博碩士論文 103328020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:3.139.107.241
姓名 蕭信助(Sin-Jhu Siao)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 有機發光二極體激子光電特性模擬研究
相關論文
★ 利用銦錫氧化物設計太陽能電池之電極對轉換效率之效益★ 側聚光型太陽能電池系統之聚光元件設計與製作
★ 結合繞射光柵與平凸透鏡之光束分頻元件於聚 光型太陽光電 / 太陽熱混合系統之應用★ 波前檢測應用於氣體折射率量測
★ 多重曲率之聚光元件應用於聚光型太陽能電池系統★ 太陽光模擬系統之設計與製作
★ 有機發光二極體熱特性模擬研究★ 太陽光與固態照明自動化混光技術研究
★ 高分子光柵應用於太陽光分光元件★ 利用色差分光之太陽能分光系統
★ 有機發光二極體光熱電特性整合模擬之研究★ 隨機奈米粒子模型應用於OLED 出光增益之研究
★ 太陽選擇性塗層與熱平行堆疊運用於太陽熱電發電系統之實時模擬研究★ 陰影疊紋式力-位移量測技術之研究
★ 繞射分波元件於混合型太陽能系統之應用★ 可撓式白光有機發光二極體光雪與色彩分析之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) OLED發光原理是由於電子、電洞在發光層內再結合形成激子,激子從激發態回到基態時會發光,而激子的生成與電子、電洞的注入濃度以及有機材料的電荷遷移率有關。為探討有機層中的激子數,本論文利用空間電荷限制電流法,依據有機材料實際情況,來計算有機材料的電荷遷移率,接著考慮主發光體與客發光體之間的能量轉移的關係,及考慮電極淬熄對激子的影響,再結合所推算之電荷遷移率,建立模擬模型,以模擬出激子在有機層內的分布情況。
將模擬出的激子濃度分布曲線,以電流密度修正,並積分激子濃度分布曲線,以計算出有機層內的激子數,而可得知電流密度與激子數之間的關係,最後,利用實際OLED元件做輝度測量,並藉由模擬與實驗的結果之比較,探討激子數與輝度之間的關係,以建立預測OLED元件效能的電特性模擬模型。
摘要(英) The principle of OLED light-emission lies in the recombination of electrons and holes, resulting in the generation of excitons in the organic layers. The excitons emit light when they return to the ground state from the excited state. Since the generation of excitons relates to the concentrations of injected electron and hole, mobility of material, etc, this study explored the mobility by the method of space charge limited current (SCLC) according to the actual material conditions. Then, the energy transfer between the host and the guest materials and the electrode quenching effect on excitons were considered along with the measured mobility for calculating the exciton density distribution within the organic layers.
Afterward, the exciton density distribution curve was correct by the measured current density. With the integral of exciton density distribution curve, the number of excitons within the organic layers was calculated, and the relationship between the current density and the number of excitons were derived. Finally, luminance of OLED elements was measured to explore the relationship between the number of excitons and the luminance and to set up an electronic simulation model for predicting the performance of OLED devices.
關鍵字(中) ★ OLED電模擬
★ 空間電荷限制電流
★ 電荷遷移率
★ 能量轉移
★ 電極淬熄
★ 激子
關鍵字(英) ★ Electrical simulation of OLED
★ Space Charge Limited Current
★ Mobility
★ Energy transfer
★ Electrode quenching
★ Exciton
論文目次 摘要 I
Abstract II
致謝 III
圖目錄 VI
表目錄 VIII
參數目錄 IX
第一章、緒論 1
1-1 研究背景 1
1-2 研究動機 3
1-3 文獻回顧 4
1-4 論文架構 8
第二章、基礎原理與理論 9
2-1 OLED基本原理 9
2-1-1 發光機制 11
2-1-2 能量轉移 12
2-1-3 載子捕捉(Carrier trapping) 13
2-2帕松方程式(Poisson’s equation) 14
2-3空間電荷限制電流法 15
2-4 激子連續擴散方程式 16
2-5 小結 17
第三章、模擬與計算方法 18
3-1 OLED電特性之模擬流程 18
3-2 電壓分布模擬 19
3-3 電荷遷移率(mobility)計算 20
3-4 電洞、電子注入濃度與分布模擬 24
3-5 電極淬熄模型(Electrode quenching model) 25
3-6 激子濃度分布模擬 26
3-7 小結 28
第四章、模擬結果與討論 29
4-1 電壓分布 31
4-2 電荷遷移率計算結果 33
4-3 電洞、電子濃度分布 35
4-4 電極淬熄 38
4-5 激子濃度分布 39
4-6 小結 43
第五章、模擬修正與運用 44
5-1 模擬J-V曲線 45
5-2 修正激子濃度模擬 48
5-3 J-V曲線之運用 50
5-3-1 n-J 關係圖 50
5-3-2 L-n 關係圖 52
5-4 小結 55
第六章、結論與未來展望 56
6-1 結論 56
6.2 未來展望 57
參考文獻 59
參考文獻 [1] OLED元件特性,取自:錸寶科技股份有限公司,
http:// http://www.ritdisplay.com/index.php/tw/products/oled
[2] 顧鴻壽、周本達、陳密、張德安、樊雨心和周宜衡等合編,光電平面面板顯示器基本概論,高立圖書,新北市,民91。
[3] M. pope, H. P. Kallmann and P. Magnante, “Electroluminescence in Organic Crystals,” Journal of Chemical Physics, 38, 2042-2043 (1963).
