Curve 59
3.2.2 Junction Temperature 59
3.3 Recombination Coefficient Measuring Theory 60
3.4 Optics Measuring System 61
Chapter 4 Result and Discussion 66
4.1 LED Experimental Result 66
4.1.1 Junction Temperature Measurement 66
4.1.2 Optical Measurement 66
4.2 LED Simulation Result 67
4.2.1 Optical-Electrical-Thermal Coupled Simulation of Blue LED 67
4.2.2 Optical-Electrical-Thermal Coupled Simulation of White LED 68
4.3 Analysis of White LED 69
4.3.1 Temperature Distribution in LED Packaging 69
4.3.2 Double Phosphor layer with Different Phosphor Concentration 69
Chapter 5 Conclusion 87
References 89
參考文獻
[1] 宋福生,「照明系統設計規劃與節能應用」,取自http://enegylaw.ecct.org.tw/files/03_%E7%85%A7%E6%98%8E%E7%B3%BB%E7%B5%B1%E8%A8%AD%E8%A8%88%E8%A6%8F%E5%8A%83%E8%88%87%E7%AF%80%E8%83%BD%E6%87%89%E7%94%A8.pdf (2011).
[2] Cree, Cree First to Break 300 Lumens-Per-Watt Barrier, http://www.cree.com/News-and-Events/Cree-News/Press-Releases/2014/March/300LPW-LED-barrier
[3] P. Deurenberg, C. Hoelen, J. van Meurs, J. Ansems, “Achieving color point stability in RGB multi-chip LED modules using various color control loops,” Proc. SPIE, 5941, 59410C-1 (2005).
[4] J. K. Sheu, S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, Y. C. Lin, W. C. Lai, J. M. Tsai, G. C. Chi, R. K. Wu, “White-Light Emission From Near UV InGaN–GaN LED Chip Precoated With Blue/Green/Red Phosphors” IEEE Photon. Tech., 15, 18-20 (2003).
[5] R. Mueller-Mach, G. O. Mueller, M. R. Krames, T. Trottier, “High-Power Phosphor-Converted Light-Emitting Diodes Based on III-Nitrides,” IEEE. J. Quantum Elec., 8, 339-345 (2002).
[6] Bouguer, P. (1729). Essai d′optique sur la gradation de la lumière. Jombert.
[7] Bohren, C. F., & Huffman, D. R. (2008). Absorption and scattering of light by small particles. John Wiley & Sons.
[8] Setlur, A. A., Srivastava, A. M., Comanzo, H. A., & Doxsee, D. D. (2004). U.S. Patent No. 6,685,852. Washington, DC: U.S. Patent and Trademark Office.
[9] Shimizu, Y., Sakano, K., Noguchi, Y., & Moriguchi, T. (1999). U.S. Patent No. 5,998,925. Washington, DC: U.S. Patent and Trademark Office.
[10] Won, Y. H., Jang, H. S., Cho, K. W., Song, Y. S., Jeon, D. Y., & Kwon, H. K. (2009). Effect of phosphor geometry on the luminous efficiency of high-power white light-emitting diodes with excellent color rendering property. Optics letters, 34(1), 1-3.
[11] Verzellesi, G., Saguatti, D., Meneghini, M., Bertazzi, F., Goano, M., Meneghesso, G., & Zanoni, E. (2013). Efficiency droop in InGaN/GaN blue light-emitting diodes: Physical mechanisms and remedies. Journal of Applied Physics, 114(7), 071101.
[12] EETimes-Asia, SSL extends lifespan of LED bulb.
[13] Philipslumileds, Luxen Emitter Technical Datasheet
[14] LEDs Magazine, “Lumileds presents new analysis of power LED reliability”.
[15] Luo, X., Fu, X., Chen, F., & Zheng, H. (2013). Phosphor self-heating in phosphor converted light emitting diode packaging. International Journal of Heat and Mass Transfer, 58(1), 276-281.
[16] Tian, Y. (2014). Development of phosphors with high thermal stability and efficiency for phosphor-converted LEDs. Journal of Solid State Lighting, 1(1), 1-15.
[17] Ye, S., Xiao, F., Pan, Y. X., Ma, Y. Y., & Zhang, Q. Y. (2010). Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties. Materials Science and Engineering: R: Reports, 71(1), 1-34.
