博碩士論文 103328016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.135.205.164
姓名 謝献慶(Hsien-Ching Hsieh)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 石墨烯塗佈銅管外凝結熱傳性能研究
相關論文
★ 不同集管型式多流道熱交換器流動分佈研究★ 冷媒R-245fa於不同石墨烯塗佈鰭管上凝結熱傳性能之實驗分析
★ 低溫熱管設計及性能研究★ 吸附式空調系統之微鰭板蒸發/冷凝器凝結熱傳增強性能研究
★ 平板震盪型熱管均熱片研究★ 薄矽膠層吸附床之性能研究
★ 小型吸附式空調系統研究★ 變頻空調機在不同環境下之控制策略
★ 水-空氣在板式熱交換器內的流動觀察★ 以紅外線熱像分析冷媒R410A在板式熱交換器內之蒸發熱傳性能
★ 不同粒徑微多孔表面在狹小空間內之池沸騰熱傳性能研究★ 梯形流道表面之池沸騰熱傳性能研究
★ 超臨界R-410A與R-32熱傳及壓降性能之研究★ 製冷劑R-245fa在石墨烯塗層中的冷凝傳熱整體翅片管
★ 不同性能風扇對熱傳增強鰭片之性能研究★ 使用FAM Z05沸石對水之小型吸附式空調性能研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究使用化學氣相層積法(CVD),將石墨烯塗佈至純銅圓管表面上,使石墨烯表面產生疏水性的物理現象,並將其測試銅管置於本實驗室設計之可視化冷凝實驗系統中,透過觀察與量測工作流體R245fa 與R141b 之管外冷凝熱傳係數以及石墨烯表面的是否能產生滴狀凝結之物理現象,並比較石墨烯表面與一般銅表面管外冷凝熱傳係數之差異。
在接觸角量測結果上,去離子水在石墨烯表面接觸角有9∘的提升對於一般銅表面上,而石墨烯測試銅管在拉曼光譜儀之測量結果,在實驗前與實驗後皆有石墨烯特徵訊號,證明所選擇之工作冷媒並未與石墨烯表面產生化學反應。
而在管外冷凝熱傳係數上,一般銅管與石墨烯銅管外冷凝熱傳係數非常接近,主要原因為R141b 冷媒液體在巨觀情況下並無法呈現疏水性的液滴在石墨烯表面上,以及R245fa 冷媒在分子結構上較為對稱,使其流體極性較低與非極性的石墨烯表面產生相似相溶之化學現象,使其無法產生滴狀冷凝在石墨烯塗佈表面上。
摘要(英) Condensation, a two-phase heat transfer processes, is commonly utilized in industrial systems. Water vapor condensation has been studied by several researchers and different technique has been proposed to enhance condensation heat transfer. Functionalized surfaces can enhance condensation heat transfer by means of transferring heat with dropwise condensation due to hydrophobic coatings. Many studies have investigated outside water condensation heat transfer of functionalized surface.
However, there are several applications which use refrigerant with low boiling temperature instead of water such as waste heat recovery technologies with low thermal efficiency and high capital cost. Enhancing condensation heat transfer of refrigerant can considerably increase and decrease the thermal efficiency and capital cost of these systems respectively.
Due to the lack of study on outside refrigerants condensation of heat transfer with functionalized surface, this study focuses on the effect of graphene-coated copper tube on the performance of outside condensation heat transfer. The graphene was in-situ grown cooper tube surface by chemical vapor deposition (CVD) method. In this research two different refrigerant R245fa and R141b are used. Moreover, the heat transfer efficiency of outside condensation for graphene coated and uncoated copper tubes are investigated and compared.
The contact angle of deionized water (DI-water) and R141b droplet on pristine and graphene-coated copper plate are measured. The droplet contact angle on graphene-coated and uncoated copper plate are measured to be 88.3o (DI-water)/ 23.6 o(R141b) and 79.8o(DI-water)/ 15.7 o (R141b) ,respectively.
The experimental observation and results show no drop-wise condensation and heat transfer enhancement for R245fa and R141b on graphene-coated copper tube when compare to that of uncoated tube. The results show that the experimental heat transfer coefficient at low subcooled wall temperature has no significance difference (5 %) with Nusselt correlation but at high subcooled wall temperature the difference increases to 23%. The difference of experimental data with Nusselt correlation at high wall subcooled temperature is because of the effect of vapor shear which is not considered in Nusslet correlation.
R245fa is a symmetric polarized molecular, thus lower the degree of dipole. Based on the principle of like-dissolves-like, the graphene is a non-dipole molecular, leading to hydrophilic surface when it was subjected to the contact from R245fa molecular. From the contact angle measurement by real-time macroscopy, it was found out the R141b exhibit hydrophilic type droplets on graphene surface, which was consistent with the observed phenomenon of R141b testing in chamber.
關鍵字(中) ★ 石墨烯
★ 管外凝結
★ 熱傳增強
★ 滴狀冷凝
★ R245fa
★ R141b
關鍵字(英) ★ Graphene
★ Outside condensation
★ Heat transfer enhancement
★ Dropwise Condensation
★ R245fa
★ R141b
論文目次 摘要......................................................I
Abstract..................................................I
目 錄...................................................IV
表目錄..................................................VII
圖目錄.................................................VIII
符號說明................................................XII
第一章 前言...............................................1
1.1 研究背景與動機........................................5
1.2 研究目的..............................................6
第二章 文獻回顧...........................................7
2.1 石墨烯................................................7
2.2 化學氣相沉積法........................................9
2.3 凝結熱傳機構.........................................11
2.4 石墨烯表面鍍層對滴狀冷凝之影響.......................14
2.5 結語.................................................18
第三章 實驗方法..........................................34
3.1 石墨烯製程方法.......................................34
3.2 實驗系統.............................................35
3.2.1 還路系統.........................................35
3.2.2 加熱系統.........................................35
3.2.3 冷卻水系統.......................................36
3.2.4 測試腔體.........................................36
3.3 實驗參數.............................................37
3.4 實驗數據擷取系統.....................................44
3.4.1 溫度量測.........................................44
3.4.2 壓力量測.........................................45
3.4.3 流量量測.........................................45
3.4.4 量測項目擷取.....................................45
3.4.5 冷凝液滴成長影像擷取.............................46
3.4.6 接觸角量測儀與拉曼光譜檢測裝置與原理.............46
3.5 實驗方法.............................................51
3.5.1 系統測漏.........................................51
3.5.2 系統不凝結氣體排除...............................51
3.5.3 系統內冷媒填充...................................52
3.5.4 實驗操作步驟.....................................53
3.6 實驗數據換算.........................................56
3.6.1 冷媒熱力物理性質.................................56
3.6.2 測試銅管內熱傳量計算.............................56
3.6.3 冷卻水熱傳量計算.................................58
3.6.4 冷凝熱傳係數與銅管表面過冷溫度計算...............60
第四章 實驗結果與討論....................................63
4.1 石墨烯表面拉曼光譜檢測與冷媒接觸角之量測.............63
4.2 一般銅管外冷凝熱傳係數...............................80
4.3 石墨烯表面與一般銅管表面冷凝熱傳係數之比較...........83
第五章 結論..............................................90
參考文獻.................................................92
附錄 A 實驗誤差分析.......................................94
附錄 B 各儀器校正曲線.....................................97
參考文獻 [1] S. Vemuri, K.J. Kim, B.D. Wood, S. Govindaraju, T.W. Bell . “ Long term testing for dropwise condensation using self-assembled monolayer coatings of n-octadecyl mercaptan . ”Applied Thermal Engineering, 26, 421–429, 2006

