博碩士論文 103328029 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:18.117.158.47
姓名 林奕均(Yi-Chun Lin)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 初始體積占有率影響顆粒崩塌行為之研究
(The Effect of Initial Volume Fraction on Granular Collapse)
相關論文
★ 二維儲槽濾材顆粒流場之研究★ 粗細顆粒混合之流動性質分析
★ MOCVD腔體熱流場與新式進氣檔板之設計模擬分析研究★ 稻殼於流體化床進行快速裂解產製生質燃油之研究
★ 利用CFD 模擬催化生質能在快速熱裂解中碳沉積對於催化劑去活化反應影響★ 反向氣流對微小粉末於儲槽排放行為影響之研究
★ 積層製造自動化粉末回收系統-系統設計及其混合器之優化★ 雙床氣化爐冷模型中CFB入口速度、BFB床高和顆粒尺寸對矽砂之壓力分佈和質量流率的影響
★ 以實驗方式探討崩塌流場對可侵蝕底床侵蝕與堆積現象之影響★ 移動式顆粒床過濾器應用於去除PM2.5之研究
★ 超臨界顆粒流場中雙圓柱阻礙物震波交互影響之研究★ 添加微量液體對振動床中顆粒體分離現象的影響
★ 不同表面粗糙度的大顆粒在垂直式振動床中動態行為之研究★ 二維剪力槽中顆粒體群聚現象之研究探討
★ 直渠道顆粒流之顆粒密度分離效應★ 粉粒體於儲槽排放行為及氣泡現象之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究在一矩形玻璃槽中進行乾顆粒崩塌實驗,控制崩塌前顆粒床體的體積佔有率,分析並探討其崩塌流態及流場速度結果。實驗設備為一長70公分長,10公分寬矩形槽體,及能迅速抽離槽體以模擬潰壩崩塌之壓克力檔板。研究中針對0.60、0.62、0.64、0.65四組體積佔有率及粗細兩種顆粒試體的實驗設置拍攝實驗影像,分析其隨時間變化的輪廓剖面、破壞面、沉積速度及角度。並以PIV (Particle image velocimetry)技術計算顆粒崩塌流的速度。實驗結果顯示,細顆粒顆粒體積較小,達到相同體積占有率時等重的顆粒數較粗顆粒更多,顆粒的接觸點多摩擦力大,因此顆粒體較粗顆粒更能維持結構。而各組實驗在體積占有率上升的同時,顆粒間的間隙被更多的小顆粒填充,結構的穩定性提升,崩塌延遲、流動層縮小。但崩塌的速度值是與顆粒堆積的高度關係較大,雖然因體積佔有率的上升而略有下降,但崩塌過程速度的極值出現在自由表面,在同樣寬高比的各組實驗下速度極值及速度變化的進程相近。
摘要(英) This study experimentally investigates the dam-break collapse process of a dry granular step in a transparent glass chute by particle image analysis. Two types of uniform spherical glass beads were piled up with four different bed volume fraction to elucidate their flow characteristics. For all cases in this study, the pile bed high and aspect ratio are all the same. PIV (Particle image velocimetry) were used to analysis for the velocity profiles measured at the side wall. Failure surface, deposit profile and flow regime are discussed by processing the recorded image.
The case with fine particles shows more stability than coarse case during the experiment because there are more particles contacted which bring about higher friction angle. The effect of increasing volume fraction is similar, like the flow area of collapsing of dense cases are smaller than loose one. But there is not much effect of volume fraction on velocity magnitude. The variety of velocity in the process and the maximum value in each cases are approximative.
關鍵字(中) ★ 顆粒流
★ 體積占有率
★ 潰壩
關鍵字(英) ★ granular flow
★ volume fraction
★ dam-break
論文目次 摘要 I
Abstract II
目錄 III
附圖目錄 V
附表目錄 VIII
符號目錄 IX
第一章 緒論 1
1.1 前言 1
1.2 顆粒崩塌流 3
1.3 顆粒體積佔有率 5
1.4 研究動機與本文架構 7
第二章 實驗方法與原理 14
2.1 實驗設備與材料 14
2.1.1 實驗模型 14
2.1.2 實驗儀器與設備 14
2.1.3 顆粒材料 15
2.2 實驗與分析方法 16
2.2.1 實驗方法 16
2.2.2 實驗流程 18
2.2.3 實驗影像分析步驟 19
2.2.4 流場速度計算與分析 20
第三章 結果與討論 32
3.1 顆粒崩塌形貌變化 32
3.1.1流動層與破壞面夾角 32
3.1.2崩塌高度 34
3.1.3 沉積與持續時間 35
3.2 崩塌流場的速度與動態分析 37
3.2.1 自由表面的速度發展 37
3.2.2 二維實驗顆粒體內部的速度向量分佈 38
3.2.3 顆粒流速度區間分析 39
第四章 結論 91
參考文獻 93
參考文獻 [1] B. Sovilla, Jim N. McElwaine, M. Schaer, J. Vallet, “Variation of deposition depth with slope angle in snow avalanches: Measurements from Vallée de la Sionne”, Journal of Geophysical Research: Earth Surface, 115, 2010.