[18] ZHANG, Y., Lan, L., ZHANG, X., & Qun, X. (2008). Temperature effects on photoluminescence of YAG: Ce 3+ phosphor and performance in white light-emitting diodes. Journal of rare earths, 26(3), 446-449.
[19] Zhang, C., Uchikoshi, T., Xie, R. J., Liu, L., Cho, Y., Sakka, Y., ... & Sekiguchi, T. (2016). Prevention of thermal-and moisture-induced degradation of the photoluminescence properties of the Sr 2 Si 5 N 8: Eu 2+ red phosphor by thermal post-treatment in N 2–H 2. Physical Chemistry Chemical Physics, 18(18), 12494-12504.
[20] Schubert, E. F., Gessmann, T., & Kim, J. K. (2005). Light emitting diodes. John Wiley & Sons, Inc..
[21] Lin, C. C., & Liu, R. S. (2011). Advances in phosphors for light-emitting diodes. The journal of physical chemistry letters, 2(11), 1268-1277.
[22] 吳信謀,白光LED與螢光粉發展應用趨勢,2014,https://www.mnd.gov.tw/Upload/201402/42%E5%8D%B71%E6%9C%9F_044%28%E4%B8%AD%E5%BF%83%E8%AB%96%E9%A1%8C%29.pdf
[23] Gai, S., Li, C., Yang, P., & Lin, J. (2013). Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications. Chemical reviews, 114(4), 2343-2389.
[24] Fluorescent Probes, https://www.thermofisher.com/jp/ja/home/life-science/protein-biology/protein-biology-learning-center/protein-biology-resource-library/pierce-protein-methods/fluorescent-probes.html
[25] Jablonski Energy Diagram, http://www.olympusmicro.com/primer/java/jablonski/jabintro/
[26] Mueller-Mach, R., Mueller, G. O., & Krames, M. R. (2004, January). Phosphor materials and combinations for illumination-grade white pcLEDs. In Optical Science and Technology, SPIE′s 48th Annual Meeting (pp. 115-122). International Society for Optics and Photonics.
[27] Mueller-Mach, R., Mueller, G. O., Krames, M. R., & Trottier, T. (2002). High-power phosphor-converted light-emitting diodes based on III-nitrides. Selected Topics in Quantum Electronics, IEEE Journal of, 8(2), 339-345.
[28] Khalid, A. H., & Kontis, K. (2008). Thermographic phosphors for high temperature measurements: principles, current state of the art and recent applications. Sensors, 8(9), 5673-5744
[29] Taskar, N. R., Bhargava, R. N., Barone, J., Chhabra, V., Chabra, V., Dorman, D., ... & Kulkarni, B. (2004, January). Quantum-confined-atom-based nanophosphors for solid state lighting. In Optical Science and Technology, SPIE′s 48th Annual Meeting (pp. 133-141). International Society for Optics and Photonics.
[30] Price, P. J., & Stern, F. (1983). Carrier confinement effects. Surface Science, 132(1), 577-593.
[31] Acharya, Y. B., & Vyavahare, P. D. (1997). Study on the temperature sensing capability of a light-emitting diode. Review of scientific instruments, 68(12), 4465-4467.
[32] 〖"EZBright" 〗^"TM" LED Handling and Packaging Recommendations.
[33] 施敏,半導體元件物理與製作技術,黃調元 譯,二版,國立交通大學出版社,新竹市,民國九十一年。
[34] Lin, G. B., Meyaard, D., Cho, J., Schubert, E. F., Shim, H., & Sone, C. (2012). Analytic model for the efficiency droop in semiconductors with asymmetric carrier-transport properties based on drift-induced reduction of injection efficiency. Applied Physics Letters, 100(16), 161106.
[35] Li, H., Li, P., Kang, J., Li, Z., Zhang, Y., Liang, M., ... & Wang, G. (2013). Analysis model for efficiency droop of InGaN light-emitting diodes based on reduced effective volume of active region by carrier localization. Applied Physics Express, 6(9), 092101.
[36] Q. Dai, Q. Shan, J. Wang, S. Chhajed, J. Cho E.F. Schubert, M.H. Crawford, D.D. Koleske, M.H. Kim, Y. Park, “Carrier recombination mechanisms and efficiency droop in GaInNGaN light-emitting diodes”, Appl. Phys. Lett., 97, 133507 (2010).