[2] D.J. Preston, D.L. Mafra, N. Miljkovic, J. Kong, E.N. Wang.“ Scalable Graphene Coatings for Enhanced Condensation Heat Transfer”, Nano Letter., 15, 2902−2909, 2015

[3] Graphene mining webpage. “Understanding the Advantages and Challenges of Graphene Oxide Using Thermodynamics”, 2013
[4] H.O. Pierson, “Handbook of Chemical Vapour Deposition” Noyes Publications, Park Ridge, NJ 1992.

[5] J.G. Collier and J.R. Thome, “Convective Boiling and Condensation”, Third Edition. Oxford University Press New York, 1994
[6] C.Y. Yang, “A Critical Review of Condensation Heat Transfer Predicting Models –Effects of Surface-tension Force”, Enhanced Heat Transfer,Vol. 6, pp.217-236, 1999.

[7] J.W. Rose, “Dropwise condensation theory and experiment: a review” Proc Instn Mech Engrs Vol 216 Part A: J Power and Energy, 2002

[8] A.T. Paxson, J.L. Yagüe, K.K. Gleason, K.K. Varanasi, “ Stable Dropwise Condensation for Enhancing Heat Transfer via the Initiated Chemical Vapor Deposition (iCVD) of Grafted Polymer Films. ”, Advanced Materials, 26, 2013

[9] Y.J. Shin, Y.Y. Wang, H. Huang, G. Kalon, A.T.S. Wee, Z. Shen, C. S. Bhatia, H.S Yang, “Surface-Energy Engineering of Graphene”, Langmuir, 26(6), 3798–3802, 2010
93

[10] F.G. Mugele, “Wetting unobtrusive graphene coatings”, Nature Materials , vol 11 , 2012

[11] J. Rafiee, X. Mi, H. Gullapalli, A.V. Thomas, F. Yavari, Y.F. Shi, P.M. Ajayan, N.A. Koratkar, “Wetting transparency of grapheme” , Nature Materials , vol 11, 2012

[12] A.C. Ferrari, “Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects” , Solid State Communications, 143, 47–57, 2007

[13] E.M. Sparrow, S. H. Lin, “Condensation heat transfer in the presence of a noncondensable gas”, Trans. ASME, J. Heat Transfer, pp.430-436, 1964.

[14] F.P. Incropera and D.P. DeWitt, “Fundamentals of Heat Mass Transfer”, 4th ed., John Wiley & Sons, New York, 1996

[15] C.W. Meyer, G. Morrlson, “Dipole Moments of Seven Refrigerants”, Journal of Chemlcal and Englneerlng Data, Vol. 36, No. 4, 1991,
指導教授 楊建裕(Chien-Yuh Yang) 審核日期 2016-12-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明