[2] F. Legros, “The mobility of long-runout landslides”, Engineering Geology, 63, 2002.
[3] C. W. W. Ng, and Q. Shi, “A numerical investigation of the stability of unsaturated soil slopes subjected to transient seepage”, Computers and Geotechnics, 22, 1998.
[4] C. Paolo, C. Benoit, F. Thierry, B. Hervé and N. Florence “Small-scale laboratory tests on granular avalanches overflowing a flat obstacle: flow regimes, dead zone and induced forces”, EPFL Doctoral Conference in Mechanics, 2010.
[5] G. Lube, Herbert E. Huppert, R. Stephen J. Sparks, and Armin Freundt, “Collapses of two-dimensional granular columns”, Physical Review E 72, 2005.
[6] E. Lajeunesse, A. Mangeney-Castelnau, and J.P. Vilotte, “Spreading of a granular mass on a horizontal plane”, Physics of Fluids, 16, 2004.
[7] R. Artoni and Andrea C. Santomaso, “Collapse of quasi-two-dimensional wet granular columns”, Physical Review E 87, 2013.
[8] M. Pailha, M. Nicolas, and O. Pouliquen, “Initiation of underwater granular avalanches: Influence of the initial volume fraction”, Physics of Fluids 20, 2008.
[9] L. Rondon, O. Pouliquen, and P. Aussillous, “Granular collapse in a fluid: Role of the initial volume fraction”, Physics of Fluids 23, 2011.
[10] A. Daerr and S. Douady, “Sensitivity of granular surface flows to preparation”, Europhysics Letters, 47, 1999.
[11] Nick Gravish and Daniel I. Goldman, “Effect of volume fraction on granular avalanche dynamics”, Physical Review E 90, 2014.
[12] H. T. Chou and C. F. Lee, “Falling process of a rectangular granular step”, Granular Matter 13, 2011.
[13] O. Pouliquen, “Scaling laws in granular flows down rough inclined planes,” Phys. Fluid, 11, 1999.
[14] N. P. Kruyt, and W. J. Verël, , “Experimental and theoretical study of rapid flows of cohesionless granular materials down inclined chutes,” Powder Technol., 73, 1992.
[15] O. Roche, “Depositional processes and gas pore pressure in pyroclastic flows: an experimental perspective”, Bulletin of Volcanology, 74, 2012.
[16] O. Roche, M. A. Gilbertson, J. C. Phillips and R. S. J. Sparks, “Experimental study of gas-fluidized granular flows with implications for pyroclastic flow emplacement”, Journal of Geophysical Research, 109, 2004.
[17] L. Girolami, T. H. Druitt, O. Roche, and Z. Khrabrykh, “Propagation and hindered settling of laboratory ash flows”, Journal of Geophysical Research, 113, 2008.
[18] P. Philippe and D. Bideau, “Compaction dynamics of a granular medium under vertical tapping”, Europhysics Letters., 60, 2002.
[19] L. Sarno, M. N. Papa, Y. C. Tai, A. Carravetta, R. Martino, “A reliable PIV approach for measuring velocity profiles of highly sheared granular flows”,2014.
[20] Adrian, J. Ronald “Image shifting technique to resolve directional ambiguity in double-pulsed velocimetry,” Applied Optics, 25, 1986.
[21] E. Lajeunesse, J. B. Monnier, and G. M. Homsy, “Granular slumping on a horizontal surface”, Physics of Fluids, 17, 2005.
[22] A. Schofield, P. Wroth, Critical state soil mechanics, McGraw-Hill, London, 1968.
[23] S.C. Pont, R. Fischer, P. Gondret, B. Perrin, M. Rabaud, “Walleffects on granular heap stability” Europhysics Letters, 61, 2003.
[24] D. Geldart, “Types of gas fluidization”, Powder Technology,7, 1973.
[25] L. Sarno , M. N. Papa, P. Villani1, Y.-C. Tai, “An optical method for measuring the near-wall volume fraction in granular dispersions”, Granular Matter, 18, 2016.
[26] S. Siavoshi and A. Kudrolli, “Failure of a granular step”, Physical Review, 71, 2005.
[27] S. Montserrat ,A. Tamburrino, O. Roche ,Y. Niño, C. F. Ihle, “Enhanced run-out of dam-break granular flows caused by initial fluidization and initial material expansion” Granular Matter,18 ,2016.
[28] O. Roche, M. Gilbertson, J. C. Phillips, and R. S. J. Sparks, “Experiments on deaerating granular flows and implications for pyroclastic flow mobility”, Geophysical Research Letters, 29, 2002.
[29] 陳建華,「在水平面上的顆粒物質崩塌過程之內部結構探討」,國立暨南國際大學,碩士論文,民國97年。
[30] 陸珺華,「粒子影像測速法於複合流體行為之探討」,國立成功大學,碩士論文,民國105年。
[31] 黃智煜,「以實驗探討顆粒流之崩落流動狀態」,國立暨南國際大學,碩士論文,民國98年。
指導教授 蕭述三(Shu-San Hsiau) 審核日期 2017-12-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明