[37] Ozgur, Ü., Liu, H., Li, X., Ni, X., & Morkoc, H. (2010). GaN-based light-emitting diodes: Efficiency at high injection levels. Proceedings of the IEEE, 98(7), 1180-1196.
[38] Sze, S. M., & Kwok, K. N. (2007). Physics of semiconductor devices 3rd Edition. Wiley Online Library.
[39] Van Zeghbroeck, B. (2004). Principles of semiconductor devices. Colarado University.
[40] Pérez-Tomás, A., Fontserè, A., Placidi, M., Jennings, M. R., & Gammon, P. M. (2013). Modelling the metal–semiconductor band structure in implanted ohmic contacts to GaN and SiC. Modelling and Simulation in Materials Science and Engineering, 21(3), 035004.
[41] Farahmand, M., Garetto, C., Bellotti, E., Brennan, K. F., Goano, M., Ghillino, E., ... & Ruden, P. P. (2001). Monte Carlo simulation of electron transport in the III-nitride wurtzite phase materials system: binaries and ternaries. IEEE Transactions on electron devices, 48(3), 535-542.
[42] Shockley, W., & Read Jr, W. T. (1952). Statistics of the recombinations of holes and electrons. Physical review, 87(5), 835.
[43] Refractive index and dispersion. Schott technical information document TIE-29 (2007).
[44] Ghosh, G. (1997). Sellmeier coefficients and dispersion of thermo-optic coefficients for some optical glasses. Applied optics, 36(7), 1540-1546.
[45] Malitson, I. H. (1962). Refraction and dispersion of synthetic sapphire. JOSA, 52(12), 1377-1379.
[46] Beadie, G., Brindza, M., Flynn, R. A., Rosenberg, A., & Shirk, J. S. (2015). Refractive index measurements of poly (methyl methacrylate)(PMMA) from 0.4–1.6 μm. Applied optics, 54(31), F139-F143.
[47] Bashir, B. (2009). DEPARTMENT OF TECHNOLOGY AND BUILT ENVIRONMENT.
[48] Chen, C. C., Chen, C. Y., Chien, W. T., Yang, T. H., & Sun, C. C. (2010, August). Optical performance as a function of phosphor particle number in white LED. In SPIE Optical Engineering+ Applications (pp. 778606-778606). International Society for Optics and Photonics.
[49] Zhang, Q., Pi, Z., Chen, M., Luo, X., Xu, L., & Liu, S. (2011). Effective thermal conductivity of silicone/phosphor composites. Journal of Composite Materials, 0021998311401105.
[50] Lin, Y.C. (2016). Photoluminescence properties on Li2SrSiO4:Eu2+ synthesized by sol-gel method (Master’s thesis). Hiroshima University, Japan.
[51] Tailored Optical Materials, Phospshor information leaflet. https://www.fh-muenster.de/fb1/downloads/personal/juestel/juestel/Phosphor_Information_Leaflet_L-S2-14-Eu_Li2SrSiO4-Eu_.pdf
[52] Toublanc, D. (1996). Henyey–Greenstein and Mie phase functions in Monte Carlo radiative transfer computations. Applied optics, 35(18), 3270-3274.
[53] Salh, R. (2011). Defect related luminescence in silicon dioxide network: a review. INTECH Open Access Publisher.
[54] Hsu, Y. C., Tsai, C. C., Chen, M. H., Lo, Y. T., Lee, C. W., & Cheng, W. H. (2008, May). Decay mechanisms of lumen and chromaticity for high-power phosphor-based white
[55] Bachmann, V., Ronda, C., & Meijerink, A. (2009). Temperature quenching of yellow Ce3+ luminescence in YAG: Ce. Chemistry of Materials, 21(10), 2077-2084.
[56] Z. He, Z. Li, X. Fan, W. Cheng, J. Ju, Q. Ou, R. Liang, “Photoluminescence enhancement and thermal performance of surface modified "Y" _"3" 〖"Al" 〗_"5" "O" _"12" ":" 〖"Ce" 〗^"3+" phosphor by chemical wet etching,” Function Materials Lett., 6,1350008-1 (2013).
[57] 劉如熹,白光發光二極體製作技術-由晶粒金屬化至封裝,全華圖書股份有限公司,台北縣,中華民國九十七年。
[58] Yuan, C., & Luo, X. (2013). A unit cell approach to compute thermal conductivity of uncured silicone/phosphor composites. International Journal of Heat and Mass Transfer, 56(1), 206-211.