[4] C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Applied Physics Letters, 51(12), 913-915 (1987).
[5] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns and A. B. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature, 347, 539-541 (1990).
[6] 彰化師大藍光實驗室OLED網,http://ykuo.ncue.edu.tw/oled/index.htm.
[7] 莊東漢、黃漢邦、謝國煌、蔡豐羽、陳炳宏和鄭晃忠等合編,平面顯示器概論,高立圖書,新北市,民97。
[8] C. C. Lee, M. Y. Chang, Y. D. Jong, T. W. Huang, C. S. Chu and Y. Chang, “Numerical Simulation of Electrical and Optical Characteristics of Multilayer Organic Light-Emitting Devices,” Japanese Journal of Applied Physics, 43, 7560-7565 (2004).
[9] C. C. Lee, M. Y. Chang, P. T. Huang, Y. C. Chen, Y. Chang and S. W. Lin, “Electrical and optical simulation of organic light-emitting devices with fluorescent dopant in the emitting layer,” Japanese Journal of Applied Physics, 101, 114501 (2007).
[10] C. C. Lee, Y. D. Jong, P. T. Huang, Y. C. Chen, P. J. Hu and Y. Chang, “Numerical Simulation of Electrical Model for Organic Light-Emitting Devices with Fluorescent Dopant in the Emitting Layer,” Japanese Journal of Applied Physics, 44, 8147-8152 (2005).
[11] M. Stoessel, G. Wittmann, J. Staudigel, F. Steuber, J. Blässing, W. Roth, H. Klausmann, W. Rogler, J. Simmerer, A. Winnacher, M. Inbasekaran and E. P. Woo, “Cathode-induced luminescence quenching in polyfluorenes,” Journal of Applied Physics, 87, 4467-4475 (2000).
[12] S. T. Lee, Z. Q. Gao and L. S. Hung, “Metal diffusion from electrodes in organic light-emitting diodes,” Applied Physics Letters, 75, 1404-1406 (1999).
[13] B. Ruhstaller, E. Knapp, B. Perucco, N. Reinke, D. Rezzonico and F. Müller, “Advanced Numerical Simulation of Organic Light-emitting Devices,” Physics, 434-458 (2011).
[14] T. Yasuda, Y. Yamaguchi, D. C. Zou and T. Tsutsui, “Carrier Mobility in Organic Electron Transport Material Determined from Space Charge Limited Current,” Japanese Journal of Applied Physics, 41, 5626-5629 (2002).
[15] C. D. J. Blades and A. B. Walker, “Simulation of organic light-emitting diodes,” Synthetic Metals, 111-112, 335-340 (2000).
[16] A. L. Burin and M. A. Ratner, “Exciton Migration and Cathode Quenching in Organic Light Emitting Diodes,” Journal of Chemical Physics, 104, 4704-4710 (2000).
[17] 田民波編輯,平面顯示器之技術發展,五南圖書,新北市,民97。
[18] M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson and S. R. Forrest, “Highly efficient phosphorescent emission from organic electroluminescent devices,” Nature, 395, 151-154 (1998).
[19] 陳金鑫和黃孝文編輯,OLED有機電激發光材料與元件,五南圖書,新北市,民94。
[20] P. K. Wolber and B. S. Hudson, “An analytic solution to the förster energy transfer problem in two dimensions,” Biophysical Journal, 28, 197-210 (1979).
[21] D. L. Dexter, “A Theory of Sensitized Luminescence in Solids,” Journal of Chemical Physics, 21, 836-850 (1953).
[22] H. Suzuki and S. Hoshino, “Effects of doping dyes on the electroluminescent characteristics of multilayer organic light-emitting diodes,” Journal of Applied Physics, 79, 8816-8822 (1996).
[23] X. Gong, J. C. Ostrowski, D. Moses, G. C. Bazan and A. J. Heeger, “Electrophosphorescence from a Polymer Guest-Host System with an Iridium Complex as Guest: Förster Energy Transfer and Charge Trapping,” Advanced Functional Materials, 13, 439-444 (2003).
[24] K. K. E. Neuendorf, J. P. Mehl Jr. and J. A. Jackson (Eds.), Glossary of Geology, Springer Science and Business Media, American, 2005.
[25] 黃俊達、鄭湘原編輯,半導體元件概論,高立圖書,新北市,民97。
[26] 劉傳璽編輯,半導體元件物理與製程,五南圖書,新北市,民100。
指導教授 韋安琪 審核日期 2016-8-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明