[59] Marcos-Gomez, D., Ching-Lloyd, J., Elizalde, M. R., Clegg, W. J., & Molina-Aldareguia, J. M. (2010). Predicting the thermal conductivity of composite materials with imperfect interfaces. Composites Science and Technology, 70(16), 2276-2283.
[60] Christensen, K. (2002). Percolation theory. Imperial College London, London, 40.
[61] Piprek, J. (Ed.). (2007). Nitride semiconductor devices: principles and simulation. John Wiley & Sons.
[62] Kerrour, F., Boukabache, A., & Pons, P. (2012). Modelling of thermal behavior N-doped silicon resistor. Journal of Sensor Technology, 2(03), 132.
[63] L.A. Yang, Y. Hao, Q.Y. Yao, and J.cC. Zhang, “Improved Negative Differential Mobility Model of GaN and AlGaN for a Terahertz Gunn Diode”, IEEE Trans. on Electr. Devices, 0018-9838 (2011).
[64] 孔祥仁,「高功率白光LED 封裝之螢光粉特性之研究」,中央大學光電科學與工程所,碩士論文,民國九十八年。
[65] 何信穎,「白光LED之YAG螢光粉光學模型之研究」,中央大學光電科學與工程所,碩士論文,民國九十七年。
[66] Song, K., Zhang, F., Chen, D., Wu, S., Zheng, P., Huang, Q., ... & Qin, H. (2015). Enhancement of photoluminescence properties and modification of crystal structures of Si 3 N 4 doping Li 2 Sr 0.995 SiO 4: 0.005 Eu 2+ phosphors. Materials Research Bulletin, 70, 309-314.
[67] Chen, C. Y., Chang, Y. Y., Yang, T. H., & Sun, C. C. (2012, November). LED packaging for extremely uniform angular CCT distribution. In Solid-State and Organic Lighting (pp. LM4A-1). Optical Society of America.
[68] Xi, Y., & Schubert, E. F. (2004). Junction-temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method. Applied Physics Letters, 85(12), 2163-2165.
[69] EIA/JEDEC Standard: “EIA/JEDEC51-2”, Electronic Industries Alliance, Engineering Department, Arlington (1995).
[70] Yoo, Y. S., Roh, T. M., Na, J. H., Son, S. J., & Cho, Y. H. (2013). Simple analysis method for determining internal quantum efficiency and relative recombination ratios in light emitting diodes. Applied Physics Letters, 102(21), 211107.
[71] Yoshida, H., Kuwabara, M., Yamashita, Y., Uchiyama, K., & Kan, H. (2010). Radiative and nonrad
[72] Steigerwald, D. A., Bhat, J. C., Collins, D., Fletcher, R. M., Holcomb, M. O., Ludowise, M. J., ... & Rudaz, S. L. (2002). Illumination with solid state lighting technology. IEEE journal of selected topics in quantum electronics, 8(2), 310-320.
[73] Wall, F., Martin, P. S., & Harbers, G. (2004, January). High-power LED package requirements. In Optical Science and Technology, SPIE′s 48th Annual Meeting (pp. 85-92). International Society for Optics and Photonics.
[74] Sun, C. C., Chen, C. Y., Chen, C. C., Chiu, C. Y., Peng, Y. N., Wang, Y. H., ... & Chung, C. Y. (2012). High uniformity in angular correlated-color-temperature distribution of white LEDs from 2800K to 6500K. Optics express, 20(6), 6622-6630.
[75] Narendran, N., Gu, Y., Freyssinier‐Nova, J. P., & Zhu, Y. (2005). Extracting phosphor‐scattered photons to improve white LED efficiency. physica status solidi (a), 202(6), R60-R62.
[76] Zhu, Y., Narendran, N., & Gu, Y. (2006, August). Investigation of the optical properties of YAG: Ce phosphor. In SPIE Optics+ Photonics (pp. 63370S-63370S). International Society for Optics and Photonics.
[77] Kim, J. K., Luo, H., Schubert, E. F., Cho, J., Sone, C., & Park, Y. (2005). Strongly enhanced phosphor efficiency in GaInN white light-emitting diodes using remote phosphor configuration and diffuse reflector cup. Japanese Journal of Applied Physics, 44(5L), L649.
[78] Narendran, N. (2005, August). Improved performance white LED. In Optics & Photonics 2005 (pp. 594108-594108). International Society for Optics and Photonics.
[79] Luo, H., Kim, J. K., Schubert, E. F., Cho, J., Sone, C., & Park, Y. (2005). Analysis of high-power packages for phosphor-based white-light-emitting diodes. Applied physics letters, 86(24), 243505.
[80] Allen, S. C., & Steckl, A. J. (2007). ELiXIR-solid-state luminaire with enhanced light extraction by internal reflection. Journal of Display Technology, 3(2), 155-159.
[81] Allen, S. C., & Steckl, A. J. (2008). A nearly ideal phosphor-converted white light-emitting diode. Applied Physics Letters, 92(14), 143309.
[82] Liu, Z. Y., Liu, S., Wang, K., & Luo, X. B. (2010). Studies on optical consistency of white LEDs affected by phosphor thickness and concentration using optical simulation. IEEE Transactions on Components and Packaging Technologies, 33(4), 680-687.
[83] Sun, C. C., Chang, Y. Y., Yang, T. H., Chung, T. Y., Chen, C. C., Lee, T. X., ... & Chen, Y. C. (2014). Packaging efficiency in phosphor-converted white LEDs and its impact to the limit of luminous efficacy. Journal of Solid State Lighting, 1(1), 1.
[84] Shuai, Y., He, Y., Tran, N. T., & Shi, F. G. (2011). Angular CCT uniformity of phosphor converted white LEDs: Effects of phosphor materials and packaging structures. IEEE Photonics Technology Letters, 23(3), 137-139.
[85] Wang, K., Wu, D., Chen, F., Liu, Z., Luo, X., & Liu, S. (2010). Angular color uniformity enhancement of white light-emitting diodes integrated with freeform lenses. Optics letters, 35(11), 1860-1862.
[86] Lin, M. T., Ying, S. P., Lin, M. Y., Tai, K. Y., Tai, S. C., Liu, C. H., ... & Sun, C. C. (2010). Ring remote phosphor structure for phosphor-converted white LEDs. IEEE Photonics Technology Letters, 22(8), 574-576.
[87] Hu, R., Cao, B., Zou, Y., Zhu, Y., Liu, S., & Luo, X. (2013). Modeling the light extraction efficiency of bi-layer phosphors in white LEDs. IEEE Photonics Technology Letters, 25(12), 1141-1144.
[88] Luo, X., Fu, X., Chen, F., & Zheng, H. (2013). Phosphor self-heating in phosphor converted light emitting diode packaging. International Journal of Heat and Mass Transfer, 58(1), 276-281.
[89] Chung, T. Y., Chiou, S. C., Chang, Y. Y., Sun, C. C., Yang, T. H., & Chen, S. Y. (2015). Study of temperature distribution within pc-WLEDs using the remote-dome phosphor package. IEEE Photonics Journal, 7(2), 1-11.
[90] Shih, B. J., Chiou, S. C., Hsieh, Y. H., Sun, C. C., Yang, T. H., Chen, S. Y., & Chung, T. Y. (2015). Study of temperature distributions in pc-WLEDs with different phosphor packages. Optics express, 23(26), 33861-33869.
[91] 曾嘉偉,「白光發光二極體之光電熱耦合模擬研究」,中央大學機械工程研究所,碩士論文,民國一零二年。
[92] Haferkorn, B., & Meyer, G. (1998). Li2EuSiO4, ein Europium (II)‐dilithosilicat: Eu [(Li2Si) O4]. Zeitschrift für anorganische und allgemeine Chemie, 624(7), 1079-1081.
[93] University of Liverpool, Inorganic Chemistry, Garnet-Y3Al5O12, http://www.chemtube3d.com/solidstate/SS-YGarnet.htm
[94] Salh, R. (2011). Defect related luminescence in silicon dioxide network: a review. INTECH Open Access Publisher.
[95] 蕭仲博,「大尺寸LED晶片Efficiency Droop之光電熱效應研究」,中央大學機械工程研究所,碩士論文,民國一零三年。
[96] 吳輝昕,「Numerical Investigation of Efficiency Droop in Light-Emitting Diodes」,中央大學機械工程研究所,碩士論文,民國一零五年。
指導教授 陳志臣(Jyh-Chen Chen) 審核日期 2017